Response to Reviewer 1

Comment: I appreciate that the authors have provided additional information on the health impact assessment methods. I continue to believe that these methods are outdated and do not reflect the state of the science in air pollution epidemiology. I do not believe this should hold up publication of the paper since they are being applied in US and Europe, where the changes in air pollution epidemiology have not changed as radically as they have in other parts of the world. I would still like to see additional information given about how different concentration-response factors and shape of the concentration-response curve might influence results and conclusions.

Response: We thank the reviewer for his positive respond to our revised manuscript. We have now added the following part to the new revised manuscript (Lines 353-359): “Many epidemiological studies have analyzed the concentration-response relationship between ambient PM and mortality using various statistical models. In general, the shapes of the estimated curves did not differ significantly from linear. However, some studies showed non-linear relationships, being steeper at lower than at higher concentrations (e.g. Samoli et al., 2005). Therefore, linear relationships may lead to overestimated health impacts over highly polluted areas.”

Response to Reviewer 2

Comment: This paper has undergone much improvement and the authors have carefully addressed most of the comments raised by the reviewers.

Response: We thank the reviewer for his positive respond to our revised manuscript.

Here are a few minor suggestions:

Comment 1) The spatial distributions of model performance are provided in the revised manuscript. However, it focused on the annual mean results for different pollutants. Considering that the daily maximum 8-hour (DM8H) O3 are used in the EVA system, we suggest using DM8H to evaluate the performance of O3 simulations.

Response: We have now plotted the spatial distribution of the DM8H O3 bias over Europe (Fig. 4) and North America (Fig. 5) and updated the captions accordingly.

Comment 2) Fig. 1: I’d suggest changing the unit of population density to “population per km2 “ since the area of grid box has not been specified in the caption.

Response: We have updated the caption accordingly: “Population density (population per 0.25°×0.25° grid box) over a) the United States and b) Europe”
Comment 3) Fig. 6: The caption of Fig. 6 didn’t specify the density of the spatial distribution. Is the number of total premature death calculated over each grid box or other areas?

Response: We have updated the caption accordingly: “Spatial distribution of the number of total premature death (PD: units in number of cases per 0.25°×0.25° grid box) in a) the United States and b) Europe and the relative change (%) in the number of premature death (PD) in response to the GLO scenario in c) the United States and d) Europe in 2010 as calculated by the multi-model mean ensemble.”
Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3.

Ulas Im1,*, Jørgen Brandt1, Camilla Geels1, Kaj Mantzius Hansen1, Jesper Heile Christensen1, Mikael Skou Andersen1, Efisio Solazzo2, Ioannis Koutsisoukis3, Ummugulsum Alyuz4, Alessandra Balzarini5, Rocio Baro6, Roberto Bellasio7, Roberto Bianconi7, Johannes Bieser8, Augustin Colette9, Gabriele Curci10,11, Aidan Farrow12, Johannes Flemming13, Andrea Fraser14, Pedro Jimenez-Guerrero6, Nutthida Kitwiroon15, Ciao-Kai Liang16, Uarporn Nopmongcol17, Guido Pirovano5, Luca Pozzoli4,2, Marje Prank18,19, Rebecca Rose14, Ranjeet Sokhi12, Paolo Tuccella10,11, Alper Unal4, Marta García Vivanco9,20, Jason West16, Greg Yarwood17, Christian Hogrefe21, Stefano Galmarini2

1 Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000, Roskilde, Denmark.
2 European Commission, Joint Research Centre (JRC), Ispra (VA), Italy.
3 University of Patras, Department of Physics, University Campus 26504 Rio, Patras, Greece
4 Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey
5 Ricerca sul Sistema Energetico (RSE SpA), Milan, Italy
6 University of Murcia, Department of Physics, Physics of the Earth, Campus de Espinardo, Ed. CIOyN, 30100 Murcia, Spain
7 Enviroware srl, Concorezzo, MB, Italy
8 Institute of Coastal Research, Chemistry Transport Modelling Group, Helmholtz-Zentrum Geesthacht, Germany
9 INERIS, Institut National de l'Environnement Industriel et des Risques, Parc Alata, 60550 Verneuil-en-Halatte, France
10 Dept. Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy
11 Center of Excellence CETEMPS, University of L’Aquila, L’Aquila, Italy
12 Centre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire, Hatfield, UK
13 European Centre for Medium Range Weather Forecast (ECMWF), Reading, UK
14 Ricardo Energy & Environment, Gemini Building, Fermi Avenue, Harwell, Oxon, OX11 0QR, UK
15 Environmental Research Group, Kings’ College London, London, UK
16 Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
17 Ramboll Environ, 773 San Marin Drive, Suite 2115, Novato, CA 94998, USA
18 Finnish Meteorological Institute, Atmospheric Composition Research Unit, Helsinki, Finland
19 Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, USA
20 CIEMAT. Avda. Complutense 40., 28040 Madrid, Spain
21 Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA.

Correspondence to: Ulas Im (ulas@envs.au.dk)

Abstract

The impact of air pollution on human health and the associated external costs in Europe and the United States (U.S.) for the year 2010 is modelled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modelled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the
resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20% anthropogenic emission reductions both globally and regionally in Europe, North America and East Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2).

Health impacts estimated by using concentration inputs from different chemistry and transport models (CTMs) to the EVA system can vary up to a factor of three in Europe (twelve models) and the United States (three models). In Europe, the multi-model mean total number of premature deaths (acute + chronic) is calculated to be 414,000 while in the U.S., it is estimated to be 160,000, in agreement with previous global and regional studies. The economic valuation of these health impacts are calculated to be 300 and 145 billion Euros in Europe and the U.S., respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-models mean ensemble results in increase of health impacts by up to 30% in Europe, while in the U.S., the optimal ensemble mean led to a decrease in the calculated health impacts by ~11%.

A total of 54,000 and 27,500 premature deaths can be avoided by a 20% reduction of global anthropogenic emissions in Europe and the U.S., respectively. A 20% reduction of North American anthropogenic emissions avoids a total premature death of ~1,000 in Europe and 25,000 total premature deaths in the U.S. A 20% decrease of anthropogenic emissions within the European source region avoids a total premature death of 47,000 in Europe. Reducing the East Asian anthropogenic emissions by 20% avoids ~2,000 total premature deaths in the U.S. These results show that the domestic anthropogenic emissions make the largest impacts on premature death on a continental scale, while foreign sources make a minor contributing to adverse impacts of air pollution.

1. Introduction

According to the World Health Organization (WHO), air pollution is now the world’s largest single environmental health risk (WHO, 2014). Around 7 million people died prematurely in 2012 as a result of air pollution exposure from both outdoor and indoor emission sources (WHO, 2014). WHO estimates 3.7 million premature deaths in 2012 from exposure to outdoor air pollution from urban and rural sources worldwide. According to the Global Burden of Disease (GBD) study, exposure to ambient particulate matter pollution remains among the ten leading risk factors. Air pollution is a transboundary phenomenon with global, regional, national and local sources, leading to large differences in the geographical distribution of human exposure. Short-term exposure to ozone (O_3) is associated with respiratory morbidity and mortality (e.g. Bell et al., 2004), while long-term exposure to O_3 has been associated with premature respiratory mortality (Jerrett et al., 2009). Short-term exposure to particulate matter (PM$_{2.5}$) has been associated with increases in daily mortality rates from respiratory and cardiovascular causes (e.g. Pope and Dockery, 2006), while long-term exposure to PM$_{2.5}$ can have detrimental chronic health effects, including premature mortality due to cardiopulmonary diseases and lung cancer (Burnett et al., 2014). The Global
Burden of Disease Study 2015 estimated 254,000 O₃-related and 4.2 million anthropogenic PM₂.₅-related premature deaths per year (Cohen et al., 2017).

Changes in emissions from one region can impact air quality over others, affecting also air pollution-related health impacts due to intercontinental transport (Anenberg et al., 2014; Zhang et al., 2017). In the framework of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP), Anenberg et al. (2009) found that reduction of foreign ozone precursor emissions can contribute to more than 50% of the deaths avoided by simultaneously reducing both domestic and foreign precursor emissions. Similarly, they found that reducing emissions in North America (NA) and Europe (EU) has largest impacts on ozone-related premature deaths in downwind regions than within (Anenberg et al., 2009). This result agrees with Duncan et al. (2008), which showed for the first time that emission reductions in NA and EU have greater impacts on ozone mortality outside the source region than within. Anenberg et al. (2014) estimates that 93–97% of PM₂.₅-related avoided deaths from reducing emissions occurs within the source region while 3–7% occur outside the source region from concentrations transported between continents. In spite of the shorter lifetime of PM₂.₅ compared to O₃, it was found to cause more deaths from intercontinental transport (Anenberg et al., 2009; 2014). In the frame of the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2; Galmarini et al., 2017), an ensemble of global chemical transport model simulations calculated that 20% emission reductions from one region generally lead to more avoided deaths within the source region than outside (Liang et al., 2017).

Recently, Lelieveld et al. (2015) used a global chemistry model and calculated that outdoor air pollution led to 3.3 million premature deaths globally in 2010. They calculated that in Europe and North America, 381,000 and 68,000 premature deaths occurred, respectively. They have also calculated that these numbers are likely to roughly double in the year 2050 assuming a business-as-usual scenario. Silva et al. (2016), using the ACCMIP model ensemble, calculated that the global mortality burden of ozone is estimated to markedly increase from 382,000 deaths in 2000 to between 1.09 and 2.36 million in 2100. They also calculated that the global mortality burden of PM₂.₅ is estimated to decrease from 1.70 million deaths in 2000 to between 0.95 and 1.55 million deaths in 2100. Silva et al. (2013) estimated that in 2000, 470,000 premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 million deaths with anthropogenic PM₂.₅-related cardiopulmonary diseases (93%) and lung cancer (7%). These studies employed global chemistry and transport models with coarse spatial resolution (≥ 0.5° × 0.5°), therefore health benefits from reducing local emissions were not able to be adequately captured. Higher resolutions are necessary to calculate more robust estimates of health benefits from local vs. non-local sources (Fenech et al., 2017). In addition, these studies calculated number of premature deaths due to air pollution, however none of them addresses morbidity such as number of lung cancer or asthma cases, or restricted activity days. Finally, these studies did not include economic costs either. On the other hand, there are a number of regional studies that calculate health impacts on finer spatial resolutions, and address morbidity. However, they are mostly based on single air pollution models or do not evaluate the health benefits
from local vs. non-local emissions. Therefore, a comprehensive study employing multi model ensemble of high spatial resolution and focusing on both mortality and morbidity from local vs. non-local sources lacks in the literature.

