Responses to the comments on the paper by Referees
Referee’s comments are in blue italic, our comments are in black, manuscript’s changes are in red.

Response to the comments on the paper by Referee #1

Major Points:

1. There are a number of problems in the way the MLS data are presented and used. First, it is not clear that the day-night differences are being used for the “standard” HO2 product, as recommended in validation papers and in MLS data quality documents. This is critical since HO2 is a major focus for the paper. Second, there is no mention of the version of the data used (v3.3?) and whether all of the appropriate data screens were used. Third, all of the figures show data and profiles to 0.01 hPa, when in fact the useful range for HO2 is clearly stated at 0.046 hPa, and for O3 at 0.02 hPa. Data above these levels are not recommended for science purposes and should not be part of the analysis. This paper would clearly benefit from some interaction and discussion with members of the MLS team to ensure that the data are being applied correctly.

We agree with this comment. In the revised manuscript the following corrections are made (see lines 322-333):
(1) We have used the day-minus-night differences for the HO2 product. Accordingly, the results presented in Figs. 2–6 have been completely recalculated.
(2) The information on the MLS data version in use, i.e. v4.2, the latest one, have been added. All the data screens were applied when dealing with the MLS standard product.
(3) We have limited our analysis to the 1–0.046 mbar pressure interval where all data are suitable for scientific use, as prescribed by (Wang et al., 2015; Livesey et. al., 2017).

2. The connection between the CTM results and the analytic formulation is not sufficiently explored. Figure 1 is used to show that the difference between the CTM and equilibrium equation is a few percent or less, and that this justifies the use of the analytic formulation in the subsequent statistical evaluation. However, there is not enough information given about the CTM to judge whether or not this is really an independent validation. Presumably, the CTM uses the same set of reactions and the same equilibrium assumptions along with the “family” chemical species approach, so it is not surprising that
they agree. It is also not clear whether the CTM also includes NOx chemistry, which might have an impact in the upper stratosphere and lower mesosphere.

We agree that the original version of the manuscript contained little information about the 3D chemical transport model (CTM). Indeed, our model uses a family concept by Shimazaki (Shimazaki, 1985). It is used to calculate the evolution of the components of HOx and NOx families, while the Ox family is calculated via regular implicit Euler method. Moreover, it should be emphasized that the Shimazaki scheme utilizes an implicit Euler scheme too and does not use the steady state approximation for short-lived components. Thus, in calculating the evolution of OH, HO2, and O3 within the framework of the CTM, we do not use the photochemical equilibrium condition.

In the revised manuscript the following changes have been made:

(1) A list of reactions, accounted for by the CTM, is added (see Table 1). It can be seen first of all, that the CTM includes comprehensive NOx chemistry. Secondly, the complete set of reactions (63 in total) is much bigger than the one we consider to describe the daytime balance of OH, HO2, and O3 concentrations. In the original manuscript there were 9 of them — now there are 8, the reaction OH + HO2 → H2O + O2 was removed. Our numerical analysis showed that its contribution to the analytic expression \(F(OH,HO2,O3) = 1 \) is less than 1%.

(2) The description of the chemical transport model, including its dynamics and the integration methods used, is substantially expanded (see lines 167-195). In particular, it is stated that «The evolution of the components of HOx (H, OH, HO2, H2O2) and NOx (N, NO, NO2, NO3) families is calculated using the chemical family concept proposed by Shimazaki (Shimazaki, 1985). This is done because of the presence of short-lived components among these families, with lifetimes much shorter than those of the families themselves, which imposes significant restrictions on the value of the CTM’s integration step. For example, the daytime lifetimes of OH and HO2 above 70 km are about 1 s or less, while the lifetime of the HOx family is about \(10^4 \) s or more. Therefore, when calculating these components individually it is necessary to set the CTM’s integration step to be much less than 1 s. In our work, the Shimazaki technique is applied for calculating the evolution of each component of the HOx and NOx families. We emphasize that this technique does not explicitly use the steady-state approximation for the components, instead it utilizes the approach based on an implicit Euler scheme (see Shimazaki, 1985). This allows increasing the integration step of CTM significantly without loss of accuracy of calculating the short-lived components. In our work the integration time is chosen to be 9 s.»
As a further example, there are known effects on HOx and NOx in the mesosphere from energetic particle precipitation events [e.g. many papers by Jackman et al and Verronen et al], and it would be important for the CTM to include these if it is intended to be used as a validation of the equilibrium expression. In fact, Figures 2 and 3 display data from January 2005, during a period with a documented SPE event [Jackman et al., ACP, 2011]. The possible influence of SPE perturbations needs to be discussed and addressed.

Done. We carried out a brief analysis of the possible effect of solar proton events (SPE), which were not implemented in the CTM, on the mesospheric photochemistry in daytime. We considered the most prominent impact of SPE in the context of the problem: the impact on the chemical balance of OH. Comparing the additional OH source due to SPE with the main source of this component (via the reactions \(\text{HO}_2 + \text{O} \rightarrow \text{OH} + \text{O}_2 \), \(\text{H} + \text{O}_3 \rightarrow \text{OH} + \text{O}_2 \) and \(\text{H} + \text{HO}_2 \rightarrow 2\text{OH} \)) we showed that the influence of SPE on the daytime balance of OH is insignificant.

We made two additions to the revised manuscript:
(1) a new figure (see Fig. 2);
(2) the following text (see lines 251-256, 263-275): «Note also that Eq. (1) and Eq. (6) take into account only the main daytime source of OH \((P_{\text{OH}}) \) specified by reactions R18, R14, and R21:

\[
P_{\text{OH}} = k_{18} \cdot \text{HO}_2 \cdot \text{O} + 2k_{14} \cdot \text{HO}_2 \cdot \text{H} + k_{21} \cdot \text{O}_3 \cdot \text{H}
\]

These reactions run “inside” the HOx (H, OH, HO2, H2O2) family and do not perturb its total concentration. The height–latitude cross-sections of \(<P_{\text{OH}} > \) for each month are presented in Fig. 2.

Another source of OH is sporadically activated during charged particle precipitation events and exists for a relatively short time (several days). Solar proton events (SPE) perturb the ionic composition in the mesosphere and the upper stratosphere considerably and trigger a whole cascade of reactions involving ions, neutral components and their clusters (e.g., \(\text{O}_2^+ \cdot \text{H}_2\text{O} \)). This leads to an additional (to reactions R59 and R7) conversion of H2O molecules into OH and H (Solomon et al., 1981). The maximum of the OH production rate \((P_{\text{OH}}^{\text{SPE}}) \) induced by SPE is located in the polar latitudes in the region of 60–80 km and, as a rule, does not exceed \(2 \cdot 10^3 \) cm\(^{-3}\) s\(^{-1}\) (Jackman et al., 2011, 2014). It can be seen from Fig. 2 that at these latitudes and altitudes the \(P_{\text{OH}}^{\text{SPE}} / P_{\text{OH}} \) ratio does not exceed 1-2%, even for the maximum values of \(P_{\text{OH}}^{\text{SPE}} \). This means that the impact of \(P_{\text{OH}}^{\text{SPE}} \) on Eq. (6) is of the same order of smallness as in the case of reactions R59 and R7, hence, it may be
neglected. A similar conclusion can be made for other reactions from Table 1, not accounted for by Eq. (6), including the ones involving NOx in both quiet and perturbed conditions in the mesosphere.

