S1. Calibration of NO\textsubscript{2} monitors

Three cavity attenuated phase-shift spectrometry (CAPS) instruments (Aerodyne Research) were used for measuring NO\textsubscript{2} (Kebabian et al., 2008; Kebabian et al., 2005). Two were dedicated for the measurements of NO\textsubscript{2} as part of the ECHAMP measurement of peroxy radicals. The third CAPS instrument was used for measuring ambient NO\textsubscript{2}. The NO\textsubscript{2} monitors were calibrated by sampling diluted NO\textsubscript{2}(g) from a liquid permeation tube (Kin-Tek). The output of the permeation tube (held at 40\textdegree C) was diluted into 100 sccm of N\textsubscript{2} and then into variable flow rates (4000 to 8000 sccm) of either zero air or purified ambient air to make multiple points in the calibration curve. The purified ambient air was prepared by passing ambient air through a scrubber filled with sodium permanganate and activated charcoal (Purafil brand SP Blend Media). The concentrations of NO\textsubscript{2} delivered from the permeation tube were quantified by a chemiluminescence analyzer (Model 42i Trace Level, Thermo Scientific) where the NO\textsubscript{2} was converted to NO (NO\textsubscript{x} mode) in a molybdenum converter held at 325 \textdegree C. See section 3 below for chemiluminescence sensor calibration information. The CAPS NO\textsubscript{2} measurements were also checked by comparing the ECHAMP readings when in “Ox” (background) mode to measurements of O\textsubscript{3} by a UV-absorption monitor (2B Tech model 202, accuracy 2\%). The two methods agreed to within 5\% (Wood and Charest, 2014).

S2. ECHAMP calibration

The ECHAMP sensor was calibrated using the acetone photolysis method (Wood and Charest, 2014). Photolysis of acetone vapor produces almost equimolar concentrations of methyl peroxy (CH\textsubscript{3}O\textsubscript{2}) and peroxyacetyl (CH\textsubscript{3}C(O)OO) radicals:

\[
\text{CH}_3\text{C(O)}\text{CH}_3 + \text{hv} (254 \text{ nm}) + 2\text{O}_2 \rightarrow \text{CH}_3\text{O}_2 + \text{CH}_3\text{C(O)}\text{OO} \quad (S1)
\]

Following reaction with excess NO, these RO\textsubscript{2} radicals will produce NO\textsubscript{2} via the following reactions:

\[
\text{CH}_3\text{C(O)}\text{OO} + \text{NO} \rightarrow \text{CH}_3\text{C(O)}\text{O} + \text{NO}_2 \quad (S2)
\]
\[
\text{CH}_3\text{C(O)}\text{O} + \text{M} + \text{O}_2 \rightarrow \text{CH}_3\text{O}_2 + \text{CO}_2 + \text{M} \quad (S3)
\]
\[
\text{CH}_3\text{O}_2 + \text{NO} \rightarrow \text{CH}_3\text{O} + \text{NO}_2 \quad (S4)
\]
\[
\text{CH}_3\text{O} + \text{O}_2 \rightarrow \text{HO}_2 + \text{HCHO} \quad (S5a)
\]
\[
\text{CH}_3\text{O} + \text{NO} + \text{M} \rightarrow \text{CH}_3\text{ONO} + \text{M} \quad (S5b)
\]
\[
\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2 \quad (S6)
\]

Ignoring the formation of methyl nitrite (Reaction S5b), each CH\textsubscript{3}O\textsubscript{2} radical would produce two NO\textsubscript{2} molecules and each CH\textsubscript{3}C(O)OO would produce three NO\textsubscript{2} molecules. The change in NO\textsubscript{2} observed when the radical source is modulated on and off, effected by diverting the acetone flow away from the carrier flow that is illuminated by the UV source, is related to the RO\textsubscript{2} concentration by the following equation:

\[
([\text{CH}_3\text{O}_2] + [\text{CH}_3\text{C(O)}\text{OO}]) = \Delta\text{NO}_2 / (2.44 \times 0.95) \quad (S7)
\]

in the absence of CH\textsubscript{3}ONO formation and if acetone photolysis at 254 nm led to CH\textsubscript{3}O\textsubscript{2} and CH\textsubscript{3}C(O)O\textsubscript{2} with unity photolysis quantum yield, then the denominator of the right-hand side of
the equation would be exactly 2.5. The two factors in the denominator account for these two
processes as described in Wood and Charest (2014).

