Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Discussion papers
https://doi.org/10.5194/acp-2018-1323
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2018-1323
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Jan 2019

Research article | 29 Jan 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).

New particle formation from sulfuric acid and ammonia: nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of conditions

Andreas Kürten Andreas Kürten
  • Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany

Abstract. Understanding new particle formation and growth is important because of the strong impact of these processes on climate and air quality. Measurements to elucidate the main new particle formation mechanisms are essential; however, these mechanisms have to be implemented in models to estimate their impact on the regional and global scale. Parameterizations are computationally cheap ways of implementing nucleation schemes in models but they have their limitations, as they do not necessarily include all relevant parameters. Process models using sophisticated nucleation schemes can be useful for the generation of look-up tables in large-scale models or for the analysis of individual new particle formation events. In addition, some other important properties can be derived from a process model that implicitly calculates the evolution of the full aerosol size distribution, e.g., the particle growth rates. Within this study, a model (SANTIAGO, Sulfuric acid Ammonia NucleaTIon And GrOwth model) is constructed that simulates new particle formation starting from the monomer of sulfuric acid up to a particle size of several hundred nanometers. The smallest sulfuric acid clusters containing one to four acid molecules and varying amount of base (ammonia) are allowed to evaporate in the model, whereas growth beyond the pentamer (5 sulfuric acid molecules) is assumed to be entirely collision-controlled. The main goal of the present study is to derive appropriate thermodynamic data needed to calculate the cluster evaporation rates as a function of temperature. These data are derived numerically from CLOUD (Cosmics Leaving OUtdoor Droplets) chamber new particle formation rates for neutral sulfuric acid-water-ammonia nucleation at temperatures between 208 K and 292 K. The numeric methods include an optimization scheme to derive the best estimates for the thermodynamic data (dH and dS) and a Monte Carlo method to derive their probability density functions. The derived data are compared to literature values. Using different data sets for dH and dS in SANTIAGO detailed comparison between model results and measured CLOUD new particle formation rates is discussed.

Andreas Kürten
Interactive discussion
Status: open (until 26 Mar 2019)
Status: open (until 26 Mar 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Andreas Kürten
Viewed  
Total article views: 304 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
221 79 4 304 12 3 2
  • HTML: 221
  • PDF: 79
  • XML: 4
  • Total: 304
  • Supplement: 12
  • BibTeX: 3
  • EndNote: 2
Views and downloads (calculated since 29 Jan 2019)
Cumulative views and downloads (calculated since 29 Jan 2019)
Viewed (geographical distribution)  
Total article views: 215 (including HTML, PDF, and XML) Thereof 215 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 16 Feb 2019
Publications Copernicus
Download
Short summary
New particle formation and growth are important processes affecting climate and air quality. A significant fraction of the newly-formed particles is thought to originate from sulfuric acid, water and ammonia. The present study introduces a process model for the calculation of aerosol nucleation and growth rates for this chemical system. The thermodynamic parameters enabling these calculations are derived from laboratory (CLOUD chamber) measurements.
New particle formation and growth are important processes affecting climate and air quality. A...
Citation