In Europe, recent results show that outdoor air pollution due to O₃, CO, SO₂ and PM₂.₅ causes a total number of 570 000 premature deaths in the year 2011 (Brandt et al., 2013a; 2013b). The external (or indirect) costs to society related to health impacts from air pollution are tremendous. OECD (2014) estimates that outdoor air pollution is costing its member countries USD 1.57 trillion in 2010. Among the OECD member countries, the economic valuation of air pollution in the U.S. was calculated to be ~500 billion USD and ~660 USD in Europe. In the whole of Europe, the total external costs have been estimated to approx. 800 billion Euros in year 2011 (Brandt et al., 2013a). These societal costs have great influence on the general level of welfare and especially on the distribution of welfare both within the countries as air pollution levels are vastly heterogeneous both at regional and local scales and between the countries as air pollution and the related health impacts are subject to long-range transport. Geels et al. (2015), using two regional chemistry and transport models, estimated a premature mortality of 455 000 and 320 000 in Europe (EU28 countries) for the year 2000, respectively, due to O₃, CO, SO₂ and PM₂.₅. They also estimated that climate change alone leads to a small increase (15%) in the total number of O₃-related acute premature deaths in Europe towards the 2080s and relatively small changes (<5%) for PM₂.₅-related mortality. They found that the combined effect of climate change and emission reductions will reduce the premature mortality due to air pollution, in agreement with the results from Schucht et al. (2015).

The U.S. Environmental Protection Agency estimated that in 2010 there were ~160 000 premature deaths in the U.S. due to air pollution (U.S. EPA, 2011). Fann et al. (2012) calculated 130,000 - 350,000 premature deaths associated with O₃ and PM₂.₅ from anthropogenic sources in the U.S. for the year 2005. Caizzo et al. (2013) estimated 200 000 cases of premature death in the U.S. due to air pollution from combustion sources for the year 2005.

The health impacts of air pollution and their economic valuation are estimated based on observed and/or modelled air pollutant concentrations. Observations have spatial limitations particularly when assessments are needed for large regions. The impacts of air pollution on health can be estimated using models, where the level of complexity can vary depending on the geographical scale (global, continental, country or city), concentration input (observations, model calculations, emissions) and the pollutants of interest that can vary from only few (PM₂.₅ or O₃) to a whole set of all regulated pollutants. The health impact models normally used may differ in the geographical coverage, spatial resolutions of the air pollution model applied, complexity of described processes, the exposure-response functions (ERFs), population distributions and the baseline indices (see Anenberg et al., 2015 for a review).

Air pollution related health impacts and associated costs can be calculated using Chemical Transport Model (CTM) or with standardized source-receptor relationships characterizing the dependence of ambient concentrations on emissions. (e.g. EcoSense model: ExternE, 2005,
TM5-FASST: Van Dingenen et al., 2014). Source-receptor relationships have the advantage of reducing the computing time significantly and have therefore been extensively used in systems like GAINS (Amann et al., 2011). On the other hand, full CTM simulations have the advantage of better accounting for non-linear chemistry-transport processes in the atmosphere.

CTMs are useful tools to calculate the concentrations of health-related pollutants taking into account non-linearities in the chemistry and the complex interactions between meteorology and chemistry. However, the CTMs include different chemical and aerosol schemes that introduce differences in the representation of the atmosphere as well as differences in the emissions and boundary conditions they use (Im et al., 2015a,b). These different approaches are present also in the health impact estimates that use CTM results as basis for their calculations. Multi-model (MM) ensembles can be useful to the extent that allow us to take into consideration several model results at the same time, define the relative weight of the various members in determining the mean behavior, and produce also an uncertainty estimated based on the diversity of the results (Potempski and Galmarini, 2010; Riccio et al., 2013; Solazzo et al., 2013).

The third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3) project brought together fourteen European and North American modelling groups to simulate the air pollution levels over the two continental areas for the year 2010 (Galmarini et al., 2017). Within AQMEII3, the simulated surface concentrations of health related air pollutants from each modelling group serves as input to the Economic Valuation of Air Pollution (EVA) model (Brandt et al., 2013a; 2013b). This is the first study in our knowledge that uses a common approach across the two continents regarding the economic valuation of health impacts of air pollution, as also pointed in Andersen (2017). The EVA model is used to calculate the impacts of health-related pollutants on human health over the two continents as well as the associated external costs. EVA model has also been tested and validated for the first time outside Europe. We adopt a multi-model ensemble (MM) approach, in which the outputs of the modelling systems are statistically combined assuming equal contribution from each model and used as input for the EVA model. In addition, the human health impacts (and the associated costs) of reducing anthropogenic emissions, globally and regionally have been calculated, allowing to quantify the trans-boundary benefits of emission reduction strategies. Finally, following the conclusions of Solazzo and Galmarini (2015), the health impacts have been calculated using an optimal ensemble of models, determined by error minimization. This approach can assess the health impacts with reduced model bias, which we can then compare with the classically derived estimates based on model averaging.

2. Material and Methods

2.1. AQMEII

2.1.1. Participating Models

In the framework of the AQMEII3 project, fourteen groups participated to simulate the air pollution levels in Europe and North America for the year 2010. In the present study, we use
results from the thirteen groups that provided all health-related species (Table 1). As seen in Table 1, six groups have operated the CMAQ model. The main differences among the CMAQ runs reside in the number of vertical levels and horizontal spacing (Table 1) and in the estimation of biogenic emissions. UK1, DE1, and US3 calculated biogenic emissions using the BEIS (Biogenic Emission Inventory System version 3) model, while TR1, UK1, and UK2 calculated biogenic emissions through the MEGAN model (Guenther et al., 2012). Moreover, DE1 does not include the dust module, while the other CMAQ instances use the inline calculation (Appel et al., 2013) and TR1 uses the dust calculation previously calculated for AQMEII Phase 2. Finally, all runs were carried out using CMAQ version 5.0.2 except for TR1, which is based on the 4.7.1 version. The gas-phase mechanisms and the aerosol models are used by each group is also presented in Table 1. More details of the model system are provided in the supplementary material. The differences in the meteorological drivers and aerosol modules can lead to substantial differences in modelled concentrations (Im et al., 2015b).

2.1.2. Emission and Boundary Conditions

The base-case emission inventories that are used in AQMEII for Europe and North America are extensively described in Pouliot et al. (2015). For Europe, the 2009 inventory of TNO-MACC anthropogenic emissions was used. In regions not covered by the emission inventory, such as North Africa, five modelling systems have complemented the standard inventory with the HTAPv2.2 datasets (Janssens-Maenhout et al., 2015). For the North American domain, the 2008 National Emission Inventory was used as the basis for the 2010 emissions, providing the inputs and datasets for processing with the SMOKE emissions processing system (Mason et al., 2012). For both continents the regional scale emission inventories were embedded in the global scale inventory (Janssens-Maenhout et al., 2015) used by the global-scale HTAP2 modelling community so that to guarantee coherence and harmonization of the information used by the regional scale modelling community. The annual totals for European and North American emissions in the HTAP inventory are the same as the MACC and SMOKE emissions. However, there are differences in the temporal distribution, chemical speciation and the vertical distribution used in the models. The C-IFS model (Flemming et al., 2015 and 2017) provided chemical boundary conditions. The C-IFS model has been extensively evaluated in Flemming et al. (2015 and 2017), and in particular for North America (Hogrefe et al., 2017; Huang et al., 2017). Galmarini et al. (2017) provides more details on the setup of the AQMEII3 and HTAP2 projects.

2.1.3. Model Evaluation

The models’ performance on simulating the surface concentrations of the health-related pollutants were evaluated using Pearson’s Correlation (r), normalized mean bias (NMB), normalized mean gross error (NMGE) and root mean square error (RMSE) to compare the modelled and observed hourly pollutant concentrations over surface measurement stations in the simulation domains. The hourly modelled vs. observed pairs are averaged and compared on a monthly basis. The modelled hourly concentrations were first filtered based on observation availability before the averaging has been performed. The observational data used in this study are the same as the dataset used in second phase of AQMEII (Im et al.,
2015a, b). Surface observations are provided in the Ensmeble system (http://ensemble2.jrc.ec.europa.eu/public/) that is hosted at the Joint Research Centre (JRC). Observational data were originally derived from the surface air quality monitoring networks operating in EU and NA. In EU, surface data were provided by the European Monitoring and Evaluation Programme (EMEP, 2003; http://www.emep.int/) and the European Air Quality Database (AirBase; http://acm.eionet.europa.eu/databases/airbase/). In NA observational data were obtained from the NAtChem (Canadian National Atmospheric Chemistry) database and from the Analysis Facility operated by Environment Canada (http://www.ec.gc.ca/natchem/).

The model evaluation has been conducted for 491 European and 626 North American stations for O3, 541 European stations and 37 North American stations for CO, 500 European station and 277 North American stations for SO2, and 568 European stations and 156 North American stations for PM2.5.