As described in the main text, during the field July 2015 field deployment we produced
acetone vapor by flowing air over the headspace of dilute aqueous acetone rather than over pure
acetone. Unfortunately this produced variable amounts of blue light-absorbing compounds
(possibly glyoxal, methyl glyoxal, or diacetyl) which interfered with the CAPS detection of NO2.
As a result we relied on laboratory calibrations performed in the laboratory rather than in-field
calibrations (Fig S1).

Fig. S1. Amplification factors obtained for ECHAMP using the acetone photolysis method.
Uncertainty bars reflect the 2σ accuracy of 19%.

S3. Sampling losses in the ECHAMP inlet.
Sampled air flowed through a glass cross that is internally coated with halocarbon wax and
into the two FEP/PFA reaction chambers, both of which comprise a ¼” PFA tee and ¼” OD,
0.156” (0.4 cm) ID FEP tubing. The total residence time in the cross was approximately 18 ms.
We quantified potential sampling losses in the cross in two ways – 1. by quantifying the effective
first order wall loss rate constant of HO2 and isoprene peroxy radicals onto halocarbon wax-coated
glass of the same dimensions, and 2. by comparing the ECHAMP signal when an HO2 source was
used to overflow the sampling cross and comparing to the signal when the HO2 source directly
overflowed one of the reaction chambers (at the PFA tee).

The wall loss rate constant measurements for several types of material will be fully
described in a separate manuscript. Briefly, peroxy radicals were produced by illumination of
humidified air (8 – 10 LPM) by UV radiation from a mercury lamp:

\[ \text{H}_2\text{O} + \text{O}_2 + \text{UV (185 nm)} \rightarrow \text{HO}_2 + \text{OH} \]  
(S8)

A 50 sccm flow of 0.1% CO was added to convert all OH into HO2. Similarly, adding 50 sccm of
isoprene (40 ppm, balance N2) to the flow converted all OH into isoprene peroxy radicals,
producing a mixture of 50% $\text{HO}_2$ and 50% isoprene peroxy radicals. This source was used to
overflow a quartz tube internally coated with halocarbon wax connected to the sampling cross, and
the transmitted radicals were quantified by ECHAMP. Four different lengths of tubing were used:
147 cm, 86”, 25”, and 0” (i.e., no tube).

The loss rate constants increased with RH, and at 60% RH were $1.6 \pm 0.6 \text{ s}^{-1}$ for $\text{HO}_2$ and
approximately 0.9 for $\text{HO}_2/$isoprene$\text{RO}_2$, indicating lower losses for isoprene $\text{RO}_2$ than for $\text{HO}_2$.
This suggests losses of $\text{HO}_2$ were only 3% during the 18 ms sampling time. Losses of $\text{CH}_3 \text{O}_2$
radicals were similarly investigated and showed negligible losses ($< 1\%$) onto halocarbon wax
and other fluoropolymers for sampling times under 1 second.

Similarly, the second method – comparing the ECHAMP signal when sampling a radical
source through the sampling cross or directly into one of the reaction chambers – indicated overall
losses of less than 4% for an $\text{HO}_2$ source.

S4. Calibration of NO chemiluminescence monitor.

The Thermo 42i-TL chemiluminescence monitor was calibrated by dilution of gas from a
30 ppm NO standard cylinder with zero grad air using MKS brand mass flow controllers (model
1179A). The flow rates from these flow controllers agreed to within 1% when measured by
separately calibrated flow meters (Definer 220, BIOS/Mesa Labs). The humidity dependence of
the chemiluminescence sensor was determined by humidification of the diluent zero air.

S5. Baseline measurements for NO, NO$_2$, and O$_3$ measurements.