(3) We found the mistake in Fig. 1 below 50 km caused by the use of improper computer number format (float32 instead of float64). So Fig.1 was recalculated and redrawn. The value of $<F>$ below 50 km increases.

If the CTM includes a comprehensive simulation of all known reactions and processes impacting HOx, and there is still agreement with the analytic approach, then the results are more credible. The paper should demonstrate that in fact the CTM provides a complete description of HOx photochemistry.

Done. To sum up, the following corrections have been made:

(1) A list of reactions is added, accounted for by the CTM. It can be seen that the CTM includes complete chemistry of the mesosphere.

(2) The description of the chemical transport model is substantially expanded in the part relating to dynamics and the methods of integration applied.

(3) Analysis of the possible effect of solar proton events (SPE), which are not implemented in our model, on the photochemistry in the daytime mesosphere is carried out.

Finally, there is a problem with converting pressure altitudes in the model to pressures by assuming a constant scale height of 7 km. This assumption can lead to offsets of 1 km or larger and is particularly critical when comparing vertical profiles with large gradients. For example, at 62 km the US std atmosphere has a pressure of 0.1671 mb. If a constant 7-km scale height is used in the expression in the paper, one would calculate $p=0.1442$ at 62 km. The analysis in this paper should use the temperatures in the model to compute convert altitude to pressure using hydrostatic equilibrium on a layer-by-layer basis.

Done. In the revised manuscript, the pseudo-height scale was replaced by pressure levels (see lines 199-202 and Figs 1-3). In addition, we indicated the approximate heights in km which were calculated for a given month utilizing averaged temperature profiles of the model and hydrostatic equilibrium.

3. There is not enough detail on the conclusion that the offline HO2 product better agrees with the statistical retrieval. First, there is no direct comparison between the offline product and the statistical retrieval, as there is for the standard product and the statistical retrieval (figs 4-6). There is only a presentation of the offline HO2 product, and the reader has to
refer back to figs 4-6 and then estimate just how much better the agreement really is. The improvement needs to be quantified more directly. Also, there is no discussion as to why the agreement is better and this really gets down to the science. Does this paper intend to suggest that the offline HO2 product is superior to the standard product? If so, then the discussion/conclusion needs to be expanded to clearly justify why this is so. There also needs to be some explanation for why the offline product is different in the first place, without forcing to reader to go back and review the Milan et al [2015] paper.

Done. First of all, the description of the offline HO2 retrieval is expanded and its advantages over the standard MLS product are pointed out (see lines 395-403):

«Moreover, new data on the HO2 distributions were recently obtained from the MLS measurements. Millán et al. (2015) performed the offline retrieval of daily zonal means of HO2 profiles using averaged MLS radiances measured in 10° latitude bins. Averaged spectra have a better signal to noise ratio, which removes many of the limitations of the MLS standard product for HO2. In particular, the upper boundary of the altitude region in which daytime data is suitable for scientific use has reached 0.0032 mbar, and the "day-minus-night" correction is not needed at altitudes above 1 mbar. Comparison with various experimental and model data has shown that the offline retrieval reproduces the basic properties of the HO2 distribution in the mesosphere relatively well (at least qualitatively) (Millán et al. 2015).»

Second, we made a direct comparison (see Fig. 10) of the offline MLS product with the results of our statistical retrieval and the standard product of MLS. One can see from Fig. 10 that our results better match the offline product than the standard one. The most noticeable difference is in the location of the mesospheric maximum of the HO2 concentration. According to the standard product it is close to 0.1 mbar, while the retrieved data and the offline product demonstrate the altitudes above 0.046 mbar. This is also confirmed by the HO2 distributions calculated using our 3D chemical transport model (see lines 391-394 and Fig. 9). In the revision we highlighted (see lines) that the higher location of that maximum in the results of the of HO2 statistical retrieval is due to the influence of MLS data on OH, which have the mesospheric maximum (see Figs. 6–8) also well above 0.1 mbar.

Minor Points:
The grammar and wording is awkward or incorrect in a number of places, for example
Abstract: “statistically correct approach” is not illuminating. One would not expect ACP to
publish a “statistically incorrect approach”. Suggest a “Bayesian statistical approach”.
Corrected. “statistically correct approach” was replaced by “statistical approach”
everywhere in text. See lines 14, 135.

“air concentration” is more generally “neutral density”,
Corrected. “air concentration” was replaced by “neutral density” everywhere in text. See
lines 19, 141.

“air temperature” is generally just “temperature”.
Corrected. “air temperature” was replaced by “temperature” everywhere in text. See lines
19, 141, 323.

“We have performed *a* one-year simulation”.
Corrected. See line 20.

Last sentence is unclear. Also “MLS primary data”, what is primary data? Perhaps this
should be MLS radiances.
Corrected. See lines 29-30.

In terms of the reaction sets, there appears to be a gaping omission of the HOx production
reactions, H2O+hv and H2O+O(1D). These should be included for completeness; however, I suspect their terms may drop out when forming the ratio OH/HO2.
Done. We have directly compared the source of OH ($P_{OH}^{H,O}$) due to the reactions H2O+hv
→ H+OH and O(1D)+H2O → 2OH with the main source of that component, P_{OH}, via the
reactions HO2 + O → OH + O2, H + O3 → OH + O2 and H + HO2 → 2OH. The ratio
$P_{OH}^{H,O} / P_{OH}$ does not exceed 3-4%.

Two corrections are made in the revised manuscript:
(1) new figures are added (Fig. 2-3);
(2) the following text is inserted (lines 251-262):
«Note also that Eq. (1) and Eq. (6) take into account only the main daytime source of OH
(P_{OH}) specified by reactions R18, R14, and R21:

\[
P_{OH} = k_{18} \cdot HO_2 \cdot O + 2k_{14} \cdot HO_2 \cdot H + k_{21} \cdot O_3 \cdot H
\]"
These reactions run “inside” the HOx (H, OH, HO2, H2O2) family and do not perturb its total concentration. The height–latitude cross-sections of $<P_{OH}>$ for each month are presented in Fig. 2.

The next important daytime source of OH is specified by reactions R59 and R7 involving H2O, the main source for the HOx family:

$$P_{OH}^{H_2O}=(k_{59} + 2 \cdot k_{7} \cdot O(D)) \cdot H_2O$$

Figure 3 shows height–latitude cross-sections of $<P_{OH}^{H_2O} / P_{OH}>$ for each month. Comparing Fig. 1 and Fig. 3, we conclude that the previously indicated 3–4 % deviation of $<F>$ from 1 in the region between 76 km and 86 km is largely due to the neglect of these reactions.

When deriving equation 14, which forms a major basis for the paper, I was not able to reproduce the authors’ results and cannot comment on the validity of this result. It seems much more complicated than the text would suggest. I strongly recommend an appendix which details the step-by-step process at arriving at equation 14.

The whole section (Sec.2) was rewritten at the price of an insignificant increase in volume. Including, all the steps needed to derive the equation $F(OH,HO_2,O_3)=1$ are presented. We believe that in this form this section harmoniously fits into the main canvas.

