Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
Discussion papers
https://doi.org/10.5194/acp-2018-1317
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2018-1317
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Jan 2019

Research article | 04 Jan 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).

Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models

Matthias Karl1, Jan Eiof Jonson2, Andreas Uppstu3, Armin Aulinger1, Marja Prank3,a, Jukka-Pekka Jalkanen3, Lasse Johansson3, Markus Quante1, and Volker Matthias1 Matthias Karl et al.
  • 1Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
  • 2Norwegian Meteorological Institute, Oslo, Norway
  • 3Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland
  • anow at: Cornell University, Ithaka, NY, USA

Abstract. The Baltic Sea is highly frequented shipping area with busy shipping lanes close to densely populated regions. Exhaust emissions from ship traffic into the atmosphere are not only enhancing air pollution, they also affect the Baltic Sea environment through acidification and eutrophication of marine waters and surrounding terrestrial ecosystems. As part of the European BONUS project SHEBA (Sustainable Shipping and Environment of the Baltic Sea Region), the transport, chemical transformation and fate of atmospheric pollutants in the Baltic Sea region was simulated with three regional chemistry transport models (CTM) systems, CMAQ, EMEP/MSC-W and SILAM with grid resolutions between 4 km and 11 km. The main goal was to quantify the effect that shipping emissions have on the regional air quality in the Baltic Sea region when the same shipping emissions dataset but different CTMs in their typical setups are used. The performance of these models and the shipping contribution to the results of the individual models was evaluated for sulphur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) and particulate matter (PM2.5). Model results from the three CTMs were compared to observations from rural and urban background stations of the AirBase monitoring network in the coastal areas of the Baltic Sea region. The performance of the three CTM systems to predict pollutant concentrations is similar. However, observed PM2.5 in summer was underestimated strongly by CMAQ and to some extent by EMEP/MSC-W. The spatial average of annual mean O3 in the EMEP/MSC-W simulation is 15–25 % higher compared to the other two simulations, which is mainly the consequence of using a different set of boundary conditions for the European model domain. There are significant differences in the calculated ship contributions to the levels of air pollutants among the three models. SILAM predicted a much weaker ozone depletion through NO emissions in the proximity of the main shipping routes than the other two models. In the entire Baltic Sea region the average contribution of ships to PM2.5 levels is in the range of 4.3–6.5 % for the three CTMs. Differences in ship-related PM2.5 between the models are mainly attributed to differences in the schemes for inorganic aerosol formation. Inspection of the ship-related elemental carbon (EC) revealed that assumptions about the vertical ship emission profile can affect the dispersion and abundance of ship-related pollutants in the near-ground atmosphere. The models are in agreement regarding the ship-related deposition of oxidised nitrogen, reporting a ship contribution in the range of 21–23 ktN y−1 as atmospheric input to the Baltic Sea. Results from the present study show the sensitivity of the ship contribution to combined uncertainties of boundary conditions, meteorological data and aerosol formation and deposition schemes. This is an important step towards a more reliable evaluation of policy options regarding emission regulations for ship traffic and the planned introduction of a nitrogen emission control area (NECA) in the Baltic Sea and the North Sea in 2021.

Matthias Karl et al.
Interactive discussion
Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Co-Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Matthias Karl et al.
Matthias Karl et al.
Viewed  
Total article views: 344 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
273 68 3 344 15 0 2
  • HTML: 273
  • PDF: 68
  • XML: 3
  • Total: 344
  • Supplement: 15
  • BibTeX: 0
  • EndNote: 2
Views and downloads (calculated since 04 Jan 2019)
Cumulative views and downloads (calculated since 04 Jan 2019)
Viewed (geographical distribution)  
Total article views: 244 (including HTML, PDF, and XML) Thereof 240 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 25 Mar 2019
Publications Copernicus
Download
Short summary
The effect of ship emissions on the regional air quality and nitrogen deposition in the Baltic Sea region was investigated with three regional chemistry transport model systems. The ship influence on air quality is shown to depend on the boundary conditions, meteorological data and aerosol formation and deposition schemes that are used in these models. The study provides a reliable approach for the evaluation of policy options regarding emission regulations for ship traffic in the Baltic Sea.
The effect of ship emissions on the regional air quality and nitrogen deposition in the Baltic...
Citation