Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO.

Hélène Peiro¹, Emanuele Emili¹, Daniel Cariolle¹,², Brice Barret³, and Eric Le Flochmoën³

¹CECI, Université de Toulouse, Cerfacs, CNRS, Toulouse, France
²Météo-France, Toulouse, France
³Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

Correspondence to: H.Peiro (peiro@cerfacs.fr)

Response to the reviews

1. Some of the individual analyses related to the ENSO influence are similar to what is described in Wespes et al. (2017, JGR) which analyzes nine years of TOC observations from the IASI instrument with geophysical drivers. Although Wespes et al. (2017) analyzes the influence of the ENSO on TOC one step further by examining the ENSO-related tropospheric O₃ responses over tropical and extra-tropical regions, this earlier study should be acknowledged in the paper as the first one reporting ENSO-related O₃ variations in IASI TOC measurements and should be discussed accordingly.

Indeed, results from Wespes et al. (2017) on the multi-year variability of IASI tropospheric O₃ represent a key reference for our study. We were not aware of this study when the manuscript was submitted. We recall the main conclusions from the study of Wespes et al., 2017 in the revised manuscript (introduction, after line 31, page 3 of the original manuscript).

2. I realize that I do not feel qualified to the rigor of assimilation techniques, but I do not fully understand the added value of the assimilation for analyzing the ENSO-related variability in IASI TOC. The IASI dataset has been shown to be huge enough in previous studies to perform that kind of analysis. It could therefore be interesting to compute an OEI from the direct IASI TOC and to compare it with the IASI-a index derived in this paper. Could you bring that additional information and better discussed the added value of the assimilation technique in this study?

We agree with the reviewer on the exceptional data coverage provided by IASI. However, the frequent occurrence of convective clouds in South-East Asia and in the Pacific Ocean tropical band can greatly reduce the number of tropospheric ozone retrievals. This phenomenon is in particular enhanced during El-Nino phase.

The number of IASI-SOFRID monthly retrievals available for some selected months during the 2010 ENSO episode are shown in figure 1. Note that large regions without any retrieval are present, matching geographically with the enhanced convection zones. The benefit of performing data assimilation is twofold: i) scattered retrievals due to clouds are still able to correct
the modeled ozone field in the surroundings of the observed locations thanks to the background error correlations (B matrix) ii) the model itself further propagates the corrections over cloudy regions through wind advection. Hence, this synergy can in principle produce more accurate results that both satellite data and models taken alone.

In order to better quantify the added value of the data assimilation scheme compared to IASI-SOFRID dataset alone, we report in figure 2 the OEI indexes from figure 7 of the manuscript and add the index computed using the IASI-SOFRID TCO alone. Note that when computing the IASI-SOFRID OEI, only the retrieved TCO was used, whereas averaging kernels, a-priori information and a bias correction of 10% were used for the assimilation. Therefore, differences between IASI-SOFRID and IASI-a OEI are not only due to the assimilation synergies discussed above.

We remark that the IASI-SOFRID OEI matches the multi-year variability observed with the OMI-MLS index. However, the intensity of the signal is significantly underestimated during the strongest ENSO episode (El Nino on January-March 2010 and La Nina on August-January 2011). Note also that in some circumstances where IASI data gaps due to clouds are not critical (e.g. January 2011) all OEI indexes except IASI-SOFRID suggest the presence of a strong La Nina phase. This is probably due to the better capacity of the direct model or MLS-a to capture the intensity or the vertical features of the enhanced UTLS exchanges in the Eastern Pacific Ocean (see also response to question number 4).

We conclude that, even when satellites provide a very dense global coverage, data assimilation techniques remain of interest to provide results that are less influenced by the retrieval sampling and can benefit from the synergy of several independent sources of information. A sentence has been added to the revised manuscript to better clarify this point (see reply to comment number 9). Since our original manuscript is focused on results from data assimilation experiments, we prefer to avoid adding the IASI-SOFRID OEI and the relative discussion in the revised paper.
3. In addition, given that IASI provides vertical information on stratospheric O3, I’m not sure neither about the added value of using stratospheric O3 from MLS (for IASI-a) instead of the whole IASI profile. I understand that the MLS vertical profile in the stratosphere is better resolved that the one of IASI, but the focus is given on TOCs and one could think that IASI would constrain the model enough in the stratosphere for assessing comprehensive TOC analysis. Could you please clarify?

This work has been conducted using a methodology proposed and validated in previous studies Barré et al. (2013); Emili et al. (2014). In both papers the authors limited the assimilation of IASI retrievals to the single tropospheric column. The main reason is that current IASI level 2 retrievals are affected by biases that can be as high as 20% in the UTLS region Dufour et al. (2012), whereas MLS accuracy is generally better than 5%. For example, Massart et al. (2009) removed the bias from IASI total columns prior to data assimilation in order to obtain correct ozone reanalyses when assimilating both IASI and MLS. On the other hand Massart et al. (2012); Emili et al. (2014) showed that MLS assimilation alone provides already very accurate ozone fields above 100 hPa. Therefore, we favoured using a methodology that was already extensively validated and avoiding the possible introduction of IASI-related biases in the UTLS. We think that assimilation of IASI full O₃ profiles or stratospheric columns deserves additional research, but this would represent a topic for a dedicated study.
4. Furthermore, it is obvious that IASI-a is more appropriate than MLS-a for analysing variation in TOCs and computing an OEI given that MLS does not sound the troposphere and that “little information is brought by the assimilation of MLS data” (cfr p.13, l.2). I’m also wondering in what way the different biases from IASI and MLS would impact on the IASI-MLS analysis. Could you specifically explain in the text the advantage of assimilating MLS in the stratosphere for the purpose of this study?

Concerning the first comment, we agree with respect to the relative importance between IASI and MLS. However, we believe that a precise quantification of the contribution of MLS data deserved some place in the study, since intense stratosphere-troposphere exchanges, especially during La Nina episodes, could amplify the role of MLS in the reanalysis (see Figure 7 and 8 of the original manuscript). We could not easily quantify this effect without performing the relative reanalysis. The impact of MLS was therefore discussed through the paper. A sentence has been included in the revised manuscript (Introduction, page 3, line 34).

Concerning the question about the impact of the different biases of IASI and MLS on the reanalysis: all biased data that are assimilated can eventually introduce a bias in the resulting reanalysis. If two instruments with opposite biases are assimilated and they both influence the same region of the ozone field, the original biases could eventually cancel out. However, in our case, assimilated MLS data have biases lower than 5% and impact mostly the UTLS. On the other hand, IASI TCO data, which could be still affected by residual biases after the global correction of 10%, impact mostly the free troposphere (see also reply to specific comment number 12). Therefore, we think that possible biases introduced by the assimilated data in the reanalysis can mostly be attributed to IASI (see for example Figure 4, bottom plot).

5. In Section 3.2.1, figure 6: you validate the IASI-a analysis with the OMI-MLS residual method, meaning that MLS measurements are used in both sides. One could think that you turn around here. I guess here that you want to leave out the effect of the stratospheric O3 variation from the validation of IASI-a TOC. If correct, it would deserve to be clearly mentioned in the text.

The comparison of our results with the OMI-MLS residual method was not motivated by the objective of leaving out the stratospheric impact in the comparison. We have used OMI-MLS data because they represent one of the few TCO datasets independent from IASI with a dense enough global coverage, and were used so far in most of the studies concerning O3 and ENSO variability.

6. p.2, l. 24-26: That sentence which refers to the increasing biomass burning in Indonesia, not convection, should be moved after the following sentence in l.26-27.

The sentence has been moved in the revised manuscript.

7. p.3, l12-14: It should be mentioned that O3 sensitivity to ENSO has been already studied with IASI as well (Wespess et al., 2017)
We have added this reference in the revised manuscript (see also reply to general comment 1).

8. p.3, l.20-21 : The added value of using both IASI in the troposphere and MLS in the stratosphere to obtain direct evaluation of tropospheric O3 is not clear to me and should be specifically explained

We removed MLS from this specific sentence to maintain the focus on IASI in the following paragraph. But the explanation concerning the added value of MLS has been added to the revised manuscript some lines after. Please refer to general comment number 4 for more details.

9. p.4, l.6-8 : The 6-years reanalysis is here presented as the first IASI dataset suitable to perform analyses of O3 variations in the tropics. It is obvious that if the analysis of O3 variability can be performed from the direct IASI measurements, the reanalysis dataset is also suitable for that study. The added value of using the reanalysis is not clear. Please explain.

We have already discussed in details the added value of computing a reanalysis compared to IASI-SOFRID data in the reply to the general comment number 2.

A text has been added (Introduction, page 4, line 6) in the revised manuscript to clarify this point for the reader.

10. p.5, l.18-20 : The values here are discussed in terms of accuracy, precision or bias. All these terms are used depending on the altitude layers. I think the reported values refer here to bias only. Please clarify. What is the bias in stratospheric O3 from MLS in comparison with IASI ?

The reported values refer to precision in the UTLS and biases elsewhere.

The bias in stratospheric (from 16 to 30 km) tropical O₃ from MLS is around 2 % while it is around 7 % with IASI-SOFRID Dufour et al. (2012).

11. p.7, l.27 : The exact portion of the IASI profile “(1000-345 hPa)” which is assimilated in the model should be defined earlier in the abstract and in the IASI measurements.

section 2.1.1. I thought that the whole IASI profile was assimilated with the MLS stratospheric profile. I only get the information later in Section 2.3.2 (p.7).

Why using 1000hPa for the bottom level and not the surface ?

The IASI partial O₃ columns have been mentioned in the abstract and in the IASI measurements paragraph (2.1.1).

Indeed, the bottom pressure level was not well specified in the original text: it is not 1000 hPa but the last level of the SOFRID retrievals (1013.25 hPa).
12. In section 2.1.2.: it is written that you use the MLS data only between 12.12 hPa and 177.83 hPa, which means that no satellite measurements between 345 hPa and 177.83 hPa are assimilated and hence that there is no direct constrain on UTLS O3. How would it affect the assimilated TOC from 1000 to 100 hPa that are later validated and analyzed?

The reviewer is almost right: no satellite measurements are directly assimilated between 345 hPa and 177.83 hPa. The reason for neglecting the lowermost levels of MLS are given in the manuscript. However, concerning IASI, the above sentence is not totally exact and the reason to choose a relatively low top with respect to the tropical tropopause height (∼100 hPa) is related to the O3 averaging kernels.