Figure 3 is unclear what ranges of latitudes are being shown.
Corrected. See Fig. 5.

Figs 4-6 contain horizontal dotted lines but these are not explained in the text or caption.
This horizontal dotted lines marked the upper limit of air pressure (0.046 mbar) where HO2 data are suitable for scientific use. In the revised manuscript we restricted the pressure range by 0.046 mbar.
Response to the comments on the paper by Referee #2

Main text:
On the one hand the authors use model results of 3D-calculations and on the other hand they employ measured concentrations of these species. Deviations from unity are a hint to non-equilibrium conditions or to other reasons such as incorrect reaction rates, erroneous model calculations or errors in the retrieved data. The fundamental idea was to derive such expression not depending on water vapor. The interpretation of deviations from unity is certainly complicated. What means for instance -1% deviation or \(F(\text{OH, HO}_2, \text{O}_3) = 0.99 \)? It indicates that, generally speaking, the agreement is quite good. But in case of stronger deviations it is difficult to say, what is the reason for this discrepancy?

In the revised manuscript (see Fig. 3 and lines 251-262), we have directly compared the source of OH (\(P_{\text{OH}}^{\text{H,O}} \)) due to the reactions \(\text{H}_2\text{O} + \text{hv} \rightarrow \text{H} + \text{OH} \) и \(\text{O}(1\text{D}) + \text{H}_2\text{O} \rightarrow 2\text{OH} \) with the main source of that component, \(P_{\text{OH}} \), via the reactions \(\text{HO}_2 + \text{O} \rightarrow \text{OH} + \text{O}_2 \), \(\text{H} + \text{O}_3 \rightarrow \text{OH} + \text{O}_2 \) and \(\text{H} + \text{HO}_2 \rightarrow 2\text{OH} \). It can be seen from Fig. 1 and Fig. 3 that the indicated 3–4% deviation of \(< F > \) from 1 in the region between 76 km and 86 km is largely due to the neglect of the reactions \(\text{H}_2\text{O} + \text{hv} \rightarrow \text{H} + \text{OH} \) и \(\text{O}(1\text{D}) + \text{H}_2\text{O} \rightarrow 2\text{OH} \).

Also, one should note the following. We found the mistake in Fig. 1 below 50 km caused by the use of improper computer number format (float32 instead of float64). The value of \(< F > \) below 50 km increases.

Minor comments:

The paper has a very voluminous introduction of about 39% related to the entire paper. It has the character of a review paper. I will not criticize that, but I will only mention here.

Indeed, the Introduction contains elements of the review. Thus, we wanted to show that the proposed method of evaluation of simultaneous measurements of mesospheric components has a wide range of possible applications for other areas of the atmosphere.

Line 165: 150 km is already the middle thermosphere.
Corrected. See line 166.

Line 174: entered, maybe better mentioned
Corrected. See line 197.
Line 178: H=7 km is an approximated mean scale height. (1 km scale height corresponds to about 33 K or 7 km to 231 K mean temperature)
Corrected (see lines 197-202 and Figs 1-3). In the revised manuscript, the pseudo-height scale was replaced by pressure levels. In addition, we indicated the approximate heights in km calculated from the pressure profiles for a given month utilizing averaged temperature profiles of the model and hydrostatic equilibrium.

Line 194: reaction rate constants; according to? Quotation?
Corrected. See line 227 and Table 1.

Line 198: The net production term of hydrogen radicals is in essential JH2O[H2O]. Why do you neglect this term in (10)? Too small compared with the other terms in equation (10) and consequently the approach do not depend on water vapor?
In the revised manuscript, we have directly compared the source of OH ($P_{OH}^{H_2O}$) due to the reactions $\text{H}_2\text{O} + h\nu \rightarrow \text{H} + \text{OH}$ and $\text{O}(^1\text{D}) + \text{H}_2\text{O} \rightarrow 2\text{OH}$ with the main source of that component, P_{OH}, via the reactions $\text{HO}_2 + \text{O} \rightarrow \text{OH} + \text{O}_2$, $\text{H} + \text{O}_3 \rightarrow \text{OH} + \text{O}_2$ and $\text{H} + \text{HO}_2 \rightarrow 2\text{OH}$. The ratio $P_{OH}^{H_2O} / P_{OH}$ does not exceed 3-4%.

Two corrections are made in the revised manuscript:
(1) a new figure is added (Fig. 2-3);
(2) the following text is inserted (lines 251-262):
«Note also that Eq. (1) and Eq. (6) take into account only the main daytime source of OH (P_{OH}) specified by reactions R18, R14, and R21:

$$P_{OH} = k_{18} \cdot \text{HO}_2 \cdot \text{O} + 2k_{14} \cdot \text{HO}_2 \cdot \text{H} + k_{21} \cdot \text{O}_3 \cdot \text{H}$$

These reactions run “inside” the HOx (H, OH, HO2, H2O2) family and do not perturb its total concentration. The height–latitude cross-sections of P_{OH} for each month are presented in Fig. 2.
The next important daytime source of OH is specified by reactions R59 and R7 involving H2O, the main source for the HOx family:

$$P_{OH}^{H_2O} = (k_{59} + 2k_7 \cdot \text{O}(^1\text{D})) \cdot H_2\text{O}$$

Figure 3 shows height–latitude cross-sections of $P_{OH}^{H_2O} / P_{OH}$ for each month. Comparing Fig. 1 and Fig. 3, we conclude that the previously indicated 3–4% deviation of
<F> from 1 in the region between 76 km and 86 km is largely due to the neglect of these reactions.»

Line 202: ...of ozone ()?
Corrected. See line 230.

Line 204: The aim is to eliminate O and H and to derive an expression only depending on OH, HO2, O3.
Done. We added new sentence (see line 228):
«We eliminate O and H from Eqs. (1)-(3) and derive an expression depending only on OH, HO2, O3.»

Line 211: \(a = (...)\) could be equation (14.2) and (14) then (14.1) or (15) and the following equations (x+1). There is a large step from equation (10) – (13) to equation (14). Could you give some intermediate steps?
Done. The Sec.2 was rewritten. All the steps needed to derive the equation
\[
F(OH, HO_2, O_3) = 1
\]
were presented. It should be noted that the reaction \(OH + HO_2 \rightarrow H_2O + O_2\) was removed from the analysis. Our numerical calculations showed that its contribution to the analytic expression \(F(OH, HO_2, O_3) = 1\) is less than 1%.

Line 218: \(k_2\) decreases strongly below the lower mesosphere and stratopause. Ozone is no longer in photochemical equilibrium there.
We cannot fully agree with the comment. In particular, daytime lifetime of \(O_3\) in the altitude range of 30-50 km varies in the range 100-1000 s (Brasseur and Solomon, 2005). So, \(O_3\) can stay in photochemical equilibrium depending on height and duration of daylight.
The following sentences were inserted in the revised manuscript (see lines 247-250):
„Note that these components remain short-lived below 50 km (with the lifetimes of about \(10^2\)-\(10^3\) s (Brasseur and Solomon, 2005)) depending on height and duration of daylight. However, for quantitative description of their daytime equilibrium it is necessary to include additional reactions involving, in particular, the components of the NOx family.”

