Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Discussion papers
https://doi.org/10.5194/acp-2018-1265
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2018-1265
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Apr 2019

Research article | 10 Apr 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).

Aerosol Vertical Mass Flux Measurements During Heavy Aerosol Pollution Episodes at a Rural Site and an Urban Site in the Beijing Area of the North China Plain

Renmin Yuan1, Xiaoye Zhang2,4, Hao Liu1, Yu Gui1, Bohao Shao1, Xiaoping Tao5, Yaqiang Wang2, Junting Zhong2, Yubin Li3, and Zhiqiu Gao3 Renmin Yuan et al.
  • 1School of Earth and Space Sciences, University of Science and Technology of China, Anhui, 230026, China
  • 2State Key Laboratory of Severe Weather &Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
  • 3School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 4Center for Excellence in Regional Atmospheric Environment, IUE, CAS, Xiamen 361021, China
  • 5School of Physical Sciences, University of Science and Technology of China, Anhui, 230026, China

Abstract. Due to excessive anthropogenic emissions, heavy aerosol pollution episodes (HPEs) often occur during winter in the Beijing-Tianjin-Hebei (BTH) area of the North China Plain. Extensive observational studies have been carried out to understand the causes of HPEs; however, few measurements of aerosol vertical fluxes exist, despite them being the key to understanding vertical aerosol mixing, specifically during weak turbulence stages in HPEs. In the winter of 2016 and the spring of 2017, based on the light propagation theory and surface-layer similarity theory, aerosol vertical mass fluxes were measured by combining large aperture scintillometer (LAS) observations, surface PM2.5 and PM10 mass concentrations, and meteorological observations, including temperature, relative humidity (RH), and visibility, at a rural site in Gucheng (GC), Hebei Province, and an urban site at the Chinese Academy of Meteorological Sciences (CAMS) in Beijing located 100 km to the northeast. The near-ground aerosol mass flux was generally lower in winter than in spring and weaker in rural GC than in urban Beijing. This finding provides direct observational evidence from the perspective of vertical aerosol fluxes for a weakened turbulence intensity in winter and in polluted areas such as GC. The HPEs included a transport stage (TS), an accumulative stage (AS), and a removal stage (RS). During the HPEs from January 25, 2017 to January 31, 2017, in Beijing, the mean mass flux decreased by 51 % from 0.0049 mg m−2 s−1 in RSs to 0.0024 mg m−2 s−1 in the TSs. During the ASs, the mean mass flux decreased further to 0.00087 mg m−2 s−1, accounting for approximately 1/3 of the flux in the TSs. A similar reduction from the TSs to ASs was observed in the HPE from December 16, 2016 to December 22, 2016 in GC. The weakened mass flux indicates that the already weak turbulence would be further weakened by aerosol pollution to a certain extent, which would further facilitate aerosol accumulation.

Renmin Yuan et al.
Interactive discussion
Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Co-Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Renmin Yuan et al.
Renmin Yuan et al.
Viewed  
Total article views: 291 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
220 66 5 291 3 4
  • HTML: 220
  • PDF: 66
  • XML: 5
  • Total: 291
  • BibTeX: 3
  • EndNote: 4
Views and downloads (calculated since 10 Apr 2019)
Cumulative views and downloads (calculated since 10 Apr 2019)
Viewed (geographical distribution)  
Total article views: 257 (including HTML, PDF, and XML) Thereof 255 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 25 Jun 2019
Publications Copernicus
Download
Short summary
To understand the contribution of ground emission during heavy pollution in Beijing, Tianjin and Hebei, aerosol fluxes were estimated in Beijing and Gucheng areas. The results show that in the three stages of a heavy pollution process (transport, accumulative and removal stages,TS, AS and RS), the ground emissions in the TS and RS stages are stronger, while the ground discharge in the AS stage is weak. The weakened mass flux indicates that the already weak turbulence would be further weakened.
To understand the contribution of ground emission during heavy pollution in Beijing, Tianjin and...
Citation