2.1.4. Emissions Perturbations

In addition to the base case simulations in AQMEII3, a number of emission perturbation scenarios have been simulated (Table 1). The perturbation scenarios feature a reduction of 20% in the global anthropogenic emissions (GLO) as well as the HTAP2-defined regions of Europe (EUR), North America (NAM) and East Asia (EAS), as explained in detail in Galmarini et al. (2017) and Im et al. (2017). To prepare these scenarios, both the regional models and the global C-IFS model that provides the boundary conditions to the participating regional models have been operated with the reduced emissions. The global perturbation scenario (GLO) reduces the global anthropogenic emissions by 20%, introducing a change in the boundary conditions as well as a 20% decrease in the anthropogenic emissions used by the regional models. The North American perturbation scenario (NAM) reduces the anthropogenic emissions in North America by 20%, introducing a change in the boundary conditions while anthropogenic emissions remain unchanged for Europe, showing the impact of long-range transport while for North America, while the scenarios introduces a 20% reduction of anthropogenic emissions in the HTAP-defined North American region. The European perturbation scenario (EUR) reduces the anthropogenic emissions in the HTAP-defined Europe domain by 20%, introducing a change in the anthropogenic emissions while boundary conditions remain unchanged in the regional models, showing the contribution from the domestic anthropogenic emissions only. Finally, the East Asian perturbation scenario (EAS) reduces the anthropogenic emissions in East Asia by 20%, introducing a change in the boundary conditions while anthropogenic emissions remain unchanged in the regional models, showing the impact of long-range transport from East Asia on the NA concentrations.

2.2. Health Impact Assessment

All modeling groups interpolate their model outputs on a common 0.25°×0.25° resolution AQMEII grid predefined for Europe (30°W - 60°E, 25°N - 70°N) and North America (130°W - 59.5°W, 23.5°N - 58.5°N). All the analyses performed in the present study use the pollutant concentrations on these final grids. Health impacts are first calculated for each
individual model and then the ensemble mean, median and standard deviation are calculated for each health impact. In order to be able to estimate an uncertainty in the health impacts calculations, none of the models were removed from the ensemble.

Along with the individual health impact estimates from each model, a multi-model mean dataset (MM_m, in which all the modelling systems are averaged assuming equally weighted contributions) has been created for each grid cell and time step, hence creating a new model set of results that have the same spatial and temporal resolution of the ensemble-contributing members. In addition to this simple MM_m, an optimal MM ensemble (MM_{opt}) has been generated. MM_{opt} is created following the criteria extensively discussed and tested in the previous phases of the AQMEII activity (Riccio et al., 2012; Kioutsioukis et al., 2016; Solazzo and Galmarini, 2016), where it was shown that there are several ways to combine the ensemble members to obtain a superior model, mostly depending on the feature we wish to promote (or penalize). For instance, generating an optimal ensemble that maximizes the accuracy would require a minimization of the mean error or of the bias, while maximizing the associativity (variability) would require maximize the correlation coefficient (standard deviation). In this study, the sub-set of models whose mean minimize the mean squared error (MSE) is selected as optimal (MM_{opt}). MM_m and MM_{opt} have therefore the same spatial resolution with the individual models. The MSE is chosen for continuity with previous AQMEII-related works. The MSE is chosen in the light of its property of being composed by bias, variance and covariance types of error, thus lumping together measures of accuracy (bias), variability (variance) and associativity (covariance) (Solazzo and Galmarini, 2016). The minimum MSE has been calculated at the monitoring stations, where observational data are available and then extended to the entire continental areas. This approximation might affect remote regions away from the measurements. However, considering that for the main pollutants (O₃ and PM₂.₅) the network of measurements is quite dense around densely populated areas (where the inputs of the MM ensemble are used for assessing the impact of air pollutants on the health of the population), errors due to inaccurate model selection in remote regions might be regarded as negligible (Solazzo and Galmarini, 2015). It should be noted that the selection of the optimal combinations of models is affected by the model's bias that might stem from processes that are common to all members of the ensemble (e.g. emissions). Therefore, such a common bias does not cancel out when combining the models, possibly creating a biased ensemble. Current work is being devoted to identify the optimal combinations of models from which the offsetting bias is removed (Solazzo et al., 2017b).

2.2.1. EVA System

The EVA system (Brandt et al., 2013a, b) is based on the impact-pathway chain (e.g. Friedrich and Bickel, 2001), consisting of the emissions, transport and chemical transformation of air pollutants, population exposure, health impacts and the associated external costs. The EVA system requires hourly gridded concentration input from a regional-scale CTM as well as gridded population data, exposure-response functions (ERFs) for health impacts, and economic valuations of the impacts from air pollution. A detailed description of the integrated EVA model system along with the ERFs and the economic valuations used are given in Brandt et al. (2013a).
The gridded population density data over Europe and the U.S. used in this study are presented in Fig. 1. The population data over Europe are provided on a 1km spatial resolution from Eurostat for the year 2011 (http://www.efgs.info). The U.S. population data has been provided from the U.S. Census Bureau for the year 2010. The total populations used in this study are roughly 532 and 307 million in Europe and the U.S., respectively. As the health outcomes are age-dependent, the total population data has been broken down to a set of age intervals being babies (under 9 months), children (under 15), adult (above 15), above 30, and above 65. The fractions of population in these intervals for Europe is derived from the EUROSTAT 2000 database, while for the U.S. they are derived from the U.S. Census Bureau for the year 2010 at 5-year intervals.

The EVA system can be used to assess the number of various health outcomes including different morbidity outcomes as well as short-term (acute) and long-term (chronic) mortality, related to exposure of O3, CO and SO2 (short-term) and PM2.5 (long-term). Furthermore, impact on infant mortality in response to exposure of PM2.5 is calculated. The health impacts are calculated using an ERF of the following form:

\[
R = \alpha \times \delta_c \times P
\]

where \(R \) is the response (in cases, days, or episodes), \(c \) denotes the pollutant concentration, \(P \) denotes the affected share of the population, and \(\alpha \) an empirically determined constant for the particular health outcome. EVA uses ERFs that are modelled as a linear function, which is a reasonable approximation as showed in several studies (e.g. Pope et al., 2000; the joint World Health Organization/UNECE Task Force on Health (EU, 2004; Watkiss et al., 2005)). Many epidemiological studies have analyzed the concentration-response relationship between ambient PM and mortality using various statistical models. In general, the shapes of the estimated curves did not differ significantly from linear. However, some studies showed non-linear relationships, being steeper at lower than at higher concentrations (e.g. Samoli et al., 2005). Therefore, linear relationships may lead to overestimated health impacts over highly polluted areas. The concentration metrics used in each ERF is shown in Table 2. The sensitivity of EVA to the different pollutant concentrations are further evaluated in the supplementary material and depicted in Fig. S1. EVA calculates and uses the annual mean concentrations of CO, SO2 and PM2.5, while for O3, it uses the SOMO35 metric that is defined as the yearly sum of the daily maximum of 8-hour running average over 35 ppb, following WHO (2013) and EEA (2017).

The morbidity outcomes include chronic bronchitis, restricted activity days, congestive heart failure, lung cancer, respiratory and cerebrovascular hospital admissions, asthmatic children (<15 years) and adults (>15 years), which includes bronchodilator use, cough, and lower respiratory symptoms. The exposure-response functions are broadly in line with estimates derived with detailed analysis in EU funded research (Rabl, Spadaro and Holland, 2014; EEA, 2013) To figure out the total number of premature deaths from the years of life lost due to PM2.5, they have been converted into lost lives according to a lifetable method (explained in detail in Andersen, 2017) but using the factor of 10.6, as reported by (Watkiss et al., 2005).
To these deaths are added the acute deaths due to O₃ and SO₂. The ERFs used, along with their references, in both continents as well as the economic valuations for each health outcome in Europe and the U.S., respectively, are presented in Table 2. Baseline incidence rates are not assumed to be dissimilar, which is a coarse approach for morbidity. The baseline rates are from Statistics Denmark (http://www.statistikbanken.dk/statbank5a/default.asp?w=1280) and lifetables are based on Denmark, which is close to the US and Eurozone average (Andersen, 2017). For a description of the morbidity ERFs, see Andersen et al. (2004 and 2008). The economic valuations are provided by Brandt et al. (2013a); see also EEA (2013).

ERF for all-cause chronic mortality due to PM₂.⁵ were based on the findings of Pope et al. (2002), which is the most extensive study available, following conclusions from the scientific review of the Clean Air For Europe (CAFÉ) programme (Hurley et al., 2005; Krupnick et al., 2005). The results from Pope et al. (2002) are further supported by Krewski et al. (2009), and more recently by the latest HRAPIE project report (WHO, 2013a). Therefore, as recommended by WHO (2013a), EVA uses the ERFs based on the meta-analysis of 13 cohort studies as described in Hoek et al. (2013). In EVA, the number of lost life years for a Danish population cohort with normal age distribution, when applying the ERF of Pope et al. (2002) for all-cause mortality (relative risk, RR = 1.062 (1.040-1.083) on 95% confidence interval), and the latency period indicated, sums to 1138 yr of life lost (YOLL) per 100 000 individuals for an annual PM₂.⁵ increase of 10 μg m⁻³ (Andersen, 2008). EVA uses a counterfactual PM₂.⁵ concentration of 0 μgm⁻³ following the EEA methodology, meaning that the impacts have been estimated for the full range of modelled concentrations from 0 μgm⁻³ upwards. Applying a low counterfactual concentration can underestimate health impacts at low concentrations if the relationship is linear or close to linear (Anenberg et al., 2016). However, it is important to note that uncertainty in the health impact results may increase at low concentrations due to sparse epidemiological data. Assuming linearity at very low concentrations may distort the true health impacts of air pollution in relatively clean atmospheres (Anenberg et al., 2016).

It has been shown that O₃ concentrations above the level of 35 ppb involve an acute mortality increase, presumably for weaker and elderly individuals. EVA applies the ERFs selected in CAFE for post-natal death (age group 1–12 months) and acute death related to O₃ (Hurley et al., 2005). WHO (2013a) also recommends the use of the daily maximum of 8-hour mean O₃ concentrations for the calculation of the acute mortality due to O₃. There are also studies showing that SO₂ is associated with acute mortality, and EVA adopts the ERF identified in the APHENA study – Air Pollution and Health: A European Approach (Katsouyanni et al., 1997).