Line 234:...certain altitude z...
Corrected. See line 290.

Line: 239: Factor \(a j^n \sqrt{2\pi}\)?
Corrected. See line 295.

Line 296:...fall into one...
Corrected. See line 360.

Line 304-318: In the lower thermosphere the system is not in chemical equilibrium. Transports play a significant role (see also Grygalashvyly et al. 2012).

Section 6: The characteristic time of atomic oxygen is about $\tau_O=(k_1O_2M)^{-1}$. At 90km is $O_2=1.47\times10^{13}$ cm$^{-3}$, $M=7\times10^{13}$ cm$^{-3}$, and $k_1=10^{-33}$ cm6s$^{-1}$ depending on temperature. The characteristic time has then an order of 10^6 s. About one order smaller is the characteristic time of H, but still large. Both the production and the loss term of HO$_2$ depend on H and O being not in photochemical equilibrium in the lower thermosphere. Therefore a discrepancy relating to HO$_2$ one should expect.

Here, apparently, there was a misunderstanding caused by a possibly insufficiently clear indication in the manuscript. In these parts (Lines 304-318 (new 368-383), Section 6) we consider lower and middle mesosphere, heights below 0.01 mbar (~78km). In the revised manuscript, the upper height is 0.046 mbar (~71-72 km).
Technical Note: Evaluation of simultaneous measurements of mesospheric OH, HO₂, and O₃ under photochemical equilibrium assumption: Statistical approach

Mikhail Yu. Kulikov¹, Anton A. Nechaev¹, Mikhail V. Belikovich¹, Tatiana S. Ermakova¹, and Alexander M. Feigin¹

¹Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia

Correspondence to: Mikhail Yu. Kulikov (mikhail_kulikov@mail.ru)

Abstract

The Technical Note presents a statistically correct statistical approach to evaluating simultaneous measurements of several atmospheric components under the assumption of photochemical equilibrium. We consider simultaneous measurements of OH, HO₂, and O₃ at the altitudes of the mesosphere as a specific example and their daytime photochemical equilibrium as an evaluating relationship. A simplified algebraic equation relating local concentrations of these components in the 50-100 km altitude range has been derived. The parameters of the equation are air temperature, air-concentration neutral density, local zenith angle, and the rates of 9 reactions. We have performed a one-year simulation of the mesosphere and lower thermosphere using a 3D chemical-transport model. The simulation shows that the discrepancy between the calculated evolution of the components and the equilibrium value given by the equation does not exceed 3-4% in the full range of altitudes independent of season or latitude. We have developed the technique of statistic Bayesian evaluation of simultaneous measurements of OH, HO₂ and O₃ based on the equilibrium equation taking into account the measurement error. The first results of application of the technique to MLS/Aura data are presented in this Technical Note. It has been found that the satellite data of HO₂ distribution regularly demonstrates essentially lower altitudes of mesospheric maximum of this component. This has also been confirmed by model HO₂ distributions and comparison with offline retrieval of HO₂ from the daily zonal means MLS primary data radiances.
A prominent feature of the atmospheric photochemical systems is the presence of a large number of chemical components with short lifetime and concentrations close to stable photochemical equilibrium at every instant. The condition of balance between their sources and sinks is described by a system of algebraic equations. This system can be used to determine characteristics of hard to measure atmospheric species through other measurable components, validate results of remote or in situ measurements, estimate reaction rates usually known with significant uncertainty, and to understand processes and chemical reactions that influence variability of the most important atmospheric components, e.g. ozone, in the geographical region of interest.

This approach has found wide application:

1. in 3D chemical transport models that include a large set of physical and chemical processes with a broad spectrum of spatio-temporal scales. In particular, the chemical family concept is widely used for simulating gas phase photochemistry of the lower and middle atmosphere (e.g., Douglass et al., 1989; Kaye and Rood, 1989; Rasch et al., 1995), when transport is taken into account only for the concentration of a chemical family, while relative concentrations of the constituent fast components are calculated from the instantaneous stable equilibrium condition. Complemented with the Henry law (e.g., Djouad et al., 2003; Tulet et al., 2006) in multiphase models, this approach markedly saves calculation time and increases the overall stability of the numerical scheme. Moreover, the use of the photochemical equilibrium condition to simulate fast components dynamics reduces the phase space dimension of box models significantly (e.g., Kulikov and Feigin, 2014), allowing a comprehensive analysis of nontrivial nonlinear dynamic properties of various atmospheric photochemical systems (e.g., Feigin and Konovalov, 1996; Feigin et al., 1998; Konovalov et al., 1999; Konovalov and Feigin, 2000; Kulikov et al., 2012).

2. in investigations of the chemistry of the surface layer and free troposphere in different regions (over megalopolises, in rural areas, in the mountains, over the seas) based on measurements of nitrogen species, peroxy radicals, ozone, aerosols, and other components aimed at understanding processes impacting the surface ozone formation and air quality. The equilibrium condition is most frequently used for nitrogen species. For example, Chameides (1975) proposed a model for determining the vertical distribution of odd nitrogen, in which the HNO$_3$ profile could be
deployed to retrieve profiles of five other components (NO, NO₂, NO₃, N₂O₅, and HNO₂) from their photochemical equilibrium condition. In the paper by Stedman et al. (1975) the equation for NO₂ equilibrium that accounted only for the main source and sink of this component was applied to determine the photodissociation constant J(NO₂). A more accurate equation for the NO₂ equilibrium was used by Crawford et al. (1996) and Kondo et al. (1996) to determine the NO₂/NO partitioning and NOₓ, allowing, in particular, investigating the spatial distribution of NOₓ/NOᵧ over the Pacific.

Night-time equilibrium in the NO₂-NO₃-N₂O₅ system is used to determine surface layer N₂O₅ concentration, equilibrium constant of this system, equilibrium partitioning between NO₃ and N₂O₅, and loss coefficients of NO₃, N₂O₅ and NOₓ (Martínez et al., 2000; Brown et al., 2003; Crowley et al., 2010; McLaren et al., 2010; Benton et al., 2010; Sobanski et al., 2016).

Platt et al. (1979) used the CH₂O photochemical equilibrium condition to analyse results of simultaneous measurement of CH₂O, O₃ and NO₂ and to identify mechanisms of CH₂O formation over rural areas and in maritime air. In the papers by Ko et al. (2003), Cantrell et al. (2003), Penkett et al. (1997), Penkett et al. (1998) algebraic expressions derived from equilibrium conditions for H₂O₂, peroxy radicals and nitrogen species were used to determine equilibrium values of peroxide concentration, total peroxy radical level, and NO/NO₂ ratio, and to diagnose the ozone production and loss levels in clean or polluted troposphere.

(3) in stratospheric chemistry studies, including determination of a critical parameter in catalytic cycles of ozone destruction in the polar stratosphere. In particular, the equilibrium condition for ClO and Cl₂O₂ along with the measurement data of daytime and night-time concentrations of these components in the polar stratosphere are used to evaluate the temperature dependence of the ClO concentration, reaction constants determining the ClO + ClO +M ↔ Cl₂O₂ + M equilibrium, and the photolysis rate of Cl₂O₂ (Ghosh et al., 1997; Avallone et al., 2001, Solomon et al., 2002; Stimpfle et al., 2004; von Hobe et al., 2005; Berthet et al., 2005; Butz et al., 2007; von Hobe et al., 2007; Kremser et al., 2011; Sumińska-Ebersoldt et al., 2012; Wetzel et al., 2012).