Figure 3 shows an example of IASI-SOFRID averaging kernels. We can observe that the retrieved O3 at 150 hPa has a non negligible sensitivity to O3 values at levels as high as 50 hPa. Using a IASI column top at about 100 hPa the effect of the corresponding averaging kernels would be twofold: i) contribution of the stratospheric O3 profile would impact the differences (misfit) between IASI partial columns and model equivalent values that the assimilation tries to minimize ii) the assimilation corrections would spread both in the troposphere and in the stratosphere. With a top column level set at 345 hPa the sensitivity of the assimilated measurements remains confined below 100 hPa and stratosphere impact is negligible. However, IASI kernels, and therefore model corrections are still non-zero between 100 and 350 hPa. Therefore, the assimilation of 345-1013 hPa columns impose some kind of "direct constrain" in the upper troposphere as well.

The choice of the column top has been made in order to minimize the direct influence of stratospheric ozone on tropospheric corrections. This choice also avoids as much as possible the need to estimate possible biases between MLS and IASI measurements and the need to account for them prior to assimilation (see also reply to general comment number 4).

![Figure 3. Averaging kernels example for ozone retrievals of IASI-SOFRID over Indian Ocean on November 2008 Barret et al. (2011). The solid curve is given for the TCO (1013-225hPa) and the dashed curve is for the UTLS (225 - 70 hPa). Each color lines are associated to x-axis and characterise averaging kernels for individual layers.](image)

To clarify, we included a sentence in the revised manuscript
13. p.9, l.12: (validation section) I do not understand why you validate the TOC ranging from 1000 to 100 hPa. This range covers more than the troposphere (and than the assimilated IASI TOC) including the UTLS and, hence, it does not seem the most appropriate column for the IASI-a validation. It may mask a part of the added value of IASI. That would be fully achieved by validatin the 1000-345 hPa column from IASI-a vs from MLS-a.

The tropopause level in the tropics band (between 15° S and 15° N) is located between 150 hPa and 70 hPa (Fueglistaler et al. 2009). The section on ENSO variability (3.2) uses tropospheric columns based on a dynamical tropopause layer for both OMI-MLS (Section 2.2.1) and reanalysis data. Hence, the definition and validation of a TCO ranging from the surface to 100 hPa is in better agreement with the main focus of the study, independently of the specific impacts of either IASI or MLS on the reanalysis (see also previous reply).

14. p.9, l.28-32: (figures 3c and 3d) The authors explain the larger biases from IASI-a than from MLS-a in the boundary layer by the weaker sensitivity of IASI in that region; However, MLS does not even sound the boundary layer at all. How could you explain that MLS-a better reproduces the O3 sonde observations than IASI-a? please clarify?

The explanation was indeed not clear enough. In the boundary layer, as expected, the MLS-a simulation gives practically the same results as the direct model (DM), both overestimating the ozone concentration by about 20%. The boundary layer ozone is completely determined by the CTM. In the free troposphere the DM bias is negative (~40%) and a positive, albeit small, impact of assimilating MLS can be observed. Since IASI retrievals have approximately one degree of freedom for the entire troposphere and we assimilate tropospheric columns, it is not possible to correct both a positive bias in the boundary layer and a negative bias in the free troposphere. The shape of the IASI averaging kernels provides a strong positive correction of the DM bias in the free troposphere (Fig. 3e,f). However, part of the positive ozone correction is propagated by the AVK also in the boundary layer and/or is transported downward in the forecast step. This explains the increased bias of IASI-a in the boundary layer. This kind of situation is typically encountered when the assimilated measurements do not have enough sensitivity to discriminate among different layers of the atmosphere. The original sentence (page 9, line 31) has been replaced.

15. p.10, l.24-26: What could explain the peak observed over Indonesia in October 2011 (Fig 4c) in the O3 sonde dataset only and not in IASI-a?

Ozonesondes measurements and IASI-a show a good agreement from January 2008 to October 2009. Since January 2010, biases seem to increase between the two datasets. If we observe the number of monthly ozonesondes measurements over Indonesia (figure 4), we note a significant decrease since January 2010. Even if the ozonesondes profiles and the reanalyses are colocated in time to compute the validation statistics, the likelihood of sporadic but large mismatch between the model prediction and the measured profile can still be significant. When few measurements are available the risk of a noisy comparison increase. A sentence has been included in the revised manuscript (after line 15, page 10 of the original manuscript).

16. p.13, l.25: “... Nino 3.4 is calculated from SST anomalies in the Pacific Ocean”: One reference or the source of the avaialble dataset is missing here.
This information is now given in the revised manuscript.

17. P.7, l.22. It is worth to mention that 4D-Var assumes the model is perfect. Problems can be expected if model biases are large.

Do you expect that your results would significant change if the authors use other model besides MOCAGE? And why?

The specification is given in the revised manuscript:

The assimilation configuration used for this study is based on the 4D-Var algorithm in a “perfect model” framework.

Concerning the following comment of the reviewer:

We agree about the fact that a strongly biased model could raise issues within a strong constraint 4D-Var framework. However, for our particular application, we think that this is not a major issue. In the original manuscript we always showed results from either the direct model (DM) or the reanalyses, but omitted results from the 4D-Var forecast cycles (12 hours-long). The large biases of the DM (e.g. Figure 3 of the manuscript) can trick the reader about the fact that these biases could affect the forecast step of the 4D-Var as well. However, after few cycles of data assimilation, the global ozone field is already strongly corrected by the dense observation network, and the forecasts used as background for the assimilation are significantly less biased than the DM (figure 5). The fundamental reasons are the relatively long life-time of free tropospheric ozone and the fact that we employ a linearized chemistry scheme. Please refer also to Emili et al. (2014) for a more detailed discussion about this aspect.

We conclude that, except for the very initial period of the assimilation experiments (usually some days, see Fig. 10 of Emili et al. (2014)), forecast biases do not represent a major issue in our study.
Concerning the question about the possible results using other models than MOCAGE or even a different chemistry scheme within MOCAGE itself:

The constraint provided by IASI dense observations on modeled O_3 is quite strong in the free troposphere and UTLS regions (e.g. figure 3 of the manuscript). We presume that these results would remain similar using other chemistry or meteorological schemes with different O_3 prediction skills. However, the biases in the planetary boundary layer (PBL) due to the limitations of the employed chemistry scheme (CARIOLLE) cannot be corrected by IASI assimilation. Hence, it would be interesting to use a chemistry transport model that is more accurate in the PBL. The resulting improved TCO columns could further reduce the residual bias that we found for our reanalysis compared to OMI-MLS estimations (figure 7 of the original manuscript).

We have mentioned in our perspectives to use “a more comprehensive chemical scheme that accounts for the surface emissions. The computational cost of these simulations will be however much larger”.

18. P.8, l.6. ‘We specify the background error variances as a percentage of the modeled ozone profile equal to 15% in the troposphere and 5% in the stratosphere.’ How sensitive of your results to this setting? Since 4D-Var might be sensitive to the initial condition. I think it would be important to address this issue.

The specification of the background error covariance matrix is an important issue in variational data assimilation. However, a detailed sensitivity analysis cannot be easily conducted for such long reanalyses due to the cost of the simulations. Therefore, the choices being made for this study are mostly based on previous studies, with some additional but minor tuning being made based on sensitivity analyses for a two-months long simulation (e.g. result at line 10, page 8 of the original manuscript).
Concerning the background error variance in particular, previous studies using the same model configuration as us, compared different options: using a simple percentage of the background field (15% Massart et al. (2012)) or estimating it from ensembles of simulation plus online statistical optimization based on misfit values Massart et al. (2009, 2012). The different standard deviation estimations did not influence significantly the analysis quality Massart et al. (2012).

The choice of a percent background variance that depends on the height is discussed in Emili et al. (2014), which represents the main reference concerning the assimilation set-up of our manuscript. A sensitivity analysis of the B parametrization is discussed in section 4.3.1 of Emili et al. (2014), who also did not find significant differences among different specifications of the variance. Focusing on the tropics, we found slightly more accurate results against ozonesondes using a background error standard deviation of 15% in the troposphere instead of 30% as in Emili et al. (2014). Therefore, we kept this value for the long reanalysis.

We added the following lines in the revised paper in order to better clarify:

Most of the parameters of the assimilation algorithm used to compute the reanalyses in this study are based on the study of Emili et al. (2014). The validation of a short reanalysis of two months against ozonesondes (not shown) has been used to further optimize some of these parameters. Emili et al. (2014) have assimilated IASI and MLS data globally with a background error standard deviation equal to 30% of the modeled ozone profile in the troposphere and 5% in the stratosphere. Based on local validation in the tropics, we found slightly superior results using a value of 15% instead of 30% in the troposphere. Therefore, this choice has been taken for the 6-years reanalyses.

19. P.8, l.21. Why second and third simulations don’t require spin up?

We have used a climatological field on 1st November 2007 to initialize the model and to allow a spin-up period of two months. The initial condition for the second and third simulations (MLS-a and IASI-a) is the direct model output on 1st January 2008. Consequently, we have used the same spin-up period as in the direct model simulation.

We clarify the spin-up period for MLS-a and IASI-a in the revised paper:

The model is initialized with a climatology on 1st November 2007 to allow for a spin-up period of two months. The second simulation, named MLS-a, started in January 2008 with the assimilation of MLS profiles for the whole period. Finally, the third simulation (IASI-a) was produced with the assimilation of the IASI tropospheric O_3 columns and the MLS stratospheric O_3 profiles. Both MLS-a and IASI-a are initialized with the direct model output on 1st January 2008.

20. P.9, l.10. Please specify which colocation method you apply here?

We included the following explanation to the revised manuscript:

O_3 data have been first treated as follows: i) The modelled fields have been collocated with the soundings in space and time, ii) The obtained values have been averaged on a two-months basis, in order to take into account a larger number of soundings.
for statistical evaluations. The collocation was done with a linear interpolation of the model’s 6-hourly outputs on both the horizontal/vertical dimensions and in time.
list of all relevant changes made in the manuscript :

- Introduction, after line 31, page 3 of the original manuscript : Since we already have about 10 years of data the IASI mission provides a valuable dataset to study the \(O_3 \) variability and trends Tohir et al. (2015); Wespes et al. (2016) both in the troposphere and the stratosphere Wespes et al. (2009, 2012); Dufour et al. (2010); Barret et al. (2011); Scannell et al. (2012); Safieddine et al. (2013). More recently, the tropospheric \(O_3 \) variability due to ENSO has been studied using 8 years (January 2008 to March 2016) of IASI measurements Wespes et al. (2017). They have shown that IASI retrievals can capture the variability of tropospheric ozone related to the large-scale dynamical modes of ENSO.