Chronic exposure to PM₂.⁵ is also associated with morbidity, such as lung cancer. EVA employs the specific ERF (RR = 1.08 per 10 μg m⁻³ PM₂.⁵ increase) for lung cancer indicated in Pope et al. (2002). Bronchitis has been shown to increase with chronic exposure to PM₂.⁵ and we apply an ERF (RR = 1.007) for new cases of bronchitis based on the AHSMOG study (involving non-smoking Seventh-Day Adventists; Abbey et al., 1999), which is the same epidemiological study as in CAFE (Abbey, 1995; Hurley et al., 2005). The ExternE crude
incidence rate was chosen as a background rate (ExternE, 1999), which is in agreement with a Norwegian study, rather than the pan-European estimates used in CAFE (Eagan et al., 2002). Restricted activity days (RADs) comprise two types of responses to exposure: so-called minor restricted activity days as well as work-loss days (Ostro, 1987). This distinction enables accounting for the different costs associated with days of reduced well-being and actual sick days. It is assumed that 40% of RADs are work-loss days based on Ostro (1987).

The background rate and incidence are derived from ExternE (1999). Hospital admissions are deducted to avoid any double counting. Hospital admissions and health effects for asthmatics (here corresponding to the three responses bronchodilator use, cough and lower respiratory symptoms) are also based on ExternE (1999).

Table 2 lists the specific valuation estimates applied in the modelling of the economic valuation of mortality and morbidity effects. A principal value of EUR 1.5 million was applied for preventing an acute death, following expert panel advice (EC 2001). For the valuation of a life year, the results from a survey relating specifically to air pollution risk reductions were applied (Alberini et al., 2006), implying a value of EUR 57,500 per year of life lost (YOLL). With the more conservative metric of estimating lost life years, rather than 'full' statistical lives, there is no adjustment for age. This is due to the fact that government agencies in Europe, including the European Commission, apply a methodology for costing of air pollution that is based on accounting for lost life years, rather than for entire statistical lives as is customary in USA. While the average traffic victim, for instance, is mid-aged and likely to lose about 35-40 years of life expectancy, pollution victims are believed to suffer significantly smaller losses of years (EAHEAP, 1999:64; Friedrich and Bickel, 2001). To avoid overstating the benefits of air pollution control, these are treated as proportional to the number of life years lost. Most of the excess mortality is due to chronic exposure to air pollution over many years and the life year metric is based on the number of lost life years in a statistical cohort. Following the guidelines of the Organisation for Economic Co-operation and Development (OECD, 2006), the predicted acute deaths, mainly from O₃, are valued here with the adjusted value for preventing a fatality (VSL, Value of a Statistical Life). The life tables are obtained from European data and are applied to the U.S. as the average life expectancy in the U.S. is similar to that in Europe, and close to the OECD average (OECD, 2016). The willingness to pay for reductions in risk obviously differs across income levels. However, in the case of air pollution costs, adjustment according to per capita income differences among different states is not regarded as appropriate, because long-range transport implies that emissions from one state will affect numerous other states and their citizens. The valuations are thus adjusted with regional purchasing power parities (PPP) of EU27 and USA.

Cost-benefit analysis in the U.S. related to air pollution proceeds from a standard approach, where abatement measures preventing premature mortality are considered according to the number of statistical fatalities avoided, which are appreciated according to the value of VSL (presently USD 7.4 million). In contrast, and following recommendations from the UK working group on Economic Appraisal of the Health Effects of Air Pollution (EAHEAP, 1999), focus in EU has been on the possible changes in average life expectancy resulting
from air pollution. In EU, the specific number of life years lost as a result of changes in air pollution exposures are estimated based on lifetable methodology, and monetized with Value-Of-Life-Year (VOLY) unit estimates (Holland et al. 1999; Leksell and Rabl 2001). The theoretical basis is a life-time consumption model according to which the preferences for risk reduction will reflect expected utility of consumption for remaining life years (Hammitt 2007; OECD 2006:204). The much lower VSL values customary in Europe (presently €2.2 million) add decisively to the differences, as VOLY is deducted from this value. By using a common valuation framework according the EU approach we allow for direct comparisons of the monetary results. It follows from OECD recommendations (2012) to correct with PPP when doing such benefit transfer. The unit values have been indexed to 2013 prices as indicated in Table 2.

3. Results

3.1. Model Evaluation

Observed and simulated hourly surface O₃, CO, SO₂ and daily PM₂.₅, which are species used in the EVA model to calculate the health impacts, over Europe and North America for the entire 2010 were compared in order to evaluate each model’s performance. The statistical parameters to evaluate the models and their equations are provided in the supplementary material. For a more thorough evaluation of models and species, see Solazzo et al. (2017a). The results of this comparison are presented in Table S1 for EU and NA, along with the multi-model mean and median values. The monthly time series plots of observed and simulated health-related pollutants are also presented in Figs. 2 and 3. The monthly means are calculated using the hourly pairs of observed and modelled concentrations at each station. The results show that over Europe, the temporal variability of all gaseous pollutants is well captured by all models with correlation coefficients (r) higher than 0.70 in general. The normalized mean biases (NMB) in simulated O₃ levels are generally below 10% with few exceptions up to ~35%. CO levels are underestimated by up to 45%, while the majority of the models underestimated SO₂ levels by up to 68%, while some models overestimated SO₂ by up to 49%. PM₂.₅ levels are underestimated by 19% to 63%. Over Europe, the median of the ensemble performs better than the mean in terms of model bias (NMB) for O₃ (by 52%), while for CO, SO₂ and PM₂.₅, the mean performs slightly better than the median (Table S1).

We have further evaluated the models’ performance on simulating the annual mean pollutant levels over individual measurements stations and plotted the geographical distribution of the bias. Fig. 4 presents the multi model mean geographical distribution of bias from daily max 8-hour (DM8H) average O₃, CO, SO₂ and PM₂.₅ over Europe, while Fig. S2-S5 show annual mean bias for O₃, CO, SO₂ and PM₂.₅ for each model, respectively. DM8H O₃ levels over Europe are generally underestimated by up to 50 µgm⁻³, with few overestimations up to 50 µgm⁻³ over southern Europe (Fig. 4a) Fig. 4 presents the multi model mean geographical distribution of bias over Europe, while Fig. S2-S5 for O₃, CO, SO₂ and PM₂.₅ respectively. O₃ levels over central to western Europe are overestimated by up to −10 µgm⁻³, while over
eastern Europe, O₃ levels are underestimated by up to ~10 μgm⁻³ (Fig. 4a). Over southern Europe, overestimations are larger (10-20 μgm⁻³). The geographical pattern is similar among the models with slight differences (± 10 μgm⁻³) in the bias (Fig. S2). CO levels are underestimated over all stations by up to 600 μgm⁻³ except for few stations where CO levels are overestimated by up to 100 μgm⁻³ (Fig. 4b). All models underestimated CO levels over the majority of the stations (Fig. S3). SO₂ levels are slightly overestimated over central and southern Europe (Fig. 4c). There are also underestimation over few stations with no specific geographical pattern. Similar to CO, all models underestimated SO₂ levels over the majority of the stations (Fig. S4). Finally, PM₂.₅ levels are underestimated by up to 10 μgm⁻³ over most of Europe (Fig. 4d), with larger underestimations over the eastern Europe up to 30 μgm⁻³.

Over North America, the hourly O₃ variation is well captured by all models (Table S1), with DK1 having slightly lower r coefficient compared to the other models and largest NMB (Fig. 5a). The hourly variation of CO and SO₂ levels are simulated with relatively lower r values (Figs. 3b, c), with SO₂ levels having the highest underestimations. The PM₂.₅ levels are underestimated by ~15% except for the DE1 model, having a large underestimation of 63% (Table S1). As DE1 and US3 use the same SMOKE emissions and CTM, the large difference in PM₂.₅ concentrations can be partly due to the differences in horizontal and vertical resolutions in the model setups, as can also be seen in the differences in the CO concentrations. There are also differences in the aerosol modules and components that each model simulates. For example, DE1 uses an older version of the secondary organic aerosol (SOA) module, producing ~3 μgm⁻³ less SOA, which can explain ~20% of the bias over North America. Over the North American domain, the median outscores the mean for O₃ (by 35%), CO (by 52%) and PM₂.₅ (by 29%) while for SO₂, the median produces 26% higher NMB compared to the mean. DK1 model simulates a much higher bias for O₃ and SO₂ compared to other models in the North American domain, while DE1 has the largest bias for CO and PM₂.₅.

DM8H O₃ levels are generally underestimated by the MM mean over the U.S. by up to 20 ppb, while over the eastern and central U.S. there are also overestimations by up to 10 ppb (Fig. 5a). O₃ levels are generally overestimated by the MM mean over the eastern U.S. by up to 15 ppb, while over the western U.S. there are also overestimations by up to 10 ppb (Fig. 5a). As seen in Fig. S6, all three models have very similar performance over the U.S., with DK1 simulating a slightly lower underestimation and a higher overestimation compared to DE1 and US3. DE1 and DK1 have very similar spatial pattern in terms of CO bias, in particular over the eastern coast of the U.S. (Fig. S7). CO levels are underestimated by ~100 ppb over majority of the stations, especially over the eastern U.S., while there are much larger underestimation over the western U.S. by up to 1000 ppb (Fig. 5b). SO₂ levels are underestimated by up to 5 ppb over the majority of the stations in the U.S., with few overestimations of up to 5 ppb (Fig. 5c). DE1 and DK1 have very similar spatial distribution of bias, while US3 has slightly more overestimations (Fig. S8) Finally, PM2.₅ levels are underestimated over majority of the stations by up to 6 μgm⁻³, with few overestimations by 2-4 μgm⁻³ (Fig. 5d). DE1 has the largest underestimations compared to DK1 and US3 (Fig. S9).
Table S1 shows that the ensemble median performs slightly better than the ensemble mean for all pollutants over both continents regarding the bias and error, while the difference on r is rather small. Over the European stations, the median has improved results over the mean by up to 14% for r and up to 9% for the RMSE. The improvements in r over the U.S. are much smaller compared to Europe (up to ~4%), while the RMSE is improved by up to 27%, except for SO$_2$ where the median has 14% higher RMSE than the mean.