Pyle et al. (1983) proposed a method for derivation of the OH concentration from satellite infrared measurements of NO₂ and HNO₃ using a simple algebraic relation following from the equilibrium condition for HNO₃. Algorithms for retrieving distributions of OH and HO₂ from the satellite measurement data of O₃, NO₂, H₂O, HNO₃ by LIMS/Nimbus 7 and UARS with the help of algebraic models following from the photochemical equilibrium of Oₓ, HOₓ and HNO₃ components
were proposed by Pyle and Zavody (1985), Pickett and Peterson (1996). It is also worthy of note
that similar models are widely used for calculating concentrations of components with a short
lifetime (e.g. O(1D) and OH) and subsequent evaluating vertical distributions of eddy diffusivity from
measurements of trace gas concentration profiles (see, e.g., Massie and Hunten, 1981).

Kondo et al. (1988) made use of the photochemical equilibrium between NO and NO₂ for
understanding diurnal variations of NO concentration measured during aircraft flights. In the paper
by Webster et al. (1990) simultaneous in situ balloon-borne measurements of NO, NO₂, HNO₃, O₃
and N₂O and the photochemical equilibrium condition for various nitrogen components were used
to determine OH, N₂O₅ and NOₓ concentrations. A similar approach was employed by Kawa et al.
(1990), who obtained NO₂, N₂O₅, ClNO₃, HNO₃ and OH concentrations from aircraft measurements
of NO, ClO and O₃ concentrations. Hauchecorne et al. (2010) found that NO₃ concentration
measured by GOMOS/ENVISAT positively correlates with temperature at altitudes up to 45 km in
the region where NO₃ is in chemical equilibrium with O₃. Funke et al. (2005) used NO and NO₂
stable-state photochemistry to verify correctness of the new approach of retrieving distributions of
those component from MIPAS/ENVISAT measurement data. Marchland et al. (2007) proposed a
method to retrieve the temperature distribution in the stratosphere between 30 km and 40 km from
O₃ and NO₃ measurements by GOMOS with the help of a simple equation derived from the night-
time NO₃ chemical equilibrium.

(4) in investigations of the chemistry of Oₓ–HOₓ components and atmospheric glows in the
mesosphere and MLT area. In particular, Kulikov et al. (2006, 2009) proposed algorithms for the
simultaneous retrieval of O, H, HO₂ and H₂O from joint OH and O₃ satellite measurement, in which
the assumption of photochemical equilibrium of O₃, OH, and HO₂ was utilized. For several decades
the assumption of the photochemical equilibrium of ozone (PEO) was widely used to determine
distributions of atomic oxygen and atomic hydrogen at altitudes of the MLT via satellite and rocket
measurement of ozone concentration and airglow emissions (e.g., Evans and Llewellyn, 1973;
Good, 1976; Pendleton et al., 1983; McDade et al., 1985; McDade and Llewellyn, 1988; Evans et
al., 1988; Thomas, 1990; Llewellyn et al., 1993; Llewellyn and McDade, 1996; Mlynczak et al.,
applied PEO to infer the seasonal and global climatology of atomic oxygen using WINDII/UARS.
PEO was deployed to investigate hydroxyl emission mechanisms, morphology, and variability in
the upper mesosphere – lower thermosphere region (Marsh et al., 2006; Xu et al., 2010, 2012;
Kowalewski et al., 2014). Mlynczak and Solomon (1991, 1993) and Mlynczak et al. (2013b) used the equilibrium assumption to derive exothermic chemical heat. The PEO assumption employed for studying the mesospheric OH* layer response to gravity waves (Swenson and Gardner, 1998). In ultimately theoretical works, e.g. Grygalashvyly et al. (2014), Grygalashvyly (2015), PEO was used to derive the dependence of excited hydroxyl layer concentration and altitude on atomic oxygen and temperature. In the paper by Sonnemann et al. (2015) it was used to analyze annual variations of OH* layer. Moreover, PEO is frequently applied implicitly, when authors are equating the nighttime loss of ozone in the reaction with atomic hydrogen and production of ozone by a 3-body reaction of molecular and atomic oxygen (e.g., Nikoukar et al., 2007).

In the present Technical note we demonstrate how the photochemical equilibrium condition of several atmospheric components may be employed to statistically correctly validate data of their simultaneous measurements, particularly in the case when measurement error is large.

We consider the simultaneous photochemical daytime equilibrium of OH, HO₂, and O₃ at the altitudes of the mesosphere. We have derived a simplified algebraic equation

\[F(OH, HO_2, O_3) = 1, \]

describing the relationship between local concentrations of the components at the altitudes of 50–100 km. The only parameters of the equation are air temperature, air concentration neutral density, local zenith angle, and constants of 9 8 reactions. One-year simulation of the mesosphere and lower thermosphere based on a 3D chemical-transport model shows that the discrepancy between the calculated evolution of the components and the equilibrium value given by the equation does not exceed 3–4% in the full range of altitudes independent of season or latitude.

We have developed a technique of statistical Bayesian evaluation of simultaneous measurement of OH, HO₂ and O₃ based on the mentioned equilibrium equation taking into account the measurement error. The first results of its application to MLS/Aura data (Wang et al., 2015a,b; Schwartz et al., 2015) are presented. It is found that the satellite data of HO₂ distribution regularly demonstrates essentially lower altitudes of this component’s mesospheric maximum. These results confirm the ones obtained via the offline retrieval of HO₂ from the MLS primary data (Millán et al., 2015).

The Technical Note is structured as follows. A 3D chemical transport model is briefly described in Sect. 2. In Sect. 3 a simplified algebraic relationship between the equilibrium concentrations of OH, HO₂ and O₃ is derived and verified by 3D simulations. Section 4 presents the
method of statistical evaluation of simultaneous data of OH, HO\textsubscript{2} and O\textsubscript{3}. The results of applying the method to MLS/Aura data are presented in Sect. 5. The last Section contains discussion of the results followed by concluding remarks.

2. Model and calculations

For our calculations we used the global 3D chemical transport model (CTM) of the middle atmosphere developed by the Leibniz Institute of Atmospheric Physics (IAP) (e.g., Sonnemann et al., 1998). It was designed particularly for investigation of the spatio-temporal structure of phenomena in the MLT region and specifically in the extended mesopause region. The model includes 3D advective and vertical diffusive transport (turbulent and molecular). The grid-point model extends from the ground up to the lower middle thermosphere (0–150 km; 118 pressure-height levels). The horizontal resolution amounts to 5.625° latitudinally and 5.625° longitudinally.

