Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Discussion papers
https://doi.org/10.5194/acp-2018-1154
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2018-1154
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Nov 2018

Research article | 13 Nov 2018

Review status
This discussion paper is a preprint. A revision of this manuscript was accepted for the journal Atmospheric Chemistry and Physics (ACP) and is expected to appear here in due course.

Evaluating solar radiation forecast uncertainty

Minttu Tuononen1, Ewan J. O'Connor1,2, and Victoria A. Sinclair3 Minttu Tuononen et al.
  • 1Finnish Meteorological Institute, Helsinki, Finland
  • 2Department of Meteorology, University of Reading, United Kingdom
  • 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland

Abstract. The presence of clouds, and their characteristics, has a strong impact on the radiative balance of the Earth and on the amount of solar radiation reaching the Earth's surface. Many applications require accurate forecasts of surface radiation on weather timescales, for example, solar energy and UV radiation forecasts. Here we investigate how operational forecasts of low and mid-level clouds affect the accuracy of solar radiation forecasts. Four years of cloud and solar radiation observations from one site – Helsinki, Finland, are analysed. Cloud observations are obtained from a ceilometer and therefore, we first develop algorithms to reliably detect cloud base, precipitation and fog. These new algorithms are widely applicable for both operational use and research, such as in-cloud icing detection for the wind energy industry and for aviation. The cloud and radiation observations are compared to forecasts from the Integrated Forecast System (IFS) run operationally and developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). We develop methods to evaluate the skill of the cloud and radiation forecasts. These methods can potentially be extended to hundreds of sites globally.

Over Helsinki, the measured Global Horizontal Irradiance (GHI) is strongly influenced by its northerly location and the annual variation in cloudiness. Solar radiation forecast error is therefore larger in summer than in winter, but the relative error in the solar radiation forecast is more or less constant throughout the year. The mean overall bias in the GHI forecast is positive (8Wm−2). The observed and forecast distributions in cloud cover, at the spatial scales we are considering, are strongly skewed towards clear-sky and overcast situations. Cloud cover forecasts show more skill in winter when the cloud cover is predominantly overcast; in summer there are more clear-sky and broken cloud situations. A negative bias was found in forecast GHI for correctly forecast clear-sky cases and a positive bias in correctly forecast overcast cases. Temporal averaging improved the cloud cover forecast and hence decreased the solar radiation forecast error, but made little impact on the overall bias. The positive bias seen in overcast situations occurs when the model cloud has low values of liquid water path (LWP). We attribute this bias to the model having LWP values that are too low or that the model optical properties for clouds with low LWP are incorrect.

Minttu Tuononen et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Minttu Tuononen et al.
Minttu Tuononen et al.
Viewed  
Total article views: 353 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
293 58 2 353 3 6
  • HTML: 293
  • PDF: 58
  • XML: 2
  • Total: 353
  • BibTeX: 3
  • EndNote: 6
Views and downloads (calculated since 13 Nov 2018)
Cumulative views and downloads (calculated since 13 Nov 2018)
Viewed (geographical distribution)  
Total article views: 333 (including HTML, PDF, and XML) Thereof 331 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 20 Jan 2019
Publications Copernicus
Download
Short summary
Many applications require accurate forecasts of the amount of solar radiation reaching the surface, such as solar energy and UV radiation forecasts. This also means that cloud must be correctly forecast. We investigated the skill of these forecasts over Helsinki, Finland, using cloud and solar radiation observations. We found that there were errors in the model radiation forecast even when the clouds were correctly forecast, which we attribute to incorrect representation of the cloud properties.
Many applications require accurate forecasts of the amount of solar radiation reaching the...
Citation
Share