Supplement for

A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing

Yiqun Lu1, Chao Yan2, Yueyun Fu3, Yan Chen4, Yiliang Liu1, Gan Yang1, Yuwei Wang1, Federico Bianchi2, Biwu Chu2, Ying Zhou3, Rujing Yin3, Rima Baalbaki2, Olga Garmash2, Chenjuan Deng3, Weigang Wang4, Yongchun Liu5, Tuukka Petäjä2,5,6, Veli-Matti Kerminen2, Jingkun Jiang3, Markku Kulmala2,5, Lin Wang1,7,8*

1 Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
2 Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
3 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
4 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
5 Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
6 Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
7 Institute of Atmospheric Sciences, Jiangwan Campus, Fudan University, Shanghai 200438, China
8 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

*Corresponding Author: L.W., email, lin_wang@fudan.edu.cn; phone, +86-21-31243568.

This supplementary information document contains seven figures, totaling 5 pages.
Figure S1a

Figure S1b
Figure S1c

Figure S1d
Figure S1e

MAE = 0.94×10^6 molecule cm$^{-3}$

Figure S1f

MAE = 0.98×10^6 molecule cm$^{-3}$
Figure S1g

Figure S1. (a-g) Correlations between measured [H$_2$SO$_4$] and predicted values given by proxies N1-N7, respectively. The black line represents a 1:1 plot. The red line represents a linear fit between [H$_2$SO$_4$]$_{Ni}$ and measured [H$_2$SO$_4$] with a zero intercept.