The chemistry module consists of 19 constituents, 49 chemical reactions, and 14 photo-dissociation reactions. CTM was described in numerous papers (e.g., Sonnemann et al., 1998; Körner and Sonnemann, 2001; Grygalashvyly et al., 2009, 2011, 2012). It was validated, particularly for ozone, with measurement in a number of papers (Hartogh et al., 2004, 2011; Sonnemann et al., 2006a, 2006b, 2007). Three-dimensional fields of temperature and winds are used from the Canadian Middle Atmosphere Model (CMAM) for the year 2000 (de Grandpre et al., 2000; Scinocca et al., 2008).

The chemical module described in numerous papers (e.g., Sonnemann et al., 1998; Körner and Sonnemann, 2001; Grygalashvyly et al., 2009, 2011, 2012) consists of 19 constituents, 49 chemical reactions, and 14 photo-dissociation reactions (see Table 1). The reaction rates used in the model are taken from Burkholder et al. (2015). The temperature-dependent reaction rates are calculated on-line, thus, they are sensitive to small temperature fluctuations. We make use of the pre-calculated dissociation rates (Kremp et al., 1999).

The evolution of the components of HO\textsubscript{x} (H, OH, HO\textsubscript{2}, H\textsubscript{2}O\textsubscript{2}) and NO\textsubscript{x} (N, NO, NO\textsubscript{2}, NO\textsubscript{3}) families is calculated using the chemical family concept proposed by Shimazaki (Shimazaki, 1985). This is done because of the presence of short-lived components among these families, with lifetimes much shorter than those of the families themselves, which imposes significant restrictions on the value of the CTM’s integration step. For example, the daytime lifetimes of OH and HO\textsubscript{2}...
above 70 km are about 1 s or less, while the lifetime of the HO\(_x\) family is about \(10^4\) s or more. Therefore, when calculating these components individually it is necessary to set the CTM's integration step to be much less than 1 s. In our work, the Shimazaki technique is applied for calculating the evolution of each component of the HO\(_x\) and NO\(_x\) families. We emphasize that this technique does not explicitly use the steady-state approximation for the components, instead it utilizes the approach based on an implicit Euler scheme (see Shimazaki, 1985). This allows increasing the integration step of CTM significantly without loss of accuracy of calculating the short-lived components. In our work the integration time is chosen to be 9 s.

The model includes 3D advective and vertical diffusive transport (turbulent and molecular). Three-dimensional fields of temperature and winds are taken from the Canadian Middle Atmosphere Model (CMAM) for the year 2000 (de Grandpre et al., 2000; Scinocca et al., 2008). We use the Walcek-scheme (Walcek and Aleksic, 1998; Walcek, 2000) for advective transport and the implicit Thomas algorithm as described in Morton and Mayers (1994) for diffusive transport. The vertical eddy diffusion coefficient is based on the results by Lübken (1997).

The CTM driven by COMMA-IAP middle atmosphere dynamics (Berger, 1994; Ebel et al., 1995; Kremp et al., 1999; Berger and von Zahn, 1999) was verified by measurements, particularly for ozone, in a number of papers (Hartogh et al., 2004, 2011; Sonnemann et al., 2006, 2007).

We calculated the annual variation of spatio-temporal distributions of OH, HO\(_2\), and O\(_3\) and constructed distributions of the \(F(OH, HO_2, O_3)\) function introduced in Sect. 1. To remove transitional regions that correspond to sunset and sunrise, we take into account only periods of local time with the solar zenith angle \(\chi < 85^\circ\). The previous research based on satellite measurements had often showed results on pressure heights, or “pseudo altitudes”. Following them, in the present paper we present our results on the pressure heights \(z' = H\ln(p/p_0)\), where \(H = 7\) km is the scale height, \(p\) is the pressure, and \(p_0 = 1013\) hPa is the pressure at the surface. The obtained results are presented in the model coordinates, so the pressure-height levels are used for the vertical axes. In addition, the approximate altitudes are shown in the figures of Sec. 1, calculated for a given month utilizing averaged temperature profiles of the model and hydrostatic equilibrium.

3. Daytime photochemical equilibrium of OH, HO\(_2\), and O\(_3\) at the altitudes of the mesosphere
The daytime balance of \(\text{OH}, \text{HO}_2 \), and \(\text{O}_3 \) concentrations at mesospheric altitudes is determined by

the following primary reactions:

1. \(\text{O}(^3\text{P}) + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M}, \quad k_1 \)
2. \(\text{O}_3 + \text{hv} \rightarrow \text{O}_2 + \text{O}(^1\text{D}, ^3\text{P}), \quad k_2 = J_{\text{O}_3} = J_1 + J_2 \)
3. \(\text{O}_3 + \text{H} \rightarrow \text{O}_2 + \text{OH}, \quad k_3 \)
4. \(\text{O} + \text{OH} \rightarrow \text{O}_2 + \text{H}, \quad k_4 \)
5. \(\text{O} + \text{HO}_2 \rightarrow \text{O}_2 + \text{OH}, \quad k_5 \)
6. \(\text{O}_2 + \text{H} + \text{M} \rightarrow \text{HO}_2 + \text{M}, \quad k_6 \)
7. \(\text{O}_3 + \text{OH} \rightarrow \text{O}_2 + \text{HO}_2, \quad k_7 \)
8. \(\text{H} + \text{HO}_2 \rightarrow 2\text{OH} \quad k_8 \)
9. \(\text{OH} + \text{HO}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2, \quad k_9 \)

where \(k_1-k_9 \) are the corresponding reaction constants, \(J_{\text{O}_3} \) is the total dissociation rate of ozone, which is the sum of two branches, \(J_1 \) and \(J_2 \), and \(\text{M} \) is air concentration.

The daytime balance of \(\text{OH} \) concentration at mesospheric altitudes is determined by the following primary reactions (Brasseur and Solomon, 2005):

1. \(\text{HO}_2 + \text{O} \rightarrow \text{OH} + \text{O}_2 \) (R18 in Table 1)
2. \(\text{H} + \text{O}_3 \rightarrow \text{OH} + \text{O}_2 \) (R21)
3. \(\text{H} + \text{HO}_2 \rightarrow 2\text{OH} \) (R14)
4. \(\text{OH} + \text{O} \rightarrow \text{H} + \text{O}_2 \) (R17)
5. \(\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2 \) (R22)

The daytime balance of \(\text{HO}_2 \) concentration:

1. \(\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}, \text{M} \text{ is molecule of air} \) (R20)
2. \(\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2 \) (R22)
3. \(\text{HO}_2 + \text{O} \rightarrow \text{O}_2 + \text{OH} \) (R18)

The daytime balance of \(\text{O}_3 \) concentration:

1. \(\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M} \) (R12)
2. \(\text{O}_3 + \text{hv} \rightarrow \text{O}_2 + \text{O} \) (R52)
3. \(\text{O}_3 + \text{hv} \rightarrow \text{O}_2 + \text{O}(^1\text{D}) \) (R53)
4. \(\text{O}_3 + \text{H} \rightarrow \text{OH} + \text{O}_2 \) (R21)
Expressions for local concentrations of OH, HO\(_2\), and O\(_3\) in the photochemical equilibrium are written in the form

\[
\begin{align*}
\text{OH} &= \frac{(k_4 \cdot O_3 \cdot H + k_5 \cdot HO_2 \cdot O + 2k_8 \cdot HO_2 \cdot H)}{(k_1 \cdot O + k_7 \cdot O_3 + k_9 \cdot HO_2)} \quad (10) \\
\text{HO}_2 &= \frac{(k_6 \cdot M \cdot O_2 \cdot H + k_7 \cdot O_3 \cdot OH)}{(k_5 \cdot O + k_8 \cdot H + k_9 \cdot OH)} \quad (11) \\
O_3 &= \frac{k_1 \cdot M \cdot O_2 \cdot O}{k_2 + k_3 \cdot H + k_7 \cdot OH} \quad (12) \\
\text{OH} &= \frac{k_{18} \cdot HO_2 \cdot O + 2k_{14} \cdot HO_2 \cdot H + k_{21} \cdot O_3 \cdot H}{k_{17} \cdot O + k_{22} \cdot O_3} \quad (1) \\
\text{HO}_2 &= \frac{k_{20} \cdot M \cdot O_2 \cdot H + k_{22} \cdot O_3 \cdot OH}{k_{18} \cdot O} \quad (2) \\
O_3 &= \frac{k_{12} \cdot M \cdot O_2 \cdot O}{k_{52} + k_{53} + k_{21} \cdot H} \quad (3)
\end{align*}
\]

where \(k_i\) are the corresponding reaction constants from Burkholder et al. (2015).

We eliminate O and H from Eqs. (1)-(3) and derive an expression depending only on OH, HO\(_2\), O\(_3\).

Almost everywhere in the mesosphere and lower thermosphere (with the exception of 85-95 km, see Kulikov et al., 2017) the photodissociation reaction Eq. (2) is the main ozone sink, i.e.

\[k_2 \gg k_3 \cdot H + k_7 \cdot OH \cdot k_{52} + k_{53} >> k_{21} \cdot H\]

Therefore, in the zero order approximation Eq. (12 3) can be simplified and the concentration of atomic oxygen can be defined in terms of ozone concentration:

\[
\begin{align*}
O &= \frac{k_1 \cdot O_3}{k_1 \cdot M \cdot O_2} \quad (13) \\
O &= \frac{k_{52} + k_{53} \cdot O_3}{k_{12} \cdot M \cdot O_2} \quad (4)
\end{align*}
\]

Making use of Eq. (43 4) we can derive from Eq. (14 2) an expression for the concentration of H in terms of concentrations of OH, HO\(_2\) and O\(_3\):

\[
H = \frac{k_{18} \cdot (k_{52} + k_{53})}{(k_{12} \cdot M \cdot O_2) \cdot HO_2 - k_{22} \cdot OH} \cdot O_3 \quad (5)
\]

By substituting this equation and Eq. (134) into Eq. (401) we obtain an expression relating OH, HO\(_2\), and O\(_3\):
where

$$\alpha = \frac{(k_5 + k_6 \cdot HO_2 / O_3) \cdot k_6 \cdot k_1 \cdot M \cdot O_2 + k_1 \cdot k_5 \cdot k_7 \cdot O_3 + 2 \cdot k_1 \cdot k_5 \cdot k_8 \cdot HO_2}{k_4 \cdot k_6 \cdot k_2} \times \frac{(k_3 \cdot O_3 + 2 \cdot k_5 \cdot HO_2)}{k_6 \cdot M \cdot O_2}\). \]

$$F(OH,HO_2,O_3) = \frac{k_{20} \cdot M \cdot O_2}{k_{20} \cdot M \cdot O_2 + k_{21} \cdot O_3 + 2 \cdot k_{14} \cdot HO_2 + \frac{k_{12} \cdot M \cdot O_2 \cdot k_{22}}{(k_{52} + k_{53}) \cdot k_{17} \cdot HO_2}}\times \frac{k_{18} \cdot OH}{k_{18} \cdot HO_2} = 1$$

Figure 1 shows height–latitude cross-sections of $<F(OH,HO_2,O_3)>$ for each month (in this section angle brackets denote monthly averaged zonal mean values). The dashed area corresponds to $\chi > 85^\circ$. One can see that eq. (14, 15) is most accurate within the 50–80 km range and above 90–96 km, where $|<F>-1| \leq 1\%$. The difference reaches 3–4 % in the region between 80–76 km and 90–96 km. The altitude of this region has an annual variation with a maximum deviation in the winter hemisphere. Below 50 km the value of $<F>$ sharply drops down increases up to 0.25–0.30 at 40 km (not shown in Fig. 1) thus below the stratopause Eq. (14–6) no longer describes the simultaneous photochemical equilibrium of OH, HO_2 and O_3. Note that these components remain short-lived below 50 km (with the lifetimes of about 10^2–10^3 s (Brasseur and Solomon, 2005)) depending on height and duration of daylight. However, for quantitative description of their daytime equilibrium it is necessary to include additional reactions involving, in particular, the components of the NO_x family.

Note also that Eq. (1) and Eq. (6) take into account only the main daytime source of OH (P_{OH}) specified by reactions R18, R14, and R21:

$$P_{OH} = k_{18} \cdot HO_2 \cdot O + 2k_{14} \cdot HO_2 \cdot H + k_{21} \cdot O_3 \cdot H$$

These reactions run “inside” the HOx (H, OH, HO_2, H_2O) family and do not perturb its total concentration. The height–latitude cross-sections of $<P_{OH}>$ for each month are presented in Fig. 2.

The next important daytime source of OH is specified by reactions R59 and R7 involving H_2O, the main source for the HOx family:

$$P_{OH}^H = (k_{59} + 2 \cdot k_7 \cdot O(D)) \cdot H_2O$$
Figure 3 shows height–latitude cross-sections of $\langle P_{OH}^{H_2O} / P_{OH} \rangle$ for each month. Comparing Fig. 1 and Fig. 3, we conclude that the previously indicated 3–4 % deviation of $\langle F \rangle$ from 1 in the region between 76 km and 86 km is largely due to the neglect of these reactions.

Another source of OH is sporadically activated during charged particle precipitation events and exists for a relatively short time (several days). Solar proton events (SPE) perturb the ionic composition in the mesosphere and the upper stratosphere considerably and trigger a whole cascade of reactions involving ions, neutral components and their clusters (e.g., O$_2^+$·H$_2$O). This leads to an additional (to reactions R59 and R7) conversion of H$_2$O molecules into OH and H (Solomon et al., 1981). The maximum of the OH production rate (P_{OH}^{SPE}) induced by SPE is located in the polar latitudes in the region of 60–80 km and, as a rule, does not exceed 2·103 cm$^{-3}$ s$^{-1}$ (Jackman et al., 2011, 2014). It can be seen from Fig. 2 that at these latitudes and altitudes the P_{OH}^{SPE} / P_{OH} ratio does not exceed 1-2%, even for the maximum values of P_{OH}^{SPE}. This means that the impact of P_{OH}^{SPE} on Eq. (6) is of the same order of smallness as in the case of reactions R59 and R7, hence, it may be neglected. A similar conclusion can be made for other reactions from Table 1, not accounted for by Eq. (6), including the ones involving NO$_x$ in both quiet and perturbed conditions in the mesosphere.