3.2. Health outcomes and their economic valuation in Europe

The different health outcomes calculated by each model in Europe as well as their multi model mean and median are presented in Table S2. Table 3 presents the mean of the individual model estimates as MM_{mi}. Standard deviations calculated from the individual model estimates are presented along with the MM_{mi} in the text. The health impact estimates vary significantly between different models. The different estimates obtained are found to vary up to a factor of three. Among the different health outcomes, the individual models simulated the number of congestive heart failure (CHF) cases to be between 19 000 to 41 000 (mean of all individual models, MM_{mi}, 31 000 ± 6 500). The number of lung cancer cases due to air pollution are calculated to be between 30 000 to 78 000 (mean of all individual models, MM_{mi}, 55 000 ± 14 000). Finally, the total (acute + chronic) number of premature death due to air pollution is calculated to be 230 000 to 570 000 (mean of all individual models, MM_{mi}, 414 000 ± 100 000). The health impacts calculated as the median of individual models differ slightly (~±1%) from those calculated as the mean of individual models (Table S2) due to the slight differences in the model bias (NMB) and error ($NMGE$ and $RMSE$) between the mean and the median performance statistics of the models.

In addition to averaging the health estimates from individual models (MM_{mi}), we have also produced a multi-model mean concentration data (MM_{m}) by taking the average of concentrations of each species calculated by all models at each grid cell and hour, and fed it to the EVA model. We have calculated the number of premature death cases in Europe as 410 000 (Table 3) using MM_{m}. Difference between the health impacts calculated using MM_{m} data from the mean of all individual model (MM_{mi}) estimates is smaller than 1%. The number of premature death cases in Europe as calculated as the average of all models in the multi model ensemble, MM_{mi}, due to exposure to O$_3$ is 12 000 ± 6 500, while the cases due to exposure to PM$_{2.5}$ is calculated to be 390 000 ± 100 000 [180 000 – 550 000]. The O$_3$-related mortality well agrees with Liang et al. (2017) that used the multi-model mean of the HTAP2 global model ensemble, which calculated an O$_3$-realted mortality of 12 800 [600 - 28 100]. The multi-model mean (MM_{mi}) PM$_{2.5}$-related mortality in the present study is much higher than that from the HTAP2 study (195 500 [4 400 – 454 800]). The results also agree with the most recent EEA findings (EEA, 2015), which calculated a total premature death of 419 000 die to O$_3$ and PM$_{2.5}$ in the EU-28 countries. There is also agreement with Geels et al. (2015) that calculated 388 000 premature death cases in Europe for the year 2000. This difference can be attributed to the number of mortality cases as calculated by the individual models, where the HTAP2 ensemble calculates a much lower minimum while the higher ends from the two ensembles well agree.
The differences between the health outcomes calculated by the HTAP2 and AQMEII ensembles arise firstly from the differences in the concentrations fields due to the differences in models, in particular spatial resolutions as well as the gas and aerosols treatments in different models, but also the differences in calculating the health impacts from these concentrations fields. EVA calculates the acute premature death due to O3 by using the SOMO35 metric. On the other hand, in HTAP2 O3-related premature death is calculated by using the 6-month seasonal average of daily 1-h maximum O3 concentrations. Both groups use the annual mean PM2.5 to calculate the PM2.5-related premature death. In addition to O3 and PM2.5, EVA also takes into account the health impacts from CO and SO2, which is missing in the HTAP2 calculations.

Among all models, DE1 model calculated the lowest health impacts for most health outcomes, which can be attributed to the largest underestimation of PM2.5 levels ($NMB_{-63\%}$: Table S2) due to lower spatial resolution of the model that dilutes the pollution in the urban areas, where most of the population lives. The number of premature deaths calculated by this study is in agreement with previous studies for Europe using the EVA system (Brandt et al., 2013a; Geels et al., 2015). Recently, EEA (2015) estimated that air pollution is responsible for more than 430 000 premature deaths in Europe, which is in good agreement with the present study.

Fig. 6a. presents the geographical distribution of the number of premature death in Europe in 2010. The figure shows that the numbers of cases are strongly correlated to the population density (Fig. 1a), with the largest numbers seen in the Benelux and the Po Valley regions that are characterized as the pollution hot spots in Europe as well as in megacities such as London, Paris, Berlin and Athens.

The economic valuation of the air pollution-associated health impacts calculated by the different models along with their mean and median are presented in Table 4. A total cost of 196 to 451 billion Euros (MM mean cost of 300 ± 70 billion Euros) was estimated over Europe (EU28). Results show that 5% [1% - 11%] of the total costs is due to exposure to O3, while 89% [80% - 96%] is due to exposure to PM2.5. Brandt et al. (2013a) calculated a total external cost of 678 billion Euros for the year 2011 for Europe, larger than the estimates of this study, which can be explained by the differences in the simulation year and the emissions used in the models as well as the countries included in the two studies (the previous study includes e.g. Russia).

3.3. Health outcomes and their economic valuation in the U.S.

The different health outcomes calculated by each model for the U.S. as well as their mean and median are presented in Table S2. The variability among the models (∼3) is similar to that in Europe. The number of congestive heart failure cases in the U.S. as calculated as the average of all models in the ensemble (MM_{i}) is calculated to be 13 000 [7 000 – 18 000], while the lung cancer cases due to air pollution are calculated to be 22 000 [9 000 – 31 000]. Finally, the number of premature deaths due to air pollution is calculated to be 165 000 ± 75 000, where 25 000 ± 6 000 cases are calculated due to exposure to O3 and 140 000 ± 72
000 cases due to exposure to PM$_{2.5}$. The MM_m dataset leads to a number of premature death
of 149 000 that is 6% smaller than the average estimate from individual models (MM_{mi}). Due
to the large reduction of NMB by the median compared to the mean of individual models
(Table S1), the multi-model health impacts calculated as the median of health impacts from
individual models are ~13% higher than the health impacts calculated from the MM_{mi}. The
O$_3$- and PM$_{2.5}$ mortality cases as calculated by the AQMEII and HTAP2 model ensembles
reasonably agree. Liang et al. (2017) calculated an O$_3$-related mortality of 14 700 [900 –
30 400] and a PM$_{2.5}$-related mortality of 78 600 [4 500 – 162 600]. These results are in very
good agreement with the U.S. EPA (2011) estimates of number of premature death cases of
160 000 in year 2010 and with Caizzo et al. (2013), who calculated 200 000 premature death
cases from combustion sources in the U.S. Among all models, DE1 model calculated the
lowest health impacts for most health outcomes, which can be attributed to the largest
underestimation of PM$_{2.5}$ levels (NMB=−63%: Table S2).

The premature death cases in North America are mostly concentrated over the New York
area, as well as in hot spots over Chicago, Detroit, Houston Los Angeles and San Francisco
(Fig. 6b). The figure shows that the number of cases is following the pattern of the population
density. The economic valuation of the air pollution-associated health impacts calculated by
the different models in the U.S. are shown in Table 4. As seen in the table, a total cost of
~145 billion Euros is calculated. Results show that ~22% of the total costs is due to exposure
to O$_3$ while ~78% is due to exposure to PM$_{2.5}$. The major health impacts in terms of their
external costs are slightly different in North America compared to Europe.

3.4. Health impacts and their economic valuation through optimal reduced ensemble subset

The effect of pollution concentrations (EVA input) on health impacts (EVA output) is
investigated in order to estimate the contribution of each air pollutant in the EVA system to
health impacts over different concentration levels. The technical details are provided in the
supplement.

Results show that for the particular input (gridded air pollutant concentrations from
individual model)-output (each health outcome) configuration, the PM$_{2.5}$ drives the variability
of the different health impact and that at least 81% of the variation of the health impacts are
explained by sole variations in the pollutants (i.e. without interactions: Table S3). Table S1
also shows that the most important contribution to the health impacts is from PM$_{2.5}$, followed
by CO and O$_3$ (with much smaller influence though). The impact of perturbing PM$_{2.5}$ by a
fixed fraction of its standard deviation on the health impact is roughly double compared to
CO and O$_3$.

We have run the EVA system over an all-models mean (MM_m) dataset and an optimal
reduced ensemble dataset (MM_{opt}) calculated for each of the pollutants in the two domains in
order to see how and whether an optimal reduced ensemble changes the assessment of the
health impacts compared to an all- models ensemble mean. Table 5 shows some sensible
error reduction, although the temporal and spatial averages mask the effective improvement
in accuracy from MM_m to MM_{opt}. In Europe, the optimal reduced ensemble decreases the
RMSE by up to 24%, while in NA, the error reduction is much larger (4% to up to 147%). On a seasonal basis, MM_{opt} reduces RMSE in PM$_{2.5}$ over Europe by 23% in winter while smaller decreases are achieved in other seasons (~10%). Regarding O$_3$, improvement is 16%-22%, with the largest improvement in spring. In NA, the improvement in winter RMSE in PM$_{2.5}$ is smallest (~2%) while larger improvements are achieved in other seasons (~7% - ~9%). For O$_3$, the largest RMSE reduction in NA is achieved for the summer period by 14%.

The analysis of the aggregated health indices data for Europe (Table S1) shows that EVA indices rely principally on the PM$_{2.5}$ levels and then the CO and O$_3$ values. Therefore, the relative improvement of the indices with the optimal ensemble should be proportional to the relative improvement in PM$_{2.5}$, CO and O$_3$. The proportionality rate for each pollutant is given in Table S3, assuming all pollutants are varied (from MM_m to MM_{opt}) away from their mean by the same fraction of their variance. As seen in the Table 3, from MM_m to MM_{opt}, the health indices increase by up to 30% in Europe. This increase is due to a 27% increase in the domain mean PM$_{2.5}$ levels when the optimal reduced ensemble is used, as well a slight increase in O$_3$ by ~1%. The number of premature deaths in Europe increase from 410 000 to 524 000 (28%), resulting in a much higher estimate compared to previous mortality studies.

On the contrary, in the U.S., the mean PM$_{2.5}$ and O$_3$ levels decrease from 2.94 μg m$^{-3}$ to 2.62 μgm$^{-3}$ (~11%) and 18.7 ppb to 18.4 ppb (~2%), respectively. In response, the health indices decrease by ~11% (Table 3). The number of premature death cases in NA decrease from 149 000 to 133 000.

3.5. Impact of anthropogenic emissions on the health impacts and their economic valuation

The impacts of emission perturbations on the different health outcomes over Europe and the U.S. as calculated by the individual models are presented in Tables S4-S6. Table 6 shows the impacts of the different emission perturbations on the premature death cases in Europe and the U.S as calculated by a subset of models that simulated the base case and all three perturbation scenarios (MM_e). Results show that in Europe, the 20% reduction in the global anthropogenic emissions leads to ~17% domain-mean reduction in all the health outcomes, with a geographical variability as seen in Fig. 6c. The figure shows that the larger changes in mortality is calculated in the central and northern parts of Europe (15-20% decreases), while the changes are smaller in the Mediterranean region (5-10%), highlighting the non-linearity of the response to emission reductions. However, it should be noted that global models or coarse-resolution regional models (as in this study) cannot capture the urban features and pollution levels and thus, non-linearities should be addressed further using fine spatial resolutions or urban models. The models vary slightly simulating the response to the 20% reduction in global emissions, estimating decreases of ~11% to 20%. The number of premature deaths decreased on average by ~50 000, ranging from -39 000 (DK1) to -103 000 (IT1). This number is in good agreement with the ~45 000 premature death calculated by the HTAP2 global models (Liang et al., 2017). The MM_e ensemble calculated a 15% and 17% decrease in the O$_3$- and PM$_{2.5}$-related premature death cases, respectively, in response to the GLO scenario. This decrease in the global anthropogenic emissions leads to an estimated decrease of 56 ± 18 billion Euros in associated costs in Europe (Table 6).
As seen in Table 8, a 20% reduction of anthropogenic emissions in the EUR region, as defined in HTAP2, avoids 47 000 premature death, while a 20% reduction of the anthropogenic emissions in the NAM region leads to a much smaller decrease of premature deaths in Europe (~1 000). These improvements in the number of premature deaths are in agreement with a recent HTAP2 global study that calculated reductions of ~34 000 and ~1 000 for the EUR and NAM scenarios, respectively (Liang et al., 2017) and with Anenberg et al. (2009 and 2014), which totals to a sum of avoided premature deaths being ~39 000 and 1 800 as calculated by the MM mean. Both the global and regional models agree that the largest impacts of reducing emissions with respect to premature deaths come from emission within the source region, while foreign sources contribute much less to improvements in avoiding adverse impacts of air pollution. The decreases in health impacts in EUR and NAM scenarios corresponds to decreases in the associated costs by -47 ± 16 billion Euros and -1.4 ± 0.4 billion Euros, respectively. This is consistent with results in Brandt et al. (2012), where a contribution of ~1% to PM$_{2.5}$ concentrations in Europe is originating from the NAM region.

The 20% reduction in global anthropogenic emissions leads to 18% reduction in the health outcomes (Table 8) in the U.S., with a geographical variability in the response. Fig. 6d shows that the largest decreases in mortality is calculated for the western coast of the U.S. (~20%) and slightly lower response in the central and eastern parts of the U.S. (15-20%). The number of premature death cases, as calculated by the mean of all individual models decreases from ~160 000 ± 70 000 to ~130 000 ± 60 000, avoiding 24 ± 10 billion Euros (Table 6) in external costs, also in agreement with the ensemble of HTAP2 global models (~23 000) The O$_3$-related premature death cases decreased by 42% while the PM$_{2.5}$-related cases decreased by 18%.

A 20% reduction of the North American emissions avoids ~25 000 ± 12 000 premature deaths (-16%), suggesting that ~80% of avoided premature deaths are achieved by reductions within the source region while 20% (~5 000 premature deaths) is from foreign sources. This number is also in good agreement with Liang et al. (2017) that estimated a reduction of premature deaths of ~20 000 due to O$_3$ and PM$_{2.5}$ in the United States due to an emission reduction of 20% within the region itself, using the ensemble mean of the HTAP2 global models. These results are much larger than the number of avoided premature death of ~11 000 as calculated by the sum of Anenberg et al. (2009 and 2104). The corresponding benefit is calculated to be 21 ± 9 billion Euros in the NAM scenario. According to results from the EAS scenario, among these 5 000 avoided cases that are attributed to the foreign emission sources, 1 900 ± 2 000 premature deaths can be avoided by a 20% reduction of the East Asian emissions, avoiding 2.5 ± 3 billion Euros. Our number of avoided premature deaths due to the EAS scenario is much higher than 580 avoided premature deaths calculated by Liang et al. (2017) and 380 avoided cases as calculated by Anenberg et al. (2009 and 2014).

Conclusions

The impact of air pollution on human health and their economic valuation for the society across Europe and the United States is modelled by a multi-model ensemble of regional
models from the AQMEII3 project. All regional models used boundary conditions from the C-IFS model, and emissions from either the MACC inventory in Europe or the EPA inventory for the North America, or the global inventory from HTAP. Sensitivity analysis on the dependence of models on different sets of boundary conditions has not been conducted so far but large deviations from the current results in terms of health impacts are not expected. The modelled surface concentrations by each individual model are used as input to the EVA system to calculate the resulting health impacts and the associated external costs from O3, CO, SO2 and PM2.5. Along with a base case simulation for the year 2010, some groups performed additional simulations, introducing 20% emission reductions both globally and regionally in Europe, North America and East Asia.

The base case simulation of each model is evaluated with available surface observations in Europe and North America. Results show large variability among models, especially for PM2.5, where models underestimate by ~20% - ~60%, introducing a large uncertainty in the health impact estimates as PM2.5 is the main driver for health impacts. The differences in the models are largely due to differences in the spatial and vertical resolutions, meteorological inputs, inclusion of natural emissions, dust in particular, as well as missing or underestimated SOA mass, which is critical for the PM2.5 mass. As shown in the supplementary material, the CTMs diverge a lot on the representation of particles and their size distribution, SOA formation, as well as the inclusion of natural sources. As the anthropogenic emissions are harmonized in the models, they represent a minor uncertainty in terms of model-to-model variation. However, differences in the treatment of the temporal, vertical and chemical distributions of the particulate and volatile organic species have an influence in the model calculations and therefore lead to model-to-model variations.

The variability of health impacts among the models can be up to a factor of three in Europe (twelve models) and the U.S. (three models), among the different health impacts. The multi-model mean total number of premature death is calculated to be 414 000 in Europe and 160 000 in the U.S., where PM2.5 contributes by more than 90%. These numbers agree well with previous global and regional studies for premature deaths due to air pollution. In order to reduce the uncertainty coming from each model, an optimal ensemble set is produced, that is, the subset of models that produce the smallest error compared to the surface observations at each time step. The optimum ensemble results in an increase of health impacts by up to 30% in Europe and a decrease by ~11% in the United States. These differences clearly demonstrate the importance of the use of optimal-reduced multi-model ensembles over traditional all model-mean ensembles, both in terms of scientific results, but also in policy applications.

Finally, the role of domestic versus foreign emission sources on the related health impacts is investigated using the emission perturbation scenarios. A global reduction of anthropogenic emissions by 20% decreases the health impacts by 17%, while the reduction of foreign emissions decreases the health impacts by less than 1%. The decrease of emissions within the source region decreases the health impacts by 16%. These results show that the largest impacts of reducing emissions with respect to the premature death come from emissions...
within the source region, while foreign sources contributing to much less improvements in
avoiding adverse impacts of air pollution.

Outlook

Currently health assessments of airborne particles are carried out under the assumption that
all fine fraction particles affect health to a similar degree independent of origin, age and
chemical composition of the particles. A 2013 report from WHO concludes that the
cardiovascular effects of ambient PM$_{2.5}$ are greatly influenced, if not dominated, by their
transition metal contents (WHO, 2013b). It is known that trace metals and traffic markers are
highly associated with daily mortality (Lippmann, 2014). Even low concentrations of trace
metals can be influential on health related responses.

Regarding ambient concentrations of PM and the exposure-response functions (ERFs), there
is a rich set of studies providing information on total PM mass. However, only few studies
focus on individual particulate species, mainly black carbon and carbonaceous particles. In
addition to PM, studies on human populations have not been able to isolate potential effects
of NO$_2$, because of its complex link to PM and O$_3$. The WHO REVIHAAP review from 2013
concludes that health assessments based on PM$_{2.5}$ ERFs will be most inclusive (WHO,
2013b). In addition, the ERFs are based on urban background measurements, introducing
uncertainties regarding non-urban areas or high pollution areas as e.g. street canyons. Current
state-of-the-art health impact estimates, in particular on regional to global scales, assume a
correlation with exposure to outdoor air pollution, while in reality, exposure is dynamic and
depends on the behavior of the individual. In addition, differences in age groups, gender,
ethnicity and behavior should be considered in the future studies. There are also uncertainties
originating from the representations of the aerosols in the atmospheric models used in the
calculation of pollutant concentrations as well as the emissions. Further developments in the
aerosol modules, such as the representation of organic aerosols and windblown and
suspended dust, are need in order to achieve mass closure of PM to get robust estimates of
health impacts. In addition, new findings show that O$_3$ has also chronic health impacts in
addition to its acute impacts (WHO, 2013a; Turner et al., 2016).

Due to above reasons, there is a large knowledge gap regarding the health impacts of
particles. There are a number of ongoing projects trying to identify the health impacts from
individual particle components and produce individual ERFs for these components.
NordicWelfAir project (http://projects.au.dk/nordicwelfair/) aims to investigate the potential
causal impact of individual chemical air pollutants as well as mixtures of air pollutants on
health outcomes. In pursuing this aim, the project uses the unique Nordic population-based
registers allowing linkage between historical residential address, air pollutants over decades
and later health outcomes. By linking the exposure to health outcomes, new exposure-
response relationships can be determined of health effects for different population groups
(e.g. age, education, ethnicity, gender, lifestyle, and working life vs. retirement conditions)
related to air pollution for the individual chemical air pollutants. In addition, the high
resolution simulations conducted will enable us to have a better understanding of non-
linearities between the emissions, health impacts, and their economic valuation.
ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution of various groups to the third air Quality Model Evaluation international Initiative (AQMEII) activity. Joint Research Center Ispra/Institute for Environment and Sustainability provided its ENSEMBLE system for model output harmonization and analyses and evaluation. Although this work has been reviewed and approved for publication by the US Environmental Protection Agency, it does not necessarily reflect the views and policies of the agency. Aarhus University gratefully acknowledges the NordicWelfAir project funded by the NordForsk’s Nordic Programme on Health and Welfare (grant agreement no. 75007), the REEEM project funded by the H2020-LCE Research and Innovation Action (grant agreement no.: 691739), and the Danish Centre for Environment and Energy (AU-DCE). University of L’Aquila thanks the EuroMediterranean Center for Climate Research (CMCC) for providing the computational resources. RSE contribution to this work has been financed by the research fund for the Italian Electrical System under the contract agreement between RSE S.p.A. and the Ministry of Economic Development – General Directorate for Nuclear Energy, Renewable Energy and Energy Efficiency in compliance with the decree of 8 March 2006.

REFERENCES

Europe and the contribution from international ship traffic using the EVA model system.

Atmospheric Chemistry and Physics, 13, 7747-7764, doi:10.5194/acp-13-7747-2013, 2013b.

(www.ceeh.dk/CEEH_Reports/Report_3)

EU 2004: Modelling and assessment of the health impact of particulate matter and ozone.

EU 2004: Modelling and assessment of the health impact of particulate matter and ozone.

Lippmann, P., 2014. Toxicological and epidemiological studies of cardiovascular effects of ambient fine particulate matter (PM$_{2.5}$) and its chemical components: Coherence and public health implications. Critical Reviews in Toxicology, 44(4), 299-347.

Solazzo, E., Van Dingenen, R., Riccio, A., Galmarini, S., 2017b. The role of multi-model ensembles in assessing the air quality impact on crop yields and mortality. In preparation for submission to ACP.

Touloumi, G., Samoli, E., Katsuyanni, K., 1996. Daily mortality and "winter type" air pollution in Athens, Greece - a time series analysis within the APHEA project. Journal of Epidemiology and Community Health, 50 (suppl 1), S47 - S51

Table 1. Key features (meteorological/chemistry and transport models, emissions, horizontal and vertical grids) of the regional models participating to the AQMEII3 health impact study and the perturbation scenarios they performed.

<table>
<thead>
<tr>
<th>Group Code</th>
<th>Model</th>
<th>Emissions</th>
<th>Horizontal Resolution</th>
<th>Vertical Resolution</th>
<th>Gas Phase</th>
<th>Aerosol Model</th>
<th>Europe</th>
<th>North America</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BASE</td>
<td>GLO</td>
</tr>
<tr>
<td>DE1</td>
<td>COSMO-CLM/CMAQ</td>
<td>HTAP</td>
<td>24 km × 24 km</td>
<td>30 layers, 50 hPa</td>
<td>CB5-TUCL</td>
<td>3 modes</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>DK1</td>
<td>WRF/DEHM</td>
<td>HTAP</td>
<td>50 km × 50 km</td>
<td>29 layers, 100 hPa</td>
<td>Brandt et al. (2012)</td>
<td>2 modes</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>ES1</td>
<td>WRF/CHEM</td>
<td>MACC</td>
<td>23 km × 23 km</td>
<td>33 layers, 50 hPa</td>
<td>RADM2</td>
<td>3 modes, MADE/SORGAM</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>FI1</td>
<td>ECMWF/SILAM</td>
<td>MACC</td>
<td>0.25° × 0.25°</td>
<td>12 layers, 13 km</td>
<td>CB4</td>
<td>1-5 bins, VBS</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>FRES1</td>
<td>ECMWF/CHIMERE</td>
<td>HTAP</td>
<td>0.25° × 0.25°</td>
<td>9 layers, 50 hPa</td>
<td>MELCHIOR2</td>
<td>8 bins</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>IT1</td>
<td>WRF/CHEM</td>
<td>MACC</td>
<td>23 km × 23 km</td>
<td>33 layers, 50 hPa</td>
<td>RACM-ESRL</td>
<td>3 modes, MADE/VBS</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>IT2</td>
<td>WRF/CAMx</td>
<td>MACC</td>
<td>23 km × 23 km</td>
<td>14 layers, 8 km</td>
<td>CB5</td>
<td>3 modes</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>NL1</td>
<td>LOTOS/EURROS</td>
<td>MACC</td>
<td>0.50° × 0.25°</td>
<td>4 layers, 3.5 km</td>
<td>CB4</td>
<td>2 modes, VBS</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>TR1</td>
<td>WRF/CMAQ</td>
<td>MACC</td>
<td>30 km × 30 km</td>
<td>24 layers, 10 hPa</td>
<td>CB5</td>
<td>3 modes</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>UK1</td>
<td>WRF/CMAQ</td>
<td>MACC</td>
<td>15 km × 15 km</td>
<td>23 layers, 100 hPa</td>
<td>CB5-TUCL</td>
<td>3 modes</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>UK2</td>
<td>WRF/CMAQ</td>
<td>HTAP</td>
<td>30 km × 30 km</td>
<td>23 layers, 100 hPa</td>
<td>CB5-TUCL</td>
<td>3 modes</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>UK3</td>
<td>WRF/CMAQ</td>
<td>MACC</td>
<td>18 km × 18 km</td>
<td>35 layers, 16 km</td>
<td>CB5</td>
<td>3 modes</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>US3</td>
<td>WRF/CMAQ</td>
<td>SMOKE</td>
<td>12 km × 12 km</td>
<td>35 layers, 50 hPa</td>
<td>CB5-TUCL</td>
<td>3 modes</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Exposure-response functions, the concentrations metrics, and economic valuations used in the EVA model.

<table>
<thead>
<tr>
<th>Health effects (compounds)</th>
<th>Exposure-response coefficient</th>
<th>Valuation, €2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morbidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic Bronchitis¹, CB (PM)</td>
<td>8.2E-5 cases/μgm⁻³ (adults)</td>
<td>38,578 per case</td>
</tr>
<tr>
<td>Restricted activity days², RAD (PM)</td>
<td>=8.4E-4 days/μgm⁻³ (adults)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3.46E-5 days/μgm⁻³ (adults)</td>
<td>98 per day</td>
</tr>
<tr>
<td></td>
<td>-2.47E-4 days/μgm⁻³ (adults>65)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8.42E-5 days/μgm⁻³ (adults)</td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure³, CHF (PM)</td>
<td>3.09E-5 cases/μgm⁻³</td>
<td>10,998 per case</td>
</tr>
<tr>
<td>Congestive heart failure³, CHF (CO)</td>
<td>5.64E-7 cases/μgm⁻³</td>
<td></td>
</tr>
<tr>
<td>Lung cancer⁴, LC (PM)</td>
<td>1.26E-5 cases/μgm⁻³</td>
<td>16,022 per case</td>
</tr>
<tr>
<td>Hospital admissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory⁵, RHA (PM)</td>
<td>3.46E-6 cases/μgm⁻³</td>
<td>5,315 per case</td>
</tr>
<tr>
<td>Respiratory⁵, RHA (SO₂)</td>
<td>2.04E-6 cases/μgm⁻³</td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular⁶, CHA (PM)</td>
<td>8.42E-6 cases/μgm⁻³</td>
<td>6,734 per case</td>
</tr>
<tr>
<td>Asthma children (7.6 % < 16 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchodilator use⁷, BUC (PM)</td>
<td>1.29E-1 cases/μgm⁻³</td>
<td>16 per case</td>
</tr>
<tr>
<td>Cough⁸ – COUC (PM)</td>
<td>4.46E-1 days/μgm⁻³</td>
<td>30 per day</td>
</tr>
<tr>
<td>Lower respiratory symptoms⁹, LRSA (PM)</td>
<td>1.72E-1 days/μgm⁻³</td>
<td>9 per day</td>
</tr>
<tr>
<td>Asthma adults (5.9 % > 15 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchodilator use⁹, BUA (PM)</td>
<td>2.72E-1 cases/μgm⁻³</td>
<td>16 per case</td>
</tr>
<tr>
<td>Cough⁹, COUA (PM)</td>
<td>2.8E-1 days/μgm⁻³</td>
<td>30 per day</td>
</tr>
<tr>
<td>Lower respiratory symptoms⁹, LRSA (PM)</td>
<td>1.01E-1 days/μgm⁻³</td>
<td>9 per day</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute mortality¹⁰,¹¹ (SO₂)</td>
<td>7.85E-6 cases/μgm⁻³</td>
<td>1,532,099 per case</td>
</tr>
<tr>
<td>Acute mortality¹⁰,¹¹ (O₂)</td>
<td>3.27E-6*SOMO35 cases/μgm⁻³</td>
<td></td>
</tr>
<tr>
<td>Chronic mortality⁴,¹², YOLL (PM)</td>
<td>1.138E-3 YOLL/μgm⁻³ (>30 years)</td>
<td>57,510 per YOLL</td>
</tr>
<tr>
<td>Infant mortality¹³, IM (PM)</td>
<td>6.68E-6 cases/μgm⁻³ (>9 months)</td>
<td>2,298,148 per case</td>
</tr>
</tbody>
</table>

Table 3. Health impacts calculated by the mean of individual model estimates (denoted as MM_{mi}) and the standard deviation, multi-model mean ensemble without error reduction (MM_{m}) and the optimal ensemble (MM_{Opt}) in Europe and the U.S. See Table 2 for the definitions of health impacts. PD stands for premature death. All health impacts are in units of number of cases \times 1000, except for Infant Mortality (IM), which reports directly the number of cases.

<table>
<thead>
<tr>
<th></th>
<th>EU</th>
<th></th>
<th></th>
<th>NA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM_{mi}</td>
<td>MM_{m}</td>
<td>MM_{Opt}</td>
<td>MM_{mi}</td>
<td>MM_{m}</td>
<td>MM_{Opt}</td>
</tr>
<tr>
<td>CB</td>
<td>360±89</td>
<td>360</td>
<td>468</td>
<td>142±74</td>
<td>142</td>
<td>125</td>
</tr>
<tr>
<td>RAD</td>
<td>368±96070</td>
<td>368245</td>
<td>478073</td>
<td>145±250</td>
<td>145337</td>
<td>127921</td>
</tr>
<tr>
<td>RHA</td>
<td>23±5</td>
<td>23</td>
<td>28</td>
<td>10±4</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>CHA</td>
<td>46±11</td>
<td>46</td>
<td>60</td>
<td>19±10</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>CHF</td>
<td>31±6</td>
<td>31</td>
<td>38</td>
<td>13±6</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>LC</td>
<td>55±14</td>
<td>55</td>
<td>72</td>
<td>22±11</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>BDUC</td>
<td>10766±2650</td>
<td>10766</td>
<td>13976</td>
<td>4566±2383</td>
<td>4566</td>
<td>4019</td>
</tr>
<tr>
<td>BDU</td>
<td>70492±17400</td>
<td>70489</td>
<td>91511</td>
<td>27819±14400</td>
<td>27819</td>
<td>24485</td>
</tr>
<tr>
<td>COUC</td>
<td>37198±9160</td>
<td>37196</td>
<td>48289</td>
<td>15776±8230</td>
<td>15776</td>
<td>13886</td>
</tr>
<tr>
<td>COUA</td>
<td>72566±17900</td>
<td>72562</td>
<td>94203</td>
<td>28637±14830</td>
<td>28637</td>
<td>25206</td>
</tr>
<tr>
<td>LRSC</td>
<td>14355±3530</td>
<td>14354</td>
<td>18635</td>
<td>6088±3180</td>
<td>6088</td>
<td>5359</td>
</tr>
<tr>
<td>LRSA</td>
<td>26175±6400</td>
<td>26174</td>
<td>33980</td>
<td>10330±5350</td>
<td>10330</td>
<td>9092</td>
</tr>
<tr>
<td>AYOLL</td>
<td>26±13</td>
<td>23</td>
<td>20</td>
<td>25±7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>YOLL</td>
<td>4111±1010</td>
<td>4111</td>
<td>5337</td>
<td>1481±762</td>
<td>1481</td>
<td>1304</td>
</tr>
<tr>
<td>PD</td>
<td>414±98</td>
<td>410</td>
<td>524</td>
<td>165±76</td>
<td>149</td>
<td>133</td>
</tr>
<tr>
<td>IM*</td>
<td>403±99</td>
<td>403</td>
<td>524</td>
<td>143±75</td>
<td>143.3667</td>
<td>126.1</td>
</tr>
</tbody>
</table>
Table 4. External costs (in million Euros) related to the health impacts of air pollution as calculated by the individual models over Europe and the United States.

<table>
<thead>
<tr>
<th>Models</th>
<th>CO</th>
<th>SO₂</th>
<th>O₃</th>
<th>PM₂.₅</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE1</td>
<td>70</td>
<td>19 000</td>
<td>22 000</td>
<td>155 000</td>
<td>196 000</td>
</tr>
<tr>
<td>DK1</td>
<td>80</td>
<td>13 000</td>
<td>24 000</td>
<td>237 000</td>
<td>274 000</td>
</tr>
<tr>
<td>ES1</td>
<td>70</td>
<td>8 000</td>
<td>6 000</td>
<td>339 000</td>
<td>353 000</td>
</tr>
<tr>
<td>FI1</td>
<td>90</td>
<td>18 000</td>
<td>5 000</td>
<td>335 000</td>
<td>358 000</td>
</tr>
<tr>
<td>FRES1</td>
<td>90</td>
<td>15 000</td>
<td>13 000</td>
<td>305 000</td>
<td>333 000</td>
</tr>
<tr>
<td>IT1</td>
<td>80</td>
<td>17 000</td>
<td>21 000</td>
<td>413 000</td>
<td>451 000</td>
</tr>
<tr>
<td>IT2</td>
<td>70</td>
<td>11 000</td>
<td>6 000</td>
<td>253 000</td>
<td>270 000</td>
</tr>
<tr>
<td>NL1</td>
<td>70</td>
<td>12 000</td>
<td>18 000</td>
<td>215 000</td>
<td>245 000</td>
</tr>
<tr>
<td>TR1</td>
<td>110</td>
<td>30 000</td>
<td>35 000</td>
<td>376 000</td>
<td>441 000</td>
</tr>
<tr>
<td>UK1</td>
<td>80</td>
<td>28 000</td>
<td>25 000</td>
<td>280 000</td>
<td>333 000</td>
</tr>
<tr>
<td>UK2</td>
<td>80</td>
<td>34 000</td>
<td>27 000</td>
<td>340 000</td>
<td>401 000</td>
</tr>
<tr>
<td>UK3</td>
<td>80</td>
<td>47 000</td>
<td>25 000</td>
<td>279 000</td>
<td>351 000</td>
</tr>
<tr>
<td>MEAN</td>
<td>81</td>
<td>21 000</td>
<td>19 000</td>
<td>294 000</td>
<td>334 000</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>80</td>
<td>17 500</td>
<td>21 500</td>
<td>292 500</td>
<td>342 000</td>
</tr>
<tr>
<td>The United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE1</td>
<td>30</td>
<td>9 000</td>
<td>21 000</td>
<td>46 000</td>
<td>76 000</td>
</tr>
<tr>
<td>DK1</td>
<td>55</td>
<td>11 000</td>
<td>39 000</td>
<td>123 000</td>
<td>172 000</td>
</tr>
<tr>
<td>US3</td>
<td>60</td>
<td>14 000</td>
<td>22 000</td>
<td>155 000</td>
<td>191 000</td>
</tr>
<tr>
<td>MEAN</td>
<td>50</td>
<td>11 500</td>
<td>27 000</td>
<td>108 000</td>
<td>146 000</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>55</td>
<td>11 000</td>
<td>22 000</td>
<td>123 000</td>
<td>172 000</td>
</tr>
</tbody>
</table>
Table 5. Annual average RMSE of the multi-model ensemble mean (MM_m) and of the optimal reduced ensemble mean (MM_{opt}) for the heath impact-related species. Units are ppb for the gaseous species and μg m$^{-3}$ for PM$_{2.5}$.

<table>
<thead>
<tr>
<th></th>
<th>O$_3$</th>
<th>CO</th>
<th>SO$_2$</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM_m</td>
<td>MM_{opt}</td>
<td>MM_m</td>
<td>MM_{opt}</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>10.3</td>
<td>8.6</td>
<td>502.4</td>
<td>490.3</td>
</tr>
<tr>
<td>Spring</td>
<td>12.4</td>
<td>9.6</td>
<td>247.1</td>
<td>239.5</td>
</tr>
<tr>
<td>Summer</td>
<td>13.4</td>
<td>10.7</td>
<td>197.4</td>
<td>188.0</td>
</tr>
<tr>
<td>Autumn</td>
<td>10.7</td>
<td>8.8</td>
<td>314.5</td>
<td>305.5</td>
</tr>
<tr>
<td>Annual</td>
<td>11.7</td>
<td>9.4</td>
<td>315.3</td>
<td>305.8</td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>10.9</td>
<td>10.4</td>
<td>356.7</td>
<td>328.1</td>
</tr>
<tr>
<td>Spring</td>
<td>12.0</td>
<td>11.4</td>
<td>288.7</td>
<td>270.2</td>
</tr>
<tr>
<td>Summer</td>
<td>15.1</td>
<td>13.0</td>
<td>258.3</td>
<td>238.7</td>
</tr>
<tr>
<td>Autumn</td>
<td>12.8</td>
<td>11.6</td>
<td>330.6</td>
<td>307.6</td>
</tr>
<tr>
<td>Annual</td>
<td>12.7</td>
<td>11.6</td>
<td>308.6</td>
<td>286.1</td>
</tr>
</tbody>
</table>
Table 6. Impact of the emission reduction scenarios on avoided premature death (ΔPD) and corresponding change in external cost as calculated by the multi-model mean over Europe and the United States.

<table>
<thead>
<tr>
<th>Source</th>
<th>Receptor</th>
<th>Europe</th>
<th>The United States</th>
<th>Europe</th>
<th>The United States</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ΔPD (billion €)</td>
<td>ΔTotal Cost (billion €)</td>
<td>ΔPD (billion €)</td>
<td>ΔTotal Cost (billion €)</td>
</tr>
<tr>
<td>GLO</td>
<td></td>
<td>-54 000 ± 18 000</td>
<td>-56 ± 18</td>
<td>-27 500 ± 14 000</td>
<td>-24 ± 10</td>
</tr>
<tr>
<td>NAM</td>
<td></td>
<td>-940 ± 1100</td>
<td>-1.4 ± 0.4</td>
<td>-25 000 ± 12 000</td>
<td>-21 ± 9</td>
</tr>
<tr>
<td>EUR</td>
<td></td>
<td>-47 000 ± 24 000</td>
<td>-47 ± 16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EAS</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-1 900 ± 2 200</td>
<td>-2.5 ± 3</td>
</tr>
</tbody>
</table>
Fig. 1. Population density (population per $0.25^\circ \times 0.25^\circ$ grid box) over a) the United States and b) Europe.
Fig. 2. Observed and simulated (base case) monthly a) O₃, b) CO, c) SO₂ and d) PM₂.₅ concentrations over Europe.
Fig. 3. Observed and simulated (base case) monthly a) O₃, b) CO, c) SO₂ and d) PM₂.₅ concentrations over the U.S.
Fig. 4. Spatial distribution of annual MM mean bias (µg m\(^{-3}\)) for a) DM8H O\(_3\), b) CO, c) SO\(_2\) and d) PM\(_{2.5}\) over Europe.
Fig. 5. Spatial distribution of annual MM mean bias (ppb for gases and $\mu g m^{-3}$ for PM$_{2.5}$) for a) DM8H O$_3$, b) CO, c) SO$_2$ and d) PM$_{2.5}$ over North America.
Fig. 6. Spatial distribution of the number of total premature death (PD: units in number of cases per 0.25° × 0.25° grid box) in a) the United States and b) Europe and the relative change (%) in the number of premature death (PD) in response to the GLO scenario in c) the United States and d) Europe in 2010 as calculated by the multi-model mean ensemble.