Supplementary Materials

Contrasting behaviors of the atmospheric CO$_2$ interannual variability during two types of El Niños

Jun Wang1,2, Ning Zeng2,3, Meirong Wang4, Fei Jiang1, Jingming Chen1,5, Pierre Friedlingstein6, Atul K. Jain7, Ziqiang Jiang1, Weimin Ju1, Sebastian Lienert8,9, Julia Nabel10, Stephen Sitch11, Nicolas Viovy12, Hengmao Wang1, Andrew J. Wiltshire13

1International Institute for Earth System Science, Nanjing University, Nanjing, China
2State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing, China
3Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
4Joint Center for Data Assimilation Research and Applications/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China
5Department of Geography, University of Toronto, Ontario M5S3G3, Canada
6College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QE, UK
7Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
8Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
9Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
10Land in the Earth System, Max Planck Institute for Meteorology, D-20146 Hamburg, Germany
11College of Life and Environmental Sciences, University of Exeter EX4 4QF, UK
12Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL-CEA-CNRS-UVQS, F-91191, Gif sur Yvette, France
13Met office Hadley Centre, Fitzroy Rd, Exeter. EX1 3PB. UK
Figure S1 The atmospheric CO$_2$ growth rate anomalies in the long-lasting El Niño events.

Figure S2 Seasonal evolutions of sea surface temperature anomaly (SSTA) during the EP and CP El Niño event. (a–d) composite SSTA evolution in EP El Niño, (e–h) composite SSTA evolution in CP El Niño.
Figure S3 Hovmöller diagrams of the anomalies of terrestrial GPP and TER (averaged from 180°W to 180°E) during two types of El Niños. (a and c) GPP anomaly during EP and CP El Niño events, (b and d) TER anomaly during EP and CP El Niño events. Dotted areas indicate the significance above the 80% level estimated by Student’s t-test.
Figure S4 Hovmöller diagrams of the anomalies of F_{TA} during two types of El Niños. (a and d) F_{TA} anomaly over the Africa during EP and CP El Niños; (b and e) F_{TA} anomaly over the Asia during EP and CP El Niños; (c and f) F_{TA} anomaly over the South America. Dotted areas indicate the significance above the 80% level estimated by Student’s t-test.
Figure S5 Carbon flux anomalies caused by wildfires from 1997 to 2013. The bars represent the El Niño events during this period selected in this study, with the EP El Niño in blue and CP El Niño in yellow. The GFED-v4 dataset can be referred to Randerson et al. (2015).

Reference