- Introduction, page 3, line 34 : We use the MOCAGE CTM to assimilate tropospheric ozone profiles from IASI and stratospheric profiles from MLS with a 4DVAR algorithm. The joint assimilation of IASI and MLS data was already found very effective to improve modelled \(O_3 \) in the UTLS Barré et al. (2013); Emili et al. (2014). Even if IASI data are expected to provide the most significant contribution to the tropospheric reanalysis, the assimilation of MLS allows to introduce complementary information in case of stratosphere-troposphere exchanges Barré et al. (2012), which intensify over the Eastern Pacific Ocean during La Nina phase of the ENSO. We will evaluate in this study the relative importance of assimilating MLS and IASI in the context of the \(O_3 \) variability related to ENSO.

- p.2, l. 24-26 : Convection during ENSO affects tropical tropospheric \(O_3 \) in two ways. First, convection impacts the vertical mixing of \(O_3 \) itself. Convection lifts lower tropospheric air masses with a low ozone concentration, where \(O_3 \) lifetime is shorter, to upper troposphere where \(O_3 \) lifetime is longer (Doherty et al., 2005). Overall increased convection leads to a decrease of the tropospheric ozone column (Fig. 6a). Second, convection affects vertical mixing and vertical distribution of \(O_3 \) precursors (Stevenson et al., 2005). El Niño event coincides with dry conditions generating large-scale biomass burning in Indonesia (Chandra et al., 2002). During El Niño, TCO over Indonesia is higher than average. A remarkable change in the tropospheric \(O_3 \) concentration due to El Niño has occurred in the Western part of Pacific during 1997-1998, with an increase in the TCO of +20 DU to +25 DU (Chandra et al., 2002). Atmospheric particulates and \(O_3 \) precursors increase in Indonesia (Fig. 6b). During La Niña event, dry conditions are located in South America causing an increase of TCO in the Eastern Pacific Ocean (Fig. 6c).

- Page 4, line 6 : Fewer studies used data assimilation to study the distribution and inter-annual variability of tropospheric ozone in the Pacific Liu et al. (2017); Olsen et al. (2016). Data assimilation allows to obtain homogenous time-series of chemical fields by integrating all available information from measurements and models. This can be particularly useful when tropospheric satellite retrievals become very sparse, due for instance to the occurrence of convective clouds in the tropical region.

- The revised sentence concerning the comment 10 is : The MLS ozone profiles show good quality in the UTLS, with a precision of about 5 %. Biases for MLS ozone profiles are about 2 % in the stratosphere but they increase in the upper troposphere and can be as high as 20 % at the 215 hPa level Froidevaux et al. (2008). To avoid the introduction of biases at this level in our analyses we have taken the MLS ozone data only between 12.12 hPa to 177.83 hPa.
We add clarification in the text concerning comment 11 as follows:

Abstract: In this study, Microwave Limb Sounder (MLS) O₃ profiles and IASI O₃ partial columns (1013.25 hPa - 345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone during six years (2008 - 2013).

Section 2.1.1. line 5: SOFRID retrieves the O₃ profiles on 43 levels from 1013.25 hPa to 0.1 hPa using a single a priori profile and covariance matrix based on one year of in-situ observations (see Barret et al. (2011) for details). Validation of six months of tropospheric O₃ columns from IASI-SOFRID against ozonesondes and airborne data have shown biases of about 5% and Relative Standard Deviation (RSD) of about 15% in the tropics. In their validation study of three IASI O₃ products over one year, Dufour et al. (2012) found also biases of 3.8% and RSD of 9.5% for IASI-SOFRID tropospheric O₃ relative to ozonesondes data in the tropics. In this study, a partial O₃ columns between 1013.25 hPa and 345 hPa has been computed from the IASI-SOFRID profile prior to the assimilation.

- after page 7, line 27: IASI partial O₃ columns (1000-345 hPa) and MLS profiles have been assimilated in the troposphere and in the stratosphere respectively to constrain the ozone concentration along the full atmospheric column. Previous studies assimilated IASI tropospheric columns between 0-6 km Coman et al. (2012); Barré et al. (2013) or 1013-225 hPa Emili et al. (2014). For this study, the choice of the assimilated column top (345hPa) has been taken based on SOFRID averaging kernels found over the tropics Barret et al. (2011). The objective was to minimize the extent of the atmospheric layer where both MLS and IASI can have a direct impact. This avoids to some extent the need of quantifying and accounting for possible biases among the two instruments.

- The original sentence (page 9, line 31) has been replaced with the following text: Larger biases in the boundary layer are a consequence of both the low DOFs of IASI retrievals in the troposphere and the presence of a DM bias with opposite sign between the free troposphere and the boundary layer. The positive correction provided by IASI assimilation in the free troposphere propagates downward in the boundary layer, therefore increasing the original DM bias.

- The following sentence has been included in the revised manuscript (after line 15, page 10 of the original manuscript): Ozone measurements for each site are available over different time periods. The Malaysia site provides measurements only between January 2008 and December 2009, the Indonesia site from January 2008 to December 2012, and the Samoa site from January 2008 to December 2013. Due to the reduced number of available ozonesondes measurements, results of the statistical validation presented here should be considered with more caution than in the previous section. The main objective of this section is to check whether the reanalysis can capture strong local variations of TCO due to ENSO.

- The Nino 3.4 index calculated from SST is available from the NOAA website (http://www.cpc.ncep.noaa.gov/data/indices/).

- The assimilation configuration used for this study is based on the 4D-Var algorithm in a “perfect model” framework.
- Most of the parameters of the assimilation algorithm used to compute the reanalyses in this study are based on the study of Emili et al. (2014). The validation of a short reanalysis of two months against ozonesondes (not shown) has been used to further optimize some of these parameters. The background and observation errors are defined as follows. Emili et al. (2014) have assimilated IASI and MLS data globally with a background error standard deviation equal to 30% of the modeled ozone profile in the troposphere and 5% in the stratosphere. Based on local validation in the tropics, we found slightly superior results using a value of 15% instead of 30% in the troposphere. Therefore, this choice has been taken for the 6-years reanalyses.

- The model is initialized with a climatology on 1st November 2007 to allow for a spin-up period of two months. The second simulation, named MLS-a, started in January 2008 with the assimilation of MLS profiles for the whole period. Finally, the third simulation (IASI-a) was produced with the assimilation of the IASI tropospheric O$_3$ columns and the MLS stratospheric O$_3$ profiles. Both MLS-a and IASI-a are initialized with the direct model output on 1st January 2008.

- The modelled fields have been collocated with the soundings in space and time, ii) The obtained values have been averaged on a two-months basis, in order to take into account a larger number of soundings for statistical evaluations. The collocation was done with a linear interpolation of the model’s 6-hourly outputs on both the horizontal/vertical dimensions and in time.
Abstract.

The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O_3 profiles and IASI O_3 partial columns (1013.25 hPa - 345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone during six years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements.

The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis). An horizontal resolution of $2^\circ \times 2^\circ$ and 60 sigma-hybrid vertical levels extending from the ground to the upper stratosphere have been used. MLS and IASI O_3 retrievals have been assimilated with a 4D-Var variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozonesoundings and Tropospheric Column Ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events.

We show that the assimilation of IASI reproduces correctly the variability of tropospheric ozone during the period under-study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the whole period. IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean. However, a correction is required to reduce a constant bias present in the IASI-MLS analysis.

Copyright statement. TEXT

1 Introduction

Tropospheric ozone (O_3) is the third most important greenhouse gas (Houghton et al., 2001). It influences the atmospheric radiative forcing being one of main absorbers of infrared and ultraviolet radiation (Wang et al., 1980; Lacis et al., 1990). It also has a strong effect on human health and vegetation. High levels of O_3 concentrations increase pulmonary and chronic respiratory diseases, increasing human premature mortality (Guilbert, 2003; Bell et al., 2004; Ebi and McGregor, 2008). High concentrations of O_3 reduce photosynthesis and other important physiological functions of vegetation (Yendrek et al., 2015). Due to its relatively long life-time (~2 weeks in the troposphere), the global variability of tropospheric ozone is the combination of the complex interactions between anthropogenic emissions, chemical production and destruction, long-range transport and stratosphere-troposphere exchanges. A global increase of tropospheric ozone has been documented during the last 30 years (Cooper et al., 2014), the cause of which is not yet well understood (Fowler et al., 2008). To determine the origin of this trend, it is important to evaluate the relative contributions between natural variability and anthropogenic forcing.
Among the natural forcings, the El Niño Southern Oscillation (ENSO) is an atmospheric phenomenon with a large-scale circulation pattern that influences the O$_3$ distribution (Chandra et al., 1998; Zeng and Pyle, 2005) with a periodicity of about 2-7 years. ENSO refers to two events in the tropical Eastern Pacific: El Niño (anomalously warm ocean temperatures) and La Niña (anomalously cold ocean temperatures). ENSO is the dominant source of the tropical Pacific variability for the atmosphere and the ocean (Trenberth, 1997; Philander S. G., 1989). During ENSO, changes in sea-surface temperatures (SST) in the Pacific Ocean have a large influence on the normal atmospheric circulation, displacing the location of convection and its intensity (Quan et al., 2004). These changes in circulation impact the temperature and moisture fields across the tropical Pacific, influencing the chemical composition of the troposphere (Ziemke, J. R. and Chandra, 2003; Randel and Thompson, 2011, Fig. 6).

Convection during ENSO affects tropical tropospheric O$_3$ in two ways. First, convection impacts the vertical mixing of O$_3$ itself. Convection lifts lower tropospheric air masses with a low ozone concentration, where O$_3$ lifetime is shorter, to upper troposphere where O$_3$ lifetime is longer (Doherty et al., 2005). Overall increased convection leads to a decrease of the tropospheric ozone column (Fig. 6a). Second, convection affects vertical mixing and vertical distribution of O$_3$ precursors (Stevenson et al., 2005). El Niño event coincides with dry conditions generating large-scale biomass burning in Indonesia (Chandra et al., 2002). During El Niño, TCO over Indonesia is higher than average. A remarkable change in the tropospheric O$_3$ concentration due to El Niño has occurred in the Western part of Pacific during 1997-1998, with an increase in the TCO of +20 DU to +25 DU (Chandra et al., 2002). Atmospheric particulates and O$_3$ precursors increase in Indonesia (Fig. 6b). During La Niña event, dry conditions are located in South America causing an increase of TCO in the Eastern Pacific Ocean (Fig. 6c).

Previous studies have characterized the variations of the tropical tropospheric O$_3$ linked to ENSO (Ziemke et al., 2015). To characterize the ENSO amplitude several ENSO indices have been proposed based on ENSO footprints on the pressure field or the outgoing longwave radiation (Ardanuy and Lee Kyle, 1985; Trenberth, 1997). Ziemke et al. (2010) developed such an index for Ozone, the Ozone ENSO Index (OEI), to better characterize the effect of the oscillation on the O$_3$ distribution but also to use it as a diagnostic tool for tropospheric chemistry models.