Baseline (zero) measurements were executed every 10 minutes for the NO, NO$_2$, and O$_3$
measurements by overflowing their common inlet with purified air. This air was prepared by
drawing outdoor air sequentially through a PTFE filter, a diaphragm pump, 800 cm$^3$ of KMnO$_4$(s),
600 cm$^3$ of a blend of KMnO$_4$ and activated charcoal, and finally a second PTFE filter.
S6. Calculated Ozone Production Rates

Net formation of ozone occurs when peroxy radicals oxidize NO to NO₂, followed by photolysis of NO₂ (Seinfeld and Pandis, 2012; Finlayson-Pitts and Pitts Jr, 1999; Haagen-Smit et al., 1954). Therefore, the instantaneous gross O₃ production rate (or more accurately, Oₓ production rate where [Oₓ] = [O₃] + [NO₂]) can be calculated by the following equation:

\[ P(O_3) = k_{XO_2+NO}[XO_2][NO] \]  \hspace{1cm} (S9)

where \( k_{XO_2+NO} \) is a weighted rate constant for the reaction of the various peroxy radicals with NO. \( P(O_3) \) measurements are useful for assessing the temporal profile of ozone production, help to quantify local production versus transport, and can identify the chemical regime (NOₓ-limited vs. NOₓ-saturated) of an air mass. We use a value of \( 9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) for the value of \( k \), reflecting a reasonable assumption that isoprene peroxy radicals and HO₂ had large contributions to the total peroxy radical concentration. These two peroxy radicals react with NO with rate constants of \( 9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) and \( 8.8 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \), respectively (Atkinson et al., 2004; Sander et al., 2006). We note that the chemical amplification technique does not detect the portion of organic peroxy radicals that form organic nitrates (RONO₂) upon reaction with NO; thus no correction for organic nitrate yields are needed in equation 2.

\( P(O_3) \) values calculated based on 15-min average concentrations of the related chemical species are shown in Fig. S1 along with XO₂ radicals, O₃ and NO during the IRRONIC campaign over the time period of 16 July - 25 July. The missing \( P(O_3) \) data on Fig. 6 are due to unavailability of either NO or XO₂ measurements due to calibrations or technical problems with the chemiluminescence instrument. 15-min average \( P(O_3) \) values between 9:00 and 21:00 were at most 9.4 ppb hr⁻¹, with significant inter-day variability. For example \( P(O_3) \) exceeded 7.0 ppb/hr for several hours on 18 July but never exceeded 5.0 ppb/hr on 22 or 16 July. Peak \( P(O_3) \) values occurred between 9 and 11 am, with average values between 3.3 and 7.8 ppb hr⁻¹.
**Fig S2.** Temporal variations of a) calculated ozone production rate ($P(O_3)$), b) total peroxy radicals ($XO_2$), c) NO and d) $O_3$ during the IRRONIC campaign over the time period of 16 July to 25 July. The missing values of $P(O_3)$ are related with the unavailability of either $XO_2$ or NO measurements.
The observed P(O$_3$) values at our study site are in general lower than those observed in urban areas, which have exceeded 50 ppb h$^{-1}$ in Mexico City and Houston (Cazorla et al., 2012; Kleinman et al., 2005; Shirley et al., 2006). The main reason is that both the NO concentrations and primary HOx production rates (from O($^1$D) + H$_2$O and the photolysis of HONO and oxygenated VOCs) were significantly lower during the IRRONIC campaign compared to those reported in the mentioned urban areas. P(O$_3$) was highest in the late morning (9–11 am) when NO was highest as well. The overall positive correlation between P(O$_3$) and [NO] suggests that ozone production regime was almost always NO$_x$-limited (see Fig. S2).

**Fig. S3.** Relationship between P(O$_3$) and NO during the daytime (09:00 to 21:00) over the time period of 13-25 July.
S6. Comparison of Peroxy radical speciation predicted by RACM2, RACM2-LIM1, MCM 3.2, and MCM 3.3.1

The four figures below show the diurnal average composition of peroxy radicals as predicted by the four chemical mechanisms.

Fig S4. Diurnal profile of peroxy radical concentrations predicted by the four chemical mechanisms
References:


