Rapid formation of intense haze episodes in Beijing

Yonghong Wang1,2, Yuesi Wang1,5, Guiqian Tang1, Tao Song1, Putian Zhou2, Zirui Liu1, Bo Hu1, Dongsheng Ji1, Lili Wang1, Xiaowan Zhu1, Chao Yan2, Mikael Ehn2, Wenkang Gao1, Yuepeng Pan1, Jinyuan Xin1, Yang Sun1, Veli-Matti Kerminen2, Markku Kulmala2,3,4 and Tuukka Petäjä2,3,4

1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, P.O.Box 64, 00014 University of Helsinki, Helsinki, Finland

3Joint international research Laboratory of Atmospheric and Earth SysTem sciences (JirLATEST), Nanjing University, Nanjing, China

4Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology (BUCT), Beijing, China

5Centre for Excellence in Atmospheric Urban Environment, Institute of Urban Environment, Chinese Academy of Science, Xiamen, Fujian 361021, China

Corresponding authors: Yuesi Wang and Markku Kulmala
E-mail: wys@mail.iap.ac.cn; markku.kulmala@helsinki.fi

Revised to: Atmospheric Chemistry and Physics
Abstract

Although much efforts have been put on studying air pollution, our knowledge on the mechanisms of frequently occurred intense haze episodes in China is still limited. In this study, using three years of measurements of air pollutants at three different height levels on a 325-meter Beijing meteorology tower, we found that a positive particulate matter-boundary layer feedback mechanism existed at three vertical observation heights during intense haze polluted periods within the mixing layer. This feedback was characterized by a higher loading of PM$_{2.5}$ with a shallower mixing layer. Measurements showed that the feedback was related to the decrease of solar radiation, turbulent kinetic energy and thereby suppression of the mixing layer. The feedback mechanism can explain the rapid formation of intense haze episodes to some extent, and we suggest that the feedback mechanism should be considered in air quality models for better predictions.

1. Introduction

With the rapid economic growth and urbanization, an increasing frequency of haze episodes along with the air pollution has become of great concern in China during the last decade (Cao et al., 2016; Huang et al., 2014; Kulmala, 2015; Wang et al., 2014; Wang et al., 2015). For example, during December 2016 a series of intense haze episodes took place in Eastern China, characterized by surface PM$_{2.5}$ concentrations exceeding 500 ug m$^{-3}$ in several measurement sites in Beijing and its surrounding sites (http://www.mep.gov.cn/gkml/hbb/qt/201701/t20170102_393745.htm). Severe air pollution has serious effects on human health. A recent study reported that the particulate matter has significantly decreased the life span of residents as many as 5.5 years in Northern China (Chen et al, 2013). In a global scale, the air pollution was estimated to cause over 3 million premature deaths every year (Lelieveld et al., 2015).

Increased emissions from fossil fuel combustion due to vehicle traffic, industrial activities and power generation, along with exceptionally strong secondary aerosol formation, were thought to be responsible for these haze episodes (Cheng et al., 2016; Huang et al., 2014; Pan et al., 2016; Petäjä et al., 2016; G Wang et al., 2016a; Zhang et
al., 2015; Zhao et al., 2013). Meanwhile, the formation of intense haze episodes was
considered to be affected by meteorological conditions (Wang et al., 2014; Quan et al.,
2013; Wang et al., 2016b; Zheng et al., 2016). For example, the mixing layer height is
a key parameter that constrains the dilution of surface air pollution, and the
development of mixing layer is highly related to the amount of solar radiation absorbed
by the air and reaching the surface (Ding et al., 2016; Stull, 1988; Sun et al., 2013; Tang
et al., 2016; Wilcox et al., 2016). By using filed measurements combined with model
simulation, a positive Feedback between aerosol pollution, relative humidity and
boundary layer was important in aerosol production, accumulation and severe haze
formation in Beijing (Liu et al., 2018). Wang et al., (2018) found that PBL schemes in
their atmospheric chemistry models are not sufficient to describe the explosive growth
of PM2.5 concentration in Beijing-Tianjin-Hebei region due to absence of an online
calculation of aerosol-radiation feedback, and/or a deficient description of extremely
weak turbulent diffusion.

In this study, using unique measurements on the Beijing 325-meter-high
meteorology tower, we show clear relationship between mixing layer height and
turbulent kinetic energy at 140m observation platform. We also present direct evidence
on the feedback that relates the decreasing mixed layer height with increasing
particulate matter concentrations, and this feedback is critical to the formation of
intense haze episodes in Beijing.

2. Methods

2.1 Calculation of mixing layer height with ceilometer

The ceilometer was deployed in the yard of IAP (Institute of atmospheric physics, Chinese
academy of science), with a horizontal distance around tens of meters from the 325-m meteorology
tower. The mixing layer height was measured with the enhanced single-lens ceilometers from July
of 2009 to August of 2012 (CL 31, Vaisala, Finland), which utilized the strobe laser lidar
technique (910 nm) to measure the attenuated backscattering coefficient profiles. Detection range
of the CL31 is 7.6 km with the report period of 2-120 s. Detail information can be found in previous
studies (Tang et al., 2016). Since the distribution of particle concentrations is uniform in the mixing
layer and has significant differences between the mixing layer and free atmosphere, the height at
where a sudden change exists in the attenuated backscattering coefficient profile indicates the top
of the mixing layer height (Münkel et al., 2007). The Vaisala software product BL-VIEW was used
to determine the mixing layer height by finding the position with the maximum negative gradient (-
dβ/dx) in the attenuated backscattering coefficient profiles as the top of the mixing layer (Tang et
al., 2016; Münkel et al., 2007).

2.2 Measurements of energy flux at 325m Beijing meteorology tower

The turbulent fluxes of sensible heat (Q_H), latent heat (Q_E) and the turbulence kinetic energy (TKE)
were measured at 140m level using eddy covariance technique from July of 2009 to August of
2012. The raw data (10 Hz) of wind components (u, v and w) and sonic temperature (T_s) recorded
with three-dimensional sonic anemometers (Model CSAT3, Campbell Scientific Inc., Logan, Utah,
USA) and of water vapor concentrations (q) with open-path infrared gas analyzers (Model LI-7500,
LiCor Inc., Lincoln, Nebraska, USA). The fluxes of heat (Q) were calculated as the covariance
between the instantaneous deviation or fluctuations of vertical velocity (w'') and their respective
scalar (s'') averaged over a time interval of 30 min:

\[Q = \overline{w's'} = \frac{1}{N} \sum_{i=1}^{N} w''s'' \]

Where the over-bar denotes a time average, N is the number of samples during the averaging time
and the fluctuations are the differences between the instantaneous readings and their respective
means. The TKE were calculated as follows (Stull, 1988):

\[\frac{TKE}{m} = \frac{1}{2} (\overline{u'}^2 + \overline{v'}^2 + \overline{w'}^2) \]

where m is the mass (kg), e is the TKE per unit mass (m^2 s^{-1}). A more detailed description of the
calculation and post processing of flux is provided in Song et al. (2013).

2.3 Measurements of PM_{2.5} concentration and gases in the 325m Beijing meteorology tower.

The mass concentration of PM_{2.5} at 8m, 120m and 280m observation platform were measured
with three TEOM RP1400 simultaneously from July of 2009 to August of 2012. (Thermo
Scientific, http://www.thermoscientific.com). The resolution and precision of the instrument for
one-hour was of 0.1 µg m^{-3} and ±1.5 µg m^{-3}. The filters were exchanged when the loading rates
were approximately 40% and the flow rate were monitored and calibrated monthly. The volume
mixing ratios of ozone and NOx were measured with 49i and 42i (Thermal Environment Instruments
(TEI) Inc.), respectively. Detailed introduction can be found in Wang et al. (2014).

2.4 Other supporting measurements
Total solar radiation was measured with a direct radiometer (TBQ-2, Junzhou, China). Direct radiation was measured with a direct radiometer (TBS-2, Junzhou, China). UV radiation in the range of 220 nm-400 nm was measured using CUV3 radiometer (USA). The estimated experiment error for the three instruments are 3%, 1% and 2%, respectively (Hu et al., 2012). The original data were obtained at one-minute intervals and the hourly average values were used in this study. The chemical composition of organic, sulphate, nitrate, ammonium and chloride in non-refractory submicron aerosol were measured during several campaigns with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer from July of 2009 to August of 2012 (HR-Tof-AMS, Aerodyne Research Inc., Billerica, MA, USA) (DeCarlo et al., 2006). Detailed information about instrument, calibration and data process have been introduced by Zhang et al. (2014). All these measurements were conducted in the IAP station.

3 Results and Discussion

A typical intense haze episode occurred during the heating season in urban Beijing during 17 to 22 November 2010. This episode was associated with synoptic stagnation in the North China Plain (Figure S1) and was characterized by low wind speeds and irregular wind direction (Figure 1). Several meteorological variables had distinct temporal patterns during different stages of pollution, including reduced solar radiation and increased relative humidity during the most intense presence of haze (Fig. 1). The temporal patterns of PM$_{2.5}$ concentrations were very similar at the two lower measurements heights (8 m and 120 m, Fig. 1d), even though the concentration was clearly the highest close to the surface. The PM$_{2.5}$ concentration measured at 280 m behaved in a different way, especially during the most intense period of the haze when the mixed layer height was very low (Fig. 1e). The decoupling of the 280-m platform from the other two lower ones at low mixed layer heights is apparent in our 3-year measurement data set, especially when comparing O$_3$ and NO$_x$ concentrations between the three measurement platforms (Figs. S2 and S5). During the haze period, the maximum PM$_{2.5}$ concentrations at 8, 120 and 280 m were 505, 267 and 339 μg m$^{-3}$, respectively. The higher maximum concentration at 280 m compared with 120 m can be ascribed to the transport of pollutants from surrounding regions of Hebei and Tianjin Provinces typical for polluted periods (Sun et al., 2013). The mixing layer height varied from 130 m to 1640 m during the haze episode, ranging between about 200 and 500 m during the most intense period of the haze period on 18 November 2010 (Fig. 1e). The TKE was quite low during this intensive haze episode from 18 November to 21
November, with an average value around 0.3 m² s⁻². However, the TKE increased significantly on morning of 21 November as surface wind increased from 1.2 m/s to around 6 m/s, which was possible due to the movement of a cold front as shown in Figure S1.

The vertical distribution of attenuated backscatter density obtained from ceilometer measurements indicate vertical mixing conditions accompanied with an inversion layer and high relative humidity in the surface as shown in Figure 2. The strong inversion and high relative humidity occurred on morning of 18 November 2010, with a lapse rate of 2K / 100 m, relative humidity of 78% and north-direction wind speed of around 2 m / s detected by the vertical sounding. The turbulent kinetic energy at 140 m was reduced to around 0.1~0.7 m²/s² due to decreased solar radiation, as presented in Figure1(a). In this manner, the development of a mixing layer was significantly suppressed during the intense haze episode.

In order to demonstrate how the mixing layer height modifies PM₂.₅ concentrations, we used three years of simultaneous winter-time air pollutant measurements in the Beijing tower at 8 m, 120 m and 280 m platforms. We divided the observed PM₂.₅ concentrations into highly-polluted and less-polluted conditions using a threshold value of 75 μg m⁻³ for PM₂.₅ to distinguish between these conditions. This is consistent with Chinese Environment Protection Bureau definition of a haze pollution events. With this threshold value, we found that 31% and 69% of total measurement time corresponded to highly-polluted and less-polluted conditions, respectively. We plotted the PM₂.₅ data as a function of the mixing layer height at the three observation heights during both highly-polluted and less-polluted conditions and fitted an exponential curve to these data (Figure 3). The PM₂.₅ concentration has a clear anti-correlation with the mixing layer height during the intense haze episodes. At all measurement heights, the PM₂.₅ concentration increased as the mixing layer height decreased, and this pattern was very strong under polluted conditions (Figure 3). It is worth noting that the increase was mainly from the PM₁-₂.₅ fraction that increased from 42% to 65% as mixing layer height decreased from more than 1400 m to lower than 300 m (Figure S4). A major portion of particulate mass between 1 and 2.5 μm originates from secondary aerosol formation processes in urban air (Wang et al., 2014; Zhang et al., 2015). As shown in figure S7, the chemical concentration of NR-PM₁ increased significantly from 12.1 μg m⁻³ to 56.4 μg m⁻³ with the variation of MLH decreased from
more than 1400 m to less than 200 m. The reduction in solar radiation due to these fine particle matters reaching the surface reduces the turbulent kinetic energy and the development of mixing layer, as shown in Figure 4. An exponential function between Turbulent kinetic energy at 140 m and mixing layer height was fitted, which could provide us some simple quantification. As presented in the function, the MLH will be doubled from around 400 m to 800 m if TKE increased from around 0.1 m\(^2\) s\(^{-2}\) to 1 m\(^2\) s\(^{-2}\), and these are typical MLHs during polluted conditions in Beijing.

We ascribe part of the observed increase in PM\(_{2.5}\) and simultaneous decrease in the mixing layer height to a positive feedback from particulate matter-mixing layer interaction (Petäjä et al. 2016, Ding et al. 2016), which occurred at the same time as primary emissions and secondary formation were confined into a smaller volume of air. The feedback occurred at all the three observation platforms and was most intensive at 8 m. In an urban environment, NO\(_x\) originates mainly from local anthropogenic emissions, whereas the sources of particulate matter include both primary emissions and secondary formation (Ehn et al., 2014; Jimenez et al., 2009; Zhang et al., 2015; Zhao et al., 2013). As shown in Figure S6, the median NO\(_x\) concentration at 8 m was 250\% higher under highly-polluted conditions compared with less-polluted conditions as the mixing layer height decreased to 100-200 m, while the corresponding number for the PM\(_{2.5}\) concentration was 360\%.

The increase of the PM\(_{2.5}\) concentration from less-polluted to highly-polluted conditions is mainly due to concentrated particulate matter caused by a decreased mixing layer height, which is accompanied by primary particle emissions, secondary aerosol formation and feedback from particulate matter-mixing layer height interactions. Compared with the increased amounts of NO\(_x\), we can roughly estimate that in maximum 110\% of the increased PM\(_{2.5}\) originates from secondary aerosol formation processes in this study. Of the remaining 250\% of the PM\(_{2.5}\) increase, potentially a large fraction originates from particulate matter-mixing layer height interactions, but we cannot quantify this fraction at the moment.

4 Conclusions

The development of mixing layer height in an urban city is affected by the intensity of incoming solar radiation. Our measurement at the 325-meter meteorology tower showed that the solar and ultraviolet radiation reaching the surface decrease
considerably at increased pollution levels, which leads to further increases in concentrations of PM$_{2.5}$ and its precursor gases from both direct emissions and secondary formation. This feedback mechanism may be an important reason for rapid increase of particulate matter from moderate-polluted conditions to periods of intense pollution in an urban atmosphere. The particulate matter-mixing layer height feedback is probably a critical factor for the formation of intense haze periods in Beijing and other polluted cities.

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (No: 2017YFC0210000), the National Research Program for key issues in air pollution control(DQGG0101) and Academy of Finland via Center of Excellence in Atmospheric Sciences.

Competing financial interests

The authors declare no competing financial interests.

Author contributions

M.K, Y.S.W, T.P and Y.H.W, have the original idea. Y.S.W, G.T, T.S, Z.L, B.H, L.W, X.Z, D.J, W.G and Y.S conducted the longtime measurements and provided the data. Y.H.W, G.T, S.T, P.Z, M.E, C.Y, V.K, T.P and M.K interpreted the data and plotted the figures. Y.H.W wrote the manuscript, with contribution from all co-authors.
References

Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer, The contribution of

Petäjä, T., et al., Enhanced air pollution via aerosol-boundary layer feedback in China, Scientific Reports, 6, 18998, doi:10.1038/srep18998 http://www.nature.com/articles/srep18998#supplementary-information, 2016.

Song, T., Sun, Y., and Wang, Y.: Multilevel measurements of fluxes and turbulence over an urban landscape in Beijing, Tellus B: Chemical and Physical Meteorology, 65, 20421, 10.3402/tellusb.v65i0.20421, 2013.

Wang, H., Peng, Y., Zhang, X., Liu, H., Zhang, M., Che, H. and Cheng, Y.: Contributions to the explosive growth of PM 2.5 mass due to aerosol – radiation feedback and decrease in turbulent diffusion during a red alert heavy haze in Beijing –

Figure 1. Measurements of (a) solar radiation and ultraviolet radiation at 8 m, (b) wind speed and direction at 8 m, (c) relative humidity and air temperature at 8 m, (d) mass concentration of PM$_{2.5}$ at 8 m, 120 m and 280 m, (e) mixing layer height at 8 m and turbulence kinetic energy at 140 m in the Beijing 325-meter meteorology tower during an intensive air pollution episode in November of 2010. The evolution of the air pollution episode can be divided into the period 1 (clean period to air pollution accumulation period, period 2 (pollution period) and period 3 (pollution to clean period).
Figure 2. Observed attenuated backscatter density, calculated mixing layer height using ceilometer and vertical wind speed, wind direction, relative humidity, virtual potential temperature using sounding data during November 18 (top) and 19 (bottom). The black flag in the left and right side of the figures stand for vertical wind speed and wind direction obtained from sounding measurements at 08:00 and 20:00 of Beijing time, respectively. The circle in the left side of figure represents calm wind. The dotted yellow lines and solid green lines represents vertical distribution of virtual potential.
temperature and relative humidity from sounding at 08:00 and 20:00, respectively. The yellow square and green square represents first layer and second layer, respectively, and usually the first layer was used as mixing layer height. The mixing layer height was determined from the local minimum of the backscatter density gradient, and the colour in the figure stands for backscatter density from ceilometer. From both figures, we can clearly see that mixing layer has important role in regulating distribution of air pollutants.
Figure 3. The variability of the PM$_{2.5}$ mass concentration as a function of the mixing layer height at 8 m (a), 120 m (b) and 280 m (c). The data related to the upper fitting line represents PM$_{2.5}$ concentrations larger than 75 ug m$^{-3}$, while the data related to the lower fitting line represents PM$_{2.5}$ concentrations less than 75 ug m$^{-3}$. The dark grey points represent mean values; the red line represents median values. The shadowed area corresponds to an increased amount of PM$_{2.5}$ with decreased mixing layer height assuming that PM$_{2.5}$ has the same variation pattern under highly-polluted conditions as in less polluted time.
Figure 4. Turbulent kinetic energy at 140 m as a function of mixing layer height and PM$_{2.5}$ concentrations at 120 m from July of 2009 to August of 2011. An exponential function was fitted based on best fitting.