A detailed analysis of the effects of convection on tropospheric O$_3$ has been prevented so far by the paucity of observations (Solomon et al., 2005; Lee et al., 2010). The restricted number of ozonesondes observations limits the analysis that can be made of the links between O$_3$ and ENSO (Thompson et al., 2003).

Satellites observations can give more information on the O$_3$ variability and their global coverage gives better insight on the processes involved in ENSO (Ziemke et al., 2010). To derive tropospheric O$_3$ several studies have combined ozone measurements from Ozone Monitoring Instrument (OMI) that measures the total ozone columns, and the Microwave Limb Sounder (MLS) that provides vertical ozone profiles in the upper troposphere and stratosphere. Ziemke et al. (2006) subtracted the stratospheric column O$_3$ (of MLS) from the total column O$_3$ (of OMI) to obtain the tropospheric column O$_3$ (named hereafter OMI-MLS). They show a large impact of ENSO on tropospheric O$_3$ in the tropics by using the OMI-MLS dataset (Ziemke et al., 2015). The O$_3$ sensitivity to ENSO was also studied with the Tropospheric Emission Spectrometer (TES) observations (Neu et al., 2014). They studied, during El Niño, the long range transport of Asian pollution due to the Northern Hemisphere subtropical jet. MLS and TES data were also compared with a chemical-climate model to study how ENSO can influence the
O₃ distribution (Oman et al., 2013). Therefore, the link between O₃ and ENSO becomes a key element of the chemistry-climate interactions.

The combination of OMI and MLS measurements allows interesting insights on the links between tropospheric O₃ and ENSO, but has limitations because the tropospheric partial O₃ columns are obtained as a difference between two large quantities, the total column and the stratospheric column. Hence, possible bias and errors in MLS and OMI determinations can be amplified when the partial tropospheric column is evaluated. The objective of the present study is to obtain direct evaluations of tropospheric ozone using assimilation of ozone profiles from MLS and from IASI.

The IASI instrument, launched on board Metop-A in 2006, was designed for numerical weather predictions and atmospheric composition observations (Clerbaux et al., 2009). IASI allows a daily global coverage at very high spatial resolution (12 km for nadir observations). Thanks to its stretched spatial coverage, the day and night retrieval coverage, IASI provides an important added value with respect to other satellites like TES or OMI (Herbin et al., 2009; Pittman et al., 2009; Oetjen et al., 2016). IASI mission is meant to last for several decades (MetOP) whereas the instruments OMI, MLS and TES are scientific missions with limited lifespan. Tropospheric O₃ from IASI has been already studied and validated. IASI ozone data was found particularly well adapted to study O₃ variations in the upper troposphere (Dufour et al., 2012; Tocquer et al., 2015; Barret et al., 2016). Since we already have about 10 years of data the IASI mission provides a valuable dataset to study the O₃ variability and trends (Toihir et al., 2015; Wespes et al., 2016), both in the troposphere and the stratosphere (Wespes et al., 2009, 2012; Dufour et al., 2010; Barret et al., 2011; Scannell et al., 2012; Safieddine et al., 2013). More recently, the tropospheric O₃ variability due to ENSO has been studied using 8 years (January 2008 to March 2016) of IASI measurements (Wespes et al., 2017). They have shown that IASI retrievals can capture the variability of tropospheric ozone related to the large-scale dynamical modes of ENSO.

By assimilating IASI data within the MOCAGE model (Teyssèdre et al., 2007), we expect to obtain O₃ distributions consistent with OMI-MLS observations and to have additional information on the vertical O₃ distributions in the troposphere. We use the MOCAGE Chemistry Transport Model (CTM) to assimilate tropospheric ozone profiles from IASI and stratospheric profiles from MLS with a 4D-Var (4-Dimensional-Variational) algorithm. The joint assimilation of IASI and MLS data was already found very effective to improve modelled O₃ in the UTLS (Barré et al., 2013; Emili et al., 2014). Even if IASI data are expected to provide the most significant contribution to the tropospheric reanalyses, the assimilation of MLS allows to introduce complementary information in case of stratosphere-troposphere exchanges (Barré et al., 2012), which intensify over the Eastern Pacific Ocean during La Niña phase of the ENSO. We will evaluate in this study the relative importance of assimilating MLS and IASI in the context of the O₃ variability related to ENSO. To compute ozone tendencies MOCAGE uses the latest version of the linear ozone chemistry parametrization of Cariolle and Teyssedre (2007).

The influence of ENSO on tropical tropospheric O₃ has been simulated by CTMs or by global chemistry-climate models (Sudo and Takahashi, 2001b; Zeng and Pyle, 2005; Doherty et al., 2006; Oman et al., 2011). Fewer studies used data assimilation to study the distribution and inter-annual variability of tropospheric ozone in the Pacific (Liu et al., 2017; Olsen et al., 2016). Data assimilation allows to obtain homogenous time-series of chemical fields by integrating all available information.
from measurements and models. This can be particularly useful when tropospheric satellite retrievals become very sparse, due for instance to the occurrence of convective clouds in the tropical region. Furthermore, the assimilation of IASI data for a long time period has never been considered yet. The 6 years reanalysis (2008-2013) of tropospheric O$_3$ that we have computed in the present study appears to be one of the few datasets suitable to perform analyses of the ozone variability in the tropics from short-term to inter-annual time scales.

The layout of this paper is as follows. In Sect. 2 we describe the observations used for assimilation and model validation, and the settings used by the MOCAGE model and the assimilation suite. In Sect. 3 we discuss the results obtained assimilating IASI and MLS data with emphasis on the impact of ENSO on tropospheric O$_3$. We derive an Ozone ENSO index and compare its evolution to previous studies. The final section summarizes the results.

2 Methodology

2.1 Assimilated observations

2.1.1 IASI/MetOp-A measurements

IASI is one of the instruments on board the series of polar-orbiting satellites MetOp (Meteorological Operational) operated by the European organization for the exploitation of Meteorological Satellites (EUMETSAT). MetOp-A platform was the first one launched on 19 October 2006 and has already provided data for about 10 years. Due to its inclination to the equatorial plane and its altitude (817km), MetOp-A crosses the equatorial plane at 09:30 and 21:30 local time.

IASI is a nadir viewing instrument based on a Fourier Transform Spectrometer. Several detectors fully cover the thermal infrared spectral range between 645 cm$^{-1}$ and 2760 cm$^{-1}$ (15.5 μm to 3.62 μm). IASI provides spectra with a high radiometric quality at a resolution of 0.5 cm$^{-1}$ (after apodization). IASI measurements are taken along and across-track over a swath width of 2200 km with an horizontal resolution of 12 km. Therefore, IASI provides global coverage twice a day.

The high spectral resolution of IASI allows the retrieval of vertical profiles of a number of gases affecting the climate system and the atmospheric pollution (Clerbaux et al., 2009; Coheur et al., 2009). Previous studies have used vertical information from IASI Level 2 products to study O$_3$ in the troposphere, in the Upper Troposphere/Lower Stratosphere (UTLS) and in the stratosphere (Dufour et al., 2010; Barret et al., 2011; Wespes et al., 2012; Tocquer et al., 2015; Barret et al., 2016).

A radiative transfer code and a retrieval software are used to retrieve O$_3$ profiles from IASI radiances. We use O$_3$ retrievals performed with the Software for Fast Retrieval of IASI Data (Barret et al., 2011) developed at Laboratoire of Aerology. SOFRID (SOftware for a Fast Retrieval of IASI Data) is based on the RTTOV (Radiative Transfer for TOVS, Saunders et al., 1999a; 1999b) fast radiative transfer model coupled to the 1DVar algorithm developed at UKMO (Pavelin et al., 2008).

SOFRID retrieves the O$_3$ profiles on 43 levels from 1013.25 hPa to 0.1 hPa using a single a priori profile and covariance matrix based on one year of in situ observations (see Barret et al. (2011) for details). Validation of six months of tropospheric O$_3$ columns from IASI-SOFRID against ozonesondes and airborne data have shown biases of about 5% and Relative Standard
Deviation (RSD) of about 15% in the tropics. In their validation study of three IASI O$_3$ products over one year, Dufour et al. (2012) also found biases of 3.8% and RSD of 9.5% for IASI-SOFRID tropospheric O$_3$ relative to ozonesonde data in the tropics. In this study, a partial O$_3$ columns between 1013.25 hPa and 345 hPa has been computed from the IASI-SOFRID profile prior to the assimilation.

2.1.2 MLS measurements

The MLS instrument flies on board the Aura satellite in a polar orbit since July 2004. The Aura spacecraft has an equatorial crossing time of 1:45 pm (ascending node) with approximately 15 orbits per day on average. MLS measures thermal emissions at the atmospheric limb and provides vertical profiles of several atmospheric parameters (Waters et al., 2006). MLS allows the retrieval of about 3500 profiles per day with a nearly global spatial coverage between 82ºS and 82ºN. Each profile is spaced by about 165 km along the orbit track. The recommended useful pressure range (Livesey et al., 2011) for the MLS measurements of the versions v3 and v4 is from 261 hPa to 0.02 hPa, with a vertical resolution between 2.5 km and 6 km.

We used for this study version 4.2 of the MLS ozone product (Schwartz et al., 2015). Notable improvements of the v4.2, compared to the earlier versions v3.3/v3.4, show a reduction in the severity and frequency of cloud impacts on ozone determination. For more information, users of the MLS/Aura L2 v4.2 should refer to the EOS MLS Level 2 Version 4 Quality Document by Livesey et al. (2016).

The MLS ozone profiles show good quality in the UTLS, with a precision of about 5%. Biases for MLS ozone profiles are about 2% in the stratosphere but they increase in the upper troposphere and can be as high as 20% at the 215 hPa level (Froidevaux et al., 2008). To avoid the introduction of biases at this level in our analyses we have taken the MLS ozone data only between 12.12 hPa to 177.83 hPa.

2.2 Validation observations

2.2.1 The OMI-MLS residual method and the Ozone ENSO index

The OMI instrument, is one among a total of four instruments on board Aura satellite. It is a nadir viewing imaging spectrometer that measures the solar radiation reflected by Earth’s atmosphere and surface (Levelt et al., 2006). It makes spectral measurements in the ultraviolet (270-314 nm; 306-380 nm) and visible 350-500 nm wavelength regions at 0.5 nm resolution. OMI provides measurements with a daily global coverage and a very high horizontal spatial resolution of 13 km x 24 km at nadir (Dobber et al., 2006). Retrievals errors of the OMI data vary from 6% to 35% in the troposphere (Liu et al., 2010). Total column ozone from OMI have been derived using the TOMS version 8 algorithm (Ziemke et al., 2006).

To derive the TCO with the OMI-MLS residual method, Ziemke et al. (2006) subtracted the stratospheric ozone columns retrieved with MLS from the OMI total column. They selected OMI pixels with near clear-sky conditions (radiative cloud fraction < 30%) whereas stratospheric MLS data was spatially interpolated each day on a coarser regular grid. The tropopause height used for the TCO OMI-MLS determination comes from the National Centers for Environmental Prediction (NCEP) using the
2K.km\(^{-1}\) lapse rate tropopause definition (Craig, 1965) of the World Meteorological Organization (WMO). We recovered OMI-MLS data on the NASA GODDARD website for tropospheric ozone (http://acd-ext.gsfc.nasa.gov/Data_services/).

All available daily data have been averaged to compute monthly means with a latitude-longitude resolution of 1°x1.25°.

There is not one single universal ENSO index able to reproduce oceanic and atmospheric physical conditions over the tropical Pacific (Trenberth, 1997). Many ENSO indices have been developed using for instance sea-surface pressure, SST, and precipitation (Trenberth, 1997; Curtis and Adler, 2000). The one commonly used is the NOAA Niño 3.4 index derived from the SST anomalies. Based on several satellite instruments spanning over 30 years to investigate ENSO’s impact on tropical TCO, Ziemke et al. (2010) produced the monthly OEI.

Stratospheric column ozone in tropical Pacific has very small longitudinal variations of only a few Dobson Units. This has been shown in the previous study from SAGE, UARS HALOE, UARS MLS and AURA MLS stratospheric O\(_3\) satellite measurements (Ziemke et al., 1998, 2010). Because of this characteristic, the zonal variation of the TCO in tropical Pacific is essentially identical to the east-west variation of total column ozone. Thus to derive the OEI only TCO can be used.

The OEI is obtained by subtracting the TCO in the region named Pacific Ocean Center (POC, 15°S - 15°N, 110°W - 180°W) from the TCO in the region Indonesia with Indian Ocean (IIO, 15°S - 15°N, 70°E - 140°E) each month. To compute the TCO, the altitude of the tropopause must be known. The tropopause heights used by Ziemke come from the NCEP. The tropopause is defined as the lowest level, with respect to altitude, at which the temperature lapse rate decreases to 2°C.km\(^{-1}\) or less and does not exceed 2K/km for 2km above.

We adopted this tropopause computation to derive the OEI from our analyses. Tropopause pressures, used to compute Ozone Index with both the assimilation of IASI-MLS and MLS only data, are comprised between 80 hPa at low latitudes and 500 hPa at high latitudes.

2.2.2 Ozonesondes

Ozonesondes are launched in many locations over the world on a weekly basis, measuring vertical profiles of O\(_3\) concentration with a high vertical resolution of 150-200 m, from the ground to approximately 10 hPa. Data are collected by the World Ozone and Ultraviolet Radiation Data Center (WOUDC, http://www.woudc.org). During the six years considered in this study (2008 to 2013), only 270 ozonesoundings are available for the Pacific area between 15°S-15°N and 70°E-110°W (Fig. 7). We divide this area in two regions: IIO and POC, which are represented by the two blue rectangles in Fig. 7.

The WOUDC ozonesondes measurements used for the validation are considered as a reference. Despite their sparse geographical distribution, several studies have used WOUDC database to validate global models and satellite retrievals (Geer et al., 2006; Massart et al., 2009; Dufour et al., 2012).
2.3 Analyses

2.3.1 Chemical transport model

MOCAGE is a three-dimensional CTM based on a semi-Lagrangian advection scheme (Williamson and Rasch, 1989) developed for both tropospheric and stratospheric applications. Multiple nested domains with different horizontal resolutions can be used within MOCAGE, as well as chemical and physical parameterizations of increasing complexity. The different configurations of MOCAGE have been validated against in situ, satellite, and ground-based measurements in several studies (Josse et al., 2004; Teyssèdre et al., 2007; Bousserez et al., 2007; Honoré et al., 2008; Sić et al., 2015).

For this study, a global horizontal resolution of 2°x2° has been used with 60 sigma hybrid vertical levels from the surface up to 0.1 hPa. The vertical resolution goes from about 40 m in the boundary layer, to about 500 m in the free troposphere and to approximately 800 m in the upper troposphere and lower stratosphere. The model uses winds, temperature and ground pressure from the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis (Berrisford et al., 2011).

For the chemical scheme we use the simplified ozone chemistry scheme developed by Cariolle and Teyssedre (2007), based on the linearization of the destruction and production rates of ozone. Emili et al. (2014) have shown that with this simplified chemical scheme it is possible to obtain O₃ analyses from IASI data of comparable quality to those obtained using more complex chemical schemes. The use of this simplified scheme reduces numerical costs, which is highly beneficial for the production of long chemical reanalyses such as the ones discussed in this study.

2.3.2 Assimilation algorithm

The chemical data assimilation system for MOCAGE is developed at CERFACS and has already been used for several applications at both regional and global scales (El Amraoui et al., 2010; Sić et al., 2016). The MOCAGE assimilation system was part of the first international exercise of satellite ozone assimilation (Geer et al., 2006) and it currently provides operational air quality analyses for the european project CAMS (Marécal et al., 2015).

The assimilation configuration used for this study is based on the 4D-Var algorithm in a “perfect model” framework. Compared to the 3D-Var algorithm, the 4D-Var allows a better exploitation of satellite observations with large spatial and temporal footprint (Massart et al., 2010). The cost function is minimized using the limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) method (Liu and Nocedal, 1989) and the 3D background error covariance matrix (B) is modeled through a diffusion equation (Weaver and Courtier, 2001).

IASI partial O₃ columns (1000-345 hPa) and MLS profiles have been assimilated in the troposphere and in the stratosphere respectively to constrain the ozone concentration along the full atmospheric column. Previous studies assimilated IASI tropospheric columns between 0 - 6 km (Coman et al., 2012; Barré et al., 2013) or 1013 - 225 hPa Emili et al. (2014). For this study, the choice of the assimilated column top (345 hPa) has been taken based on SOFRID averaging kernels found over the tropics (Barret et al., 2011). The objective was to minimize the extent of the atmospheric layer where both MLS and IASI can have a direct impact. This avoids to some extent the need of quantifying and accounting for possible biases among the two...
instruments. Before the assimilation, IASI data have been averaged to obtain 2° by 2° pixels to better fit the model coarser resolution.

The retrieval equation based on the averaging kernels (AK) and on the a priori profile in the troposphere has been applied to the profiles from the model to account for the limited sensitivity of IASI retrievals in the troposphere (see Barret et al., 2016). The description of the linear retrieval equation can be found in Barret et al. (2011).

Emili et al. (2014) found global biases of 10% in the troposphere assimilating IASI-SOFRID product in MOCAGE. When they removed 10% of the values in the IASI observations, the biases in the analyses were significantly reduced. The same correction has been applied in this study.

Most of the parameters of the assimilation algorithm used to compute the reanalyses in this study are based on the study of Emili et al. (2014). The validation of a short reanalysis of two months against ozonesondes (not shown) has been used to further optimize some of these parameters. The background and observation errors are defined as follows. Emili et al. (2014) have assimilated IASI and MLS data globally with a background error standard deviation equal to 30% of the modeled ozone profile in the troposphere and 5% in the stratosphere. Based on local validation in the tropics, we found slightly superior results using a value of 15% instead of 30% in the troposphere. Therefore, this choice has been taken for the 6-years reanalyses.

We specify the background error variances as a percentage of the modeled ozone profile equal to 15% in the troposphere and 5% in the stratosphere. These values were established through a global validation of ozone forecasts against ozonesondes. We use an horizontal correlation length defined by meridional and zonal length scales. The meridional length scale is fixed to a constant value of 300 km and the zonal length scale varies from 500 km at the equator to 100 km at the poles. Further tests led us to deactivate the vertical error correlation, compared to the value of one grid point used in the previous study (Emili et al., 2014). Ozonesondes validation has shown a 20% bias decrease close to the tropopause when deactivating the vertical correlation, the scores remaining the same elsewhere. The reason for such improvement is due to the relatively coarse vertical resolution of the model compared to the magnitude of the ozone gradient at the tropopause. When a non-zero error correlation is used, large assimilation increments due to lowermost MLS observations can spread into the upper troposphere and degrade the ozone concentration.

For IASI data we set the variance of the observation error equal to 15% of the measured ozone columns. The error covariance matrix of the retrieval is prescribed from retrieval product of MLS measurements.

3 Results

We have performed three ozone simulations covering the period 2008 to 2013. The first simulation, called Direct Model (DM), has been produced running the MOCAGE CTM without data assimilation. The model is initialized with a climatology on 1st November 2007 to allow for a spin-up period of two months. The second simulation, named MLS-a, started in January 2008 with the assimilation of MLS profiles for the whole period. Finally, the third simulation (IASI-a) was produced with the assimilation of the IASI tropospheric O$_3$ columns and the MLS stratospheric O$_3$ profiles. Both MLS-a and IASI-a are initialized with the direct model output on 1st January 2008. For the three simulations the outputs are recorded every six hours.
The main results are outlined as follows. Section 3.1 contains the validation of the simulations against ozonesondes. A first validation (section 3.1.1) has been done considering all the measurements available in the latitude band between 15°S-15°N providing a statistically significant validation in the tropical region. The following section 3.1.2 limits the comparison with O₃ soundings over the region directly influenced by ENSO events.

In section 3.2 we analyze the temporal and spatial variability of the TCO during the period 2008-2013. The link between sea surface temperature and ozone variability is studied with the OMI-MLS estimations (see section 2.2). The objective is to evaluate how the modelled ozone distributions reproduce ozone variability over the Pacific ocean during normal condition of the Walker cell and during ENSO events. In section 3.2.2, we compare the Ozone ENSO Index (OEI), computed using the previous datasets among each other and to the Niño 3.4 index, to demonstrate the added value of IASI tropospheric assimilation for long term ozone monitoring.

Finally, in section 3.2.3 the vertical distributions of ozone is examined over two regions (one over the Eastern Asia and Indonesia and the second one over the Pacific Ocean) to highlight the footprint of ENSO on the three model simulations.

3.1 Validation with the ozonesoundings

3.1.1 The equatorial latitudes

O₃ data have been first treated as follows: i) The modelled fields have been collocated with the soundings in space and time, ii) The obtained values have been averaged on a two-month basis, in order to take into account a larger number of soundings for statistical evaluations. The collocation was done with a linear interpolation of the model’s 6-hourly outputs on both the horizontal/vertical dimensions and in time.

Figure 8 shows the comparison between the partial ozone column of the three simulations and the ozonesondes data in the tropical band (15°S-15°N). Partial ozone columns (in DU) and relative differences (in %) are plotted separately for the TCO (1000 - 100 hPa), the boundary layer (1000 - 750 hPa) and the free troposphere (750 - 100 hPa).

The TCO from ozonesondes (Fig. 8a) has maxima in summer/fall and minima in winter. The observed seasonal variation is a consequence of the biomass burning, which provides precursors for ozone formation in summer/fall. The emission of gases by biomass burning, such as carbon monoxide and carbonaceous aerosols, intensifies during the dry season (June-July and August-October) over both South America and Southern Africa (Andreae et al., 1998; Sinha et al., 2004).

The ozone columns produced by the DM and MLS-a simulations do not show the variability measured by the ozonesondes, their correlation coefficients with the sondes data are lower than 0.76 (Fig. 8a,b). The IASI-a variability matches better the ozonesondes with a correlation coefficient of 0.88. In particular the IASI-a simulation exhibits a year-to-year variability in very good agreement with the ozonesonde data. This is confirmed by the RSD of the differences between simulated and observed values: the RSD of IASI-a is 6% whereas it is about 10% for MLS-a and MD.

The relative differences between simulated and observed values are presented in Fig. 8b. IASI-a is less biased (6%) than DM and MLS-a, and MLS-a has lower biases (24%) than DM (32%). Biases are lower with MLS-a, compared to DM, due to the
assimilation of MLS stratospheric data. MLS-a improvement is due to the direct influence of the lowest assimilated level of MLS (170 hPa) which brings information on the O$_3$ distribution in the UTLS region. Compared to IASI-a the lower accuracy of DM comes from the use of the simplified ozone scheme, which does not account for the production of tropospheric ozone by biomass burning.

Figure 8c and 8d show that the IASI-a tropospheric columns are biased high in the lower troposphere. In this region, the RSD of the three simulations are very similar meaning similar variability compared to ozonesondes, even if IASI-a matches slightly better the ozonesondes. However, IASI-a is two times less accurate for the boundary layer O$_3$ column than for the TCO and its biases are higher than MD and MLS-a. Larger biases in the boundary layer are a consequence of both the low DOFs of IASI retrievals in the troposphere and the presence of a DM bias with opposite sign between the free troposphere and the boundary layer. The positive correction provided by IASI assimilation in the free troposphere propagates downward in the boundary layer, therefore increasing the original DM bias.

Ozone concentration and biases of the IASI-a simulation in the free troposphere (Fig. 8e and Fig. 8f) show much better results than the two other simulations. As it can be seen, the sensitivity of the IASI measurements is larger in the mid and upper troposphere. The RSD of IASI-a is around 6% instead of 11% for DM and 9% for MLS-a in the middle-upper troposphere (Fig. 8f). The added value of IASI data in the middle troposphere is particularly remarkable concerning bias, which is 2% for IASI-a instead of 41% and 32% for DM and MLS-a respectively.

Since the boundary layer (1000 - 750 hPa) corresponds approximately to 12% of the TCO (1000 - 100 hPa), the overestimation of the ozone column by IASI-a has not a major impact on the TCO used for our study of the ENSO-O$_3$ correlation, which is the main objective of this study.

3.1.2 From Eastern Africa to South America : focus on the ENSO

To study the ENSO we divide the region of interest (latitudes ranges 15°S-15°N and longitudes ranges 70°E to 110°W) in two areas (see Fig. 7) : the first one, called IIO, has a longitude range between 70°E and 140°E while the second one, called POC, is located between 180°W and 110°W.

Three ozonesonde stations are available for both regions, two in the IIO region and one in the POC region (Tab. 1).

Table 1. Ozonesonde stations at tropical latitudes between 70°E and 110°W.

<table>
<thead>
<tr>
<th>Name</th>
<th>Ozonesones</th>
<th>Localization</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaysia</td>
<td>443 ECC</td>
<td>Kuala Lumpur international airport, Malaysia</td>
<td>3°N - 101°E</td>
</tr>
<tr>
<td>Indonesia</td>
<td>437 ECC</td>
<td>Watukosek, Java Timur, Indonesia</td>
<td>8°S - 113°E</td>
</tr>
<tr>
<td>Samoa</td>
<td>191 ECC</td>
<td>Apia, Samoa</td>
<td>13°S - 172°W</td>
</tr>
</tbody>
</table>

Ozone measurements for each site are available over different time periods. The Malaysia site provides measurements only between January 2008 and December 2009, the Indonesia site from January 2008 to December 2012, and the Samoa site from January 2008 to December 2013. Due to the reduced number of available ozonesondes measurements, results of the statistical
validation presented here should be considered with more caution than in the previous section. The main objective of this section is to check whether the reanalysis can capture strong local variations of TCO due to ENSO.

Figure 9 shows the statistics of the IASI-a O\textsubscript{3} simulation versus the three records from the ozonesoundings. Time series are computed in the same manner as the time series over the tropical band discussed in the previous section (section 3.1.1).

From January 2008 to December 2009, TCO from the ozonesondes located in the IIO region (Fig. 9a and Fig. 9c) and those located in the POC region (Fig. 9e), has a seasonal variability with maxima in boreal summer and minima in boreal winter. This ozone seasonality is caused by the biomass combustion over the Western Pacific Ocean near New Guinea during the dry period (Kim and Newchurch, 1998). Among the countries of Southern Asia, Indonesia is known as the third country for biomass burning emissions (Streets et al., 2003).

During the year 2010 and over the IIO region (Fig. 9c), the variability of the ozone concentrations changes. We see a peak of ozone during March 2010 over Indonesia (26 DU) whereas there is a minimum in Samoa (12 DU) (Fig. 9e). This ozone rise over the IIO region is linked with subsidence, generated by the El Niño event starting in January 2010 (see Fig. 6). El Niño intensifies the subsidence and therefore dry conditions and biomass burning over Southern Asia (Matsueda et al., 2002; Chandra et al., 2002). From September 2010 to August 2011, the TCO values decrease to an average of about 20 DU over Indonesia. This decrease in tropospheric ozone is due to the second phase of ENSO : La Niña. As we have already mentioned (Fig. 6), La Niña strengthens the convection over the IIO causing a minimum in the TCO. Hence, there is a lower TCO over Indonesia (around 20 DU) than over Samoa (around 28 DU). After summer 2011 the ENSO disappears and the TCO returns to normal seasonality.

IASI-a reproduces quite well the variability measured by the ozonesondes during normal conditions of the Walker circulation (2008-2009) and during the ENSO (2010-2011). In particular, IASI-a agreement with the ozonesondes is better over the POC region (Samoa), where the correlation coefficient of 0.96, than over Indonesia and Malaysia where the coefficients are around 0.7.

However, the relative difference between IASI-a and the ozonesondes is larger over the POC region (Fig. 9f) than over the IIO region (Fig. 9b,Fig. 9d), with an overestimation of the ozone columns by about 17% in Samoa. Mean biases are around 3-5% for over Indonesia and Malaysia, showing that IASI-a reproduces quite well the ozone variability during normal condition of the Walker circulation. Equally, IASI-a reproduces the maximum over Indonesia and the minimum over Samoa during the 2010 El Niño event, as well as the TCO minima generated during La Niña over the IIO region. As already discussed, biases observed in the POC and IIO regions come from the decreased sensitivity of IASI in the boundary layer, and from the lack of adequate representation of the chemistry in the lower troposphere by the linear scheme used within MOCAGE.

The three simulations (IASI-a, MD and MLS-a) have identical biases in the boundary layer compared to the ozonesoundings (Figures not shown). Biases in the boundary layer are higher in the POC region (around 45%) compared to the IIO region (around 20%). However, in the POC region, the variability of the three simulations are remarkably well correlated with the ozonesondes, with coefficient correlations higher than 0.85 (not shown).
To summarize, the IASI-a simulation reproduces well the O$_3$ variability observed with the ozonesondes for the tropical latitudes and for both regions of POC and IIO. The seasonal oscillations of ozone, caused by the anthropogenic pollution and by ENSO, are reproduced by IASI-a despite a slightly overestimation of about 4% in the IIO region and around 17% in the POC region. The IASI-a simulation is thus adequate to study ozone variability during ENSO events since biases are limited over the period under study.

3.2 Temporal and spatial variability of ozone during ENSO

3.2.1 Characterization of ENSO and footprints on SST and tropospheric ozone content

In this section we consider the link between Sea Surface Temperature (SST) and tropospheric ozone during ENSO events. Previous studies have highlighted the link between SST anomalies and ENSO dynamics (Philander S. G., 1989; Barnston et al., 1997; Wang et al., 2014). Colder SST in the POC region is associated with La Niña whereas El Niño has warmer SST than normal condition (Trenberth, 1997). Variations in TCO concentrations are a combination of biomass burning rejecting large quantities of ozone precursors (Chandra et al., 2002) and eastward shift in the tropical convection of the Walker circulation associated with SST changes (Chandra et al., 1998; Sudo and Takahashi, 2001a).

The correlation between SST and TCO have already been characterized using OMI-MLS data, our objective is to see if similar correlations can be derived using the model simulations. To this end, we have taken SST data from the Giovanni-Interactive Visualization and Analysis - GES DISC: Goddard Earth Sciences, data and Information Services Centre (https://disc.gsfc.nasa.gov). SST data were measured by the instrument MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellites (NASA Earth Observing System platforms).

Figure 10 shows the time versus longitude Hovmöller diagram, averaged between 15°S and 15°N of the monthly mean SST and the OMI-MLS measurements. SST over the Pacific ocean has a characteristic geographic distribution (Fig. 10a), with warmest water in the IIO region (70°E-140°E) and coldest water in the POC region (180°W-110°W). The link between SST and TCO (Chandra et al., 1998, 2009) is observed comparing the SST (Fig. 10a) with OMI-MLS measurements (Fig. 10b). The warmest water induce convective movements resulting in a TCO decrease and inversely for the coldest water. During El Niño (January 2010) the warmest SST shifts from IIO region to the POC region. These eastward shifts in SST coincide with eastward shifts of TCO from July 2008 to January 2010. During La Niña (occurring between September 2010 and January 2011) an opposite condition occurs with a strengthening of colder SST between 80°W and 150°W. In this region of colder SST (Fig. 10a), higher TCO (26 - 32 DU) is located between the coast of South America and 140°W (Fig. 10b). The eastward shift of SST occurring from January 2011 to December 2013, corresponds to the return of normal conditions over the Pacific ocean and impacts TCO with an eastward shift.

To compare the three model simulations with OMI-MLS we have computed anomalies of tropospheric ozone for the period 2008-2013 (Fig. 11). The anomalies are calculated by subtracting the time averaged TCO to each TCO determination and this difference has been divided by the mean TCO. TCO anomalies are expressed in percentage.
The variability of TCO, observed previously with OMI-MLS measurements in Fig. 10, is also clearly visible with the TCO anomaly (Fig. 11a). TCO with values 20% lower than average are located in the IIO region. TCO with values 20% higher than average are located close to South America coasts. The El Niño event on January 2010 has a significant impact on TCO, with 20% higher values in the IIO region and 10% lower in the POC region. The La Niña event that follows shows opposite structure on the TCO with a maximum between 110°W to 80°W.

Part of the TCO variability in Eastern and Western Pacific ocean is reproduced with the DM simulation (Fig. 11b). TCO with values 10% higher (resp. 10% lower) than average are located in POC (resp. IIO) region. However the amplitude of the TCO anomalies from the DM simulation is much lower compared to OMI-MLS. Since the chemical scheme used in the MOCAGE model has no longitudinal forcing in the chemical tendencies, the TCO anomalies in the DM simulation are only due to changes in the equatorial circulation and the associated ozone transport. The ECMWF analyses capture the dynamics associated to ENSO and hence drive the variations of the TCO seen in the DM simulation.

The assimilation of MLS O₃ profiles in the stratosphere does not change much the structures and percentages of anomalies of the TCO, the results of the MLS-a simulation (Fig. 11c) are similar to those of the DM. Eastward shift during El Niño and higher TCO in the POC region during La Niña are represented with both simulations but the TCO anomalies for both simulations are 10% lower than with those of OMI-MLS. Basically the ENSO impacts the troposphere and little information is brought by the assimilation of MLS data. Eastern shift during El Niño and higher TCO in the POC region during La Niña are slightly represented with both simulations.

Compared to DM and MLS-a the TCO variability is much better reproduced with IASI-a (Fig. 11d). The amplitude of the TCO changes caused by El Niño and La Niña compares very well with the OMI-MLS observations. However, small differences appear between IASI-a and OMI-MLS. Over the IIO region during El Niño the TCO anomaly is 10% lower with IASI-a than with OMI-MLS. In addition, the location of the TCO maximum during La Niña is located in the whole POC region with IASI-a and in the Eastern part of the POC region with OMI-MLS.

Overall, the anomalies of the TCO reproduced by IASI-a are in good agreement with those of OMI-MLS. The improvement compared to the DM and MLS-a simulations is very significant, thus demonstrating the usefulness of the IASI data for the ozone evaluation in the troposphere. Equally, the assimilation process is efficient to follow ozone variability and the resulting IASI-a analysis appears to give a consistent data set for the study of the ozone variability. The advantage of IASI-a over OMI-MLS is that the analyses are fully 4D with six hourly outputs and resolved information on the vertical dimension. The vertical distributions are studied in section 3.2.3.

3.2.2 Intercomparison of Ozone ENSO Indices

The OEI is the TCO difference computed between the IIO region (70°E-140°E) and the POC region (180°W-110°W). The resulting time series are then deseasonalized. This deseasonalization is done to remove the signal of the annual cycle (Ziemke et al., 2010). OEI is a strong indicator of the ENSO intensity influencing the tropospheric ozone over IIO and POC regions.
Ziemke et al., 2010). It is considered as a basic diagnostic tool to evaluate the ability of the models to reproduce changes in tropospheric ozone linked with ENSO (Ziemke et al., 2010, 2014).

Figure 12 shows the OEI during the period January 2008 to December 2013 computed from our model analyses and from the OMI-MLS data. OEI variations are related to ENSO, with maxima during El Niño and minima during La Niña events. In Fig. 12a we have plotted the OEI computed for the OMI-MLS measurements (noted OMI-MLS) and the Niño 3.4 index. The monthly Niño 3.4 is calculated from SST anomalies in the Pacific Ocean. The Niño 3.4 index calculated from SST is available from the NOAA website (http://www.cpc.ncep.noaa.gov/data/indices/). Sea surface temperature anomalies were calculated using the monthly Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4, 1950-2016 base period). Also included is the OEI of OMI-MLS smoothed using a 3-month running average, as computed by (Ziemke et al., 2010, 2014) and called OEI-Z hereafter.

Figure 12b shows the OEI computed from IASI-a, MLS-a, DM and OMI-MLS. Our OEI indices from OMI-MLS, DM, MLS-a and IASI-a are computed without time averaging, by subtraction of TCO in the POC region from TCO averaged over the IIO region.

As defined by the NOAA, the two ENSO phases occur when the Niño 3.4 index is higher than 0.5 (corresponding to El Niño) and lower than -0.5 (corresponding to La Niña) during five consecutive months. Thus, in the analysed period an El Niño starts on July 2008 with a maximum on January 2010, and a La Niña starts on July 2010 with a maximum on January 2011.

The two time series of OEI-Z and OMI-MLS appear remarkably similar (Fig. 12a), except around January 2008. For this period they are out of phase with the Niño 3.4. The discrepancy is attributed to the phase opposition between the interannual and intraseasonal variability of the TCO (Ziemke et al., 2014) linked with the intraseasonal Madden Julian Oscillation (MJO, Madden and Julian, 1972, 1994). The MJO increases the differences between OEI-Z and OMI-MLS in 2008. Detailing the effect of MJO on monthly OEI is beyond the scope of our current study.

As expected, the OEI from OMI-MLS shows a consistent variability with OEI-Z, in particular the maxima and minima agree and are well correlated to the Niño 3.4 index. Since the OMI-MLS OEI is obtained from monthly averages it exhibits shorter term variability than OEI-Z and can be directly compared to the indices derived from the model simulations.

The DM OEI (Fig. 12b, green curve) is negative during the whole period, corresponding to a tropospheric column higher over the POC region than over the IIO region. The DM OEI variations show some features of the ENSO, with a relative maxima in January 2010 followed by a minima at the end of the same year, but the intensity is weak, about three times lower than values observed with OMI-MLS. The MLS-a produces an OEI very similar to DM. As already discussed, constraining the ozone profile in the stratosphere has little impact on the quality of the modelled ENSO O_3 signal.

With the IASI-a we can quantify the contribution of IASI data in the computed OEI (Fig. 12b, red curve). Compared to DM and MLS-a simulations the IASI-a analysis produces OEI in better agreement with the ones derived from OMI-MLS. OEI variations are in phase with a very good match of periods of maxima and minima. There is however a constant bias of approximately 2.4 DU between the indices of OMI-MLS and IASI-a. As discussed in section 3.1.2, IASI-a bias in the lower troposphere is larger in the POC region than in the IIO region. This difference of biases between POC and IIO regions affects
the determination of the OEI. In addition, during ENSO events we have seen from the Hovmöller plots in section 3.2.1 that during La Niña the TCO maximum with IASI-a is slightly shifted to the Western part of the POC region compared to the OMI-MLS data. The difference in the location of maximum over the Eastern Pacific between OMI-MLS and IASI-a explains part of the difference in the OEI absolute values during El Niño and La Niña events (Fig. 12).

Tropospheric ozone variability during ENSO is therefore very well captured from the OEI variations computed from IASI-a, despite a constant bias in the boundary layer. Further insights in the vertical distribution of O$_3$ over the POC and IIO regions during ENSO are discussed in the next section.

3.2.3 Vertical structures of O$_3$

The evaluations of TCO obtained with the OMI-MLS by subtracting stratospheric ozone from MLS from the total ozone from OMI cannot give information on the vertical structure of the O$_3$ anomalies forced by ENSO. This is clearly an advantage of model assimilations that can give a complete 3D structure of the ozone fields with no gaps due to orbitography and clouds. We focus here on the information brought by the assimilation of IASI and MLS data in describing the vertical ozone response to ENSO in the POC and IIO regions.

Figure 13 shows monthly mean ozone profiles for IASI-a, MLS-a and DM, over the six-year record. The tropopause pressure for the three simulations is about 100 hPa. Ozone concentration in this layer is around 70 ppbv.

Due to the limitations of the model and the lack of information brought by the two instruments in the boundary layer, as already discussed, we focus our analysis in the IIO et POC regions on the free troposphere, between 750 hPa and 100 hPa.

The DM (Fig. 13a,b) and MLS-a (Fig. 13c,d) produce very close distributions of the vertical ozone concentration. The MLS-a simulation shows slightly more ozone in the lower stratosphere and upper troposphere, but the fluctuations of the concentration have similar amplitudes in both simulations. Particularly noticeable is the signal during the 2010 El Niño with low ozone values in the POC region during the first months of the year linked to increased convection and associated upward motions, and an opposite behaviour in the IIO region with subsidence and increased ozone down to the middle troposphere. This footprint of ENSO is very well captured with the IASI-a simulation, especially over the POC region. Over that region the ozone content is lower than 35 ppbv during El Niño and larger than 50 ppbv during La Niña. The information brought by IASI is very significant, the amplitude of the ozone change between El Niño and La Niña periods is 2 to 3 times larger with IASI-a assimilation than it is with DM and MLS-a simulations.

If we refer to OEI indices (Fig. 12) some ENSO activity is detected in late 2012/early 2013. Indeed an O$_3$ minimum in early 2013 followed by a maximum in the middle of the year is clearly visible in the IASI-a assimilation in the POC region. The amplitude of the ENSO signal on ozone is lower than for the 2010 event, in agreement with the lower values of the Niño 3.4 index.

Also more clearly visible with IASI-a are the seasonal variations of the ozone content in the IIO region that is quite regular outside ENSO periods. In that region the annual periodicity of ozone is much pronounced in comparison of the more erratic variations shown in the POC region. The regularity of the ozone fluctuation is more pronounced in IASI-a assimilation than in
DM and MLS-a simulations. In addition to the influence of atmospheric dynamics, biomass burning and the associated ozone production could trigger the seasonal fluctuations. Such an ozone production detected by the IASI instrument (and therefore visible in IASI-a) cannot be reproduced by the DM and MLS-a simulations due to the simplified chemical scheme.

Overall the combination of the IASI ozone tropospheric retrievals and our 4D-Var algorithm produces a very consistent dataset for the study of the influence of ENSO on the ozone distribution from the stratosphere to the middle troposphere. The quality of IASI-a, which also includes the assimilation of MLS, is good in stratosphere down to the middle troposphere. In the boundary layer, below 800 hPa, a comprehensive chemical scheme with adequate emissions should be used to improve the assimilation since there are no global observations of the ozone content in this layer over the equatorial regions.

4 Summary and conclusion

Six years (from January 2008 to December 2013) of 6-hourly tropospheric ozone fields have been derived assimilating IASI and MLS ozone measurements in the MOCAGE CTM. The assimilation of IASI tropospheric columns combined with MLS stratospheric profiles has been first validated against ozonesondes in the tropical band (15°S-15°N), providing a statistically robust validation. In the tropical band and over the whole period, IASI-a gives results similar to ozonesondes and reproduces well the ozone variability despite a constant bias. Biases in the analysis come from the low accuracy of the model in the boundary layer. The ozone linear scheme in MOCAGE does not take surface emissions into account. In addition, IASI has a weak sensitivity in the boundary layer therefore not bringing additional information on O₃ content in this layer. A second validation has been done over the Pacific ocean and over Southern Asia (longitude band of 70°E to 110°W). During the 2008-2013 period, an ENSO event developed with its two phases: El Niño in winter 2010 and La Niña in winter 2011. IASI-a has been validated in two areas: the Indonesia and Indian Ocean (IIO) and the Pacific Ocean Center (POC) regions. In both regions, biases appear and are larger in the POC region. The weak sensitivity of IASI sounding in the boundary layer is responsible for these biases. However, the tropospheric ozone variability related to the Walker Circulation and to the ENSO event is well reproduced with IASI-a.

OMI-MLS tropospheric columns have been used and validated by several past studies. We have used OMI-MLS ozone data to characterize the links between SST and tropospheric O₃ and to compare with our IASI-a assimilation. Anomalies of TCO have been computed allowing a comparison between IASI-a and the two other simulations (Direct-Model and MLS-a) with OMI-MLS. Anomalies of the Direct-Model (MOCAGE without assimilation) are similar to anomalies of MLS-a (assimilation of MLS stratospheric profiles). The good reproduction of anomalies in term of location and timing between Eastern and Western regions in both simulations are due to the transport forced by the winds from the ECMWF meteorological analyses. However, the amplitude of anomalies is lower than in OMI-MLS data. Assimilation of IASI data corrects this behaviour, the anomalies of IASI-a appear very similar to the OMI-MLS anomalies. In particular, the IASI data bring essential information to reproduce the Eastern shift of TCO caused by El Niño.
In order to study the ability of IASI-a to reproduce the ozone variability caused by El Niño and La Niña phases, we have used the OEI. The OEI represents an essential diagnostic test for models that should be able to represent ozone features linked with ENSO changes in tropospheric dynamic. OEI from IASI-a shows variations similar to those of OMI-MLS with a small bias corresponding to higher TCO over the POC than over the IIO region. Direct-Model and MLS-a have the same bias. This bias has been located in the boundary layer with the comparison with the ozonesondes.

We have also examined the vertical structures of tropospheric ozone in the IIO and POC regions, with the three simulations (Direct-Model, MLS-a and IASI-a), in order to show the contribution of IASI tropospheric data in the assimilation. The IASI-a analysis is consistent with the ozone displacements in adequate with subsidences and convergences generated by El Niño and La Niña on both IIO and POC regions. IASI assimilation gives a very valuable high resolution dataset suitable to perform analyses of the O$_3$ variability in the upper and middle troposphere for short term and inter-annual time scales in the tropical band.

Overall, the assimilation of stratospheric MLS and tropospheric IASI data within MOCAGE gives a good representation of the tropospheric ozone variability linked with ENSO and the Walker circulation. There are however some limitations in our simulations that have to be addressed. One of them is the bias found in the boundary layer over the Pacific Ocean that affects the calculation of the OEI. In this study we have used a linear ozone parameterization to compute the ozone chemical tendencies. This approach is suitable for the free troposphere and the stratosphere but is certainly not adequate for the boundary layers. In the future we plan to use a more comprehensive chemical scheme that accounts for the surface emissions. The computational cost of these simulations will be however much larger.

With the use of IASI data we have demonstrated here the value of assimilating satellite data that document the direct information in the tropospheric ozone content to compute OEI. This approach is promising because many types of data can enter in an assimilation process, soundings, aircraft, etc... Improvements in the tropospheric ozone content evaluations can be expected from an increase in assimilated data.

Acknowledgements. We would like to thank Jerry R. Ziemke and the Aura Ozone Monitoring Instrument (OMI) science team of the NASA Goddard Space Flight Center to the availability of the OMI-MLS data and the OEI-Z Index. We also thank WOUDC for providing ozonesonde station data and the NASA Jet Propulsion Laboratory for the availability of Aura MLS data. We also acknowledge the mission scientists from the NASA GES DISC, who provided the GIOVANNI SST data used in this research. In addition, we acknowledge la Région Midi-Pyrénées for financial supports of my PhD and the CNES (Centre National d’Études Spatiales) for financial sources on the TOSCA project.
References

Dufour, G., Eremenko, M., Orphal, J., and Flaud, J.-M.: IASI observations of seasonal and day-to-day variations of tropospheric ozone over three highly populated areas of China: Beijing, Shanghai, and Hong Kong, Atmospheric Chemistry and Physics, 10, 3787–3801, doi:10.5194/acp-10-3787-2010, 2010.

Fowler, D., Amann, M., Anderson, R., Ashmore, M., Cox, P., Depledge, M., Derwent, D., Grennfelt, P., Hewitt, N., Hov, O., Jenkin, M.,
policy implications, October, 2008.

of Aura Microwave Limb Sounder stratospheric ozone measurements, Journal of Geophysical Research: Atmospheres, 113, D15S20,

Fuglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and Mote, P. W.: TROPICAL TROPOPAUSE LAYER, pp. 1–31,

V. H., Rharmili, S., and Segers, A.: The ASSET intercomparison of ozone analyses: Method and first results, Atmospheric Chemistry and
Physics, 6, 5445–5474, doi:10.5194/acp-6-5445-2006, 2006.

Chemistry and Physics, 9, 9433–9447, 2009.

Honoré, C., Rouil, L., Vautard, R., Beekmann, M., Bessagnet, B., Dufour, A., Elichegaray, C., Flaud, J. M., Malherbe, L., Meleux, F., Menut,
L., Martin, D., Peuch, A., Peuch, V. H., and Poisson, N.: Predictability of European air quality: Assessment of 3 years of operational

Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A.: Climate Change 2001:

Josse, B., Simon, P., and Peuch, V. H.: Radon global simulations with the multiscale chemistry and transport model MOCAGE, Tellus, Series

Lee, S., Shelow, D. M., Thompson, a. M., and Miller, S. K.: QBO and ENSO variability in temperature and ozone from SHADOZ,

Liu, D. C. and Nocedal, J.: On the limited memory BFGS method for large scale optimization, Mathematical Programming, 45, 503–528,

annual variability over the southern hemispheric tropospheric ozone maximum, Atmospheric Chemistry and Physics, 17, 3279–3299,

Saunders, R., Matricardi, M., and Brunel, P.: A fast radiative transfer model for assimilation of satellite radiance observations - RTTOV-5, ECMWF - Technicial Memorandum, 1999b.

Figure 6. Schematic of the Walker Circulation over the Pacific ocean. a) During normal conditions: trade winds induce subsidence along South America with intrusion of O$_3$ rich air. TCO is elevated. In addition, along Indonesia, warmer waters generate convergence that results in low O$_3$ concentrations. TCO is weakened. b) During El Niño event: easterly trade winds are weakened. Therefore, convergence areas are located near the coast of South America while subsidence zones are located in the Indonesia. Low TCO is located over the Pacific ocean while high TCO is located over Indonesia, and c) During La Niña event: during exceptionally strong trade winds the convergence over the Indonesia is stronger. TCO has the lowest value. Subsidence over South America brings air masses with high O$_3$ concentration resulting in higher TCO than average values.
Figure 7. Map of WOUDC ozonesondes localization between 15°S and 15°N. The red circles mark ozonesondes stations between 70°E to 110°W. Green squares are ozonesondes stations elsewhere in the tropical band used hereafter. The two blue squares define the IIO region (15°S-15°N and 70°E-140°E) and the POC region (15°S-15°N and 180°W-110°W) referred in this study.
Figure 8. Time series of partial ozone columns (left panels, in DU) from the IASI-a (red curves), the MLS-a (blue curve), and the DM (green curve) plotted versus several stations measurements from WOUDC (black curves). Data are two-month averages over the area 15°S-15°N and 180°W-180°E for: a,b) the ozone column between 1015 hPa to 100 hPa, c,d) the boundary layer (1015 hPa-750 hPa) and e,f) the free troposphere (750 hPa-100 hPa). Biases in percentages are shown in right panels. Mean biases, correlation coefficients and standard deviations are also given (between brackets in the right panels).
Figure 9. Comparisons between IASI-a (in red) and ozonesondes (in black). Time series of the TCO (in DU) are plotted on the left and relative differences are on the right for the sites of: a-b) Malaysia, c-d) Indonesia and e-f) Samoa.
Figure 10. a) Time versus longitude Hovmöller diagram of the SST (in degrees Celsius). b) Same diagram from the OMI-MLS data. The data are monthly means from January 2008 to December 2013 and area-averaged between latitudes 15◦S and 15◦N. Also included on the bottom the maps corresponding of the Hovmöller diagram.
Figure 11. Longitude Hovmöller diagrams of TCO anomalies for a) OMI-MLS measurements, b) Direct-Model, c) MLS-a and d) IASI-a between 2008 to 2013. Longitudes are identical to Fig. 10 : between 40°E and 80°W. Anomalies are expressed in percentage.
Figure 12. a) Monthly mean tropospheric Ozone ENSO Index (in DU) derived from the OMI-MLS data (grey line). Also shown is the Niño 3.4 monthly temperature anomaly ENSO index (cyan curve, multiplied by a factor 3, in Kelvin) and the OEI-Z index derived from the OMI-MLS data with a deseasonalization followed by a sliding average of 3 months (orange curve). b) the OMI-MLS data (grey curve) as in the above plot, the MLS-a (in blue curve), the DM in green curve and the IASI-a (in red curve). All ENSO indices extend from January 2008 through December 2013.
Figure 13. Monthly mean time series of ozone vertical profiles (units ppbv) versus pressure for the IIO region (left panels) and the POC region (right panels). The abscissa goes from January 2008 to December 2013. The top panels correspond to the Direct-Model, the middle panels to the MLS-a and the bottom panels to the IASI-a simulations. Pressure scale goes from 1013 hPa to 20 hPa.