4. Method of statistical evaluation of simultaneous measurement of OH, HO$_2$ and O$_3$

The proposed method is based on the statistical Bayesian procedure described in the works by Kulikov et al. (2009) and Nechaev et al. (2016). It was originally developed for retrieving trace gas concentrations in the mesosphere from ground-based and satellite measurements of other mesospheric components. With respect to the considered evaluation problem this procedure consists of three steps: (1) constructing conditional probability density function (PDF) of OH, HO$_2$ and O$_3$ concentration values at each altitude z in the selected interval assuming that there is certain measurement data of these components and the algebraic relationship (44.6) is valid; (2) calculating the first moments of this distribution, i.e. expected value and dispersion of each component using the Metropolis-Hastings algorithm (Chib and Greenberg, 1995) for multidimensional integration; (3) comparing the obtained results with the initial measurement data.
For constructing posterior PDF it is convenient to introduce vector \(\tilde{u} \{ \text{HO}_2^-, \text{O}_3^-, \text{OH}^- \} \), whose components are the retrieved values of chemical species concentrations at a certain altitude \(z \), and vector \(\bar{x} \{ \text{HO}_2^m, \text{O}_3^m, \text{OH}^m \} \) composed of experimentally measured values of the components of vector \(\tilde{u} \), \(x_j = u_j + \xi_j \), \(j = 1..3 \), where \(\xi_j \) is a random error of measuring the \(j \)-th component of vector \(\tilde{u} \) at the altitude \(z \). It is assumed that

1. random variables \(\xi_j \) are distributed normally with densities

\[
W_j(\xi_j) = \frac{1}{\sqrt{2\pi}\sigma_j} \exp \left(-\frac{\xi_j^2}{2\sigma_j^2} \right),
\]

(15)

\[
W_j(\xi_j) = \frac{1}{\sigma_j\sqrt{2\pi}} \exp \left(-\frac{\xi_j^2}{2\sigma_j^2} \right);
\]

(7)

2. \(\xi_j \) are mutually independent:

\[
\xi = \{\xi_1, \xi_2, \xi_3\} \sim W_\xi(\bar{\xi}) = \prod_j W_j(\xi_j),
\]

(46.8)

where \(W_\xi(\bar{\xi}) \) is the total PDF of all \(\xi_j \);

3. dispersions \(\sigma_j \) in Eq. (457), that are expected error values, are assumed to be known a priori (in our case they are provided by the MLS retrieval algorithm along with measured data).

Then the probability to observe vector \(\bar{x} \) is given by the conditional PDF

\[
P_x(\bar{x} \mid \tilde{u}) = \int \delta(\bar{x} - \tilde{u}) W_\xi(\bar{\xi}) d^3\bar{\xi} = W_\xi(\bar{x} - \tilde{u}),
\]

(47.9)

where \(\delta(\ldots) \) is delta function.

The prior relationship of \(\text{HO}_2^-, \text{HO}_2^\text{ret}, \text{O}_3^-, \text{O}_3^\text{ret} \) and \(\text{OH}^-, \text{OH}^\text{ret} \) concentrations (Eq. (44.6)) can be written as \(u_3 = G(u_1, u_2) \). Integrating the left-hand side of Eq. (17) with conditional PDF of the variable \(u_3 \):

\[
P_{u_3}(u_3 \mid u_1, u_2) = \delta(u_3 - G(u_1, u_2)),
\]

yields a likelihood function of the model

\[
P_x(\bar{x} \mid u_1, u_2) = w_3(x_3 - G(u_1, u_2)) \cdot w_1(x_1 - u_1) w_2(x_2 - u_2).
\]

(48.10)

According to Bayes’ theorem, the posterior function, i.e. the probability density of latent variables \(u_i \),
and \(u_2 \), under the condition that \(\bar{x} \) is observed, is defined by the expression

\[
P(u_1, u_2 | \bar{x}) \propto P_x(\bar{x} | u_1, u_2) \cdot P_{\text{apr}}(u_1, u_2)
\]

\[
\propto \exp \left(-\frac{(x_1 - u_1)^2}{2\sigma_1^2} \right) \cdot \exp \left(-\frac{(x_2 - u_2)^2}{2\sigma_2^2} \right) \cdot \exp \left(-\frac{(x_3 - G(u_1, u_2))^2}{2\sigma_3^2} \right) \cdot P_{\text{apr}}(u_1, u_2)
\]

in which \(P_{\text{apr}}(u_1, u_2) \) defines prior PDF of \(u_1 \) and \(u_2 \).

The retrieved value of the latent variable \(u_{1,2,3} \) is hereinafter understood as the mean value of the function in Eq. (19.11):

\[
\langle u_{1,2} \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{1,2} \cdot P(u_1, u_2 | \bar{x}) du_1 du_2
\]

\[
\langle u_3 \rangle = \int_{-\infty}^{\infty} G(u_1, u_2) \cdot P(u_1, u_2 | \bar{x}) du_1 du_2.
\]

Its dispersion defines the uncertainty of the retrieval:

\[
\sigma_{u_j} = \sqrt{\langle u_j^2 \rangle - \langle u_j \rangle^2}, \quad j = 1, 3,
\]

where the angle brackets denote averaging in the sense of Eq. (20.12).

5. MLS/Aura data evaluation and results

We used the results of simultaneous measurement of trace gas concentrations and air temperature \(T_{\text{MLS}}^{\text{MLST}}(p) \) obtained with MLS/Aura (Wang et al., 2015a,b; Schwartz et al., 2015) within the 100 – 10^{-2} hPa air pressure interval. We used the latest version (v4.2) of the MLS “standard” product (Livesey et al., 2017) for trace gas concentrations and temperature \(T \) within the 1 – 0.046 mbar pressure interval where all data are suitable for scientific applications (Wang et al., 2015a,b; Schwartz et al., 2015). We took the daytime data when the solar zenith angle \(\chi < 80^\circ \) for January, May, and September 2005. All data were appropriately screened. “Pressure”, “estimated precision”, “status flag”, “quality”, “convergence” and “clouds” fields were taken into account. \(\text{HO}_2 \) data were seen as the day-minus-night difference as prescribed by the MLS data guidelines (Livesey et al., 2017). Following Pickett et al. (2008), each daytime profile of this component measured on a given day at a latitude \(\text{Lat} \), a profile resulting from averaging the nighttime profiles of \(\text{HO}_2 \), measured on the same day in the latitude range of \(\text{Lat} \pm 5^\circ \), was subtracted. This operation
eliminates systematic biases affecting HO_2 retrievals, but limits the studied latitude range to the one where MLS observes both daytime and nighttime data.

The integrals in Eq. (20)–(24) were calculated at every pressure level p for each set of simultaneously measured vertical profiles $O\text{H}^{\text{MLS}}(p)$, $\text{HO}_2^{\text{MLS}}(p)$, $O_3^{\text{MLS}}(p)$, $T^{\text{MLS}}(p)$, $\sigma_{\text{OH}^{\text{MLS}}}(p)$, $\sigma_{\text{HO}_2^{\text{MLS}}}(p)$, $\sigma_{O_3^{\text{MLS}}}(p)$. The vertical profiles $<\text{OH}^r>(p)$, $<\text{OH}^{\text{ret}}>(p)$, $<\text{HO}_2^r>(p)$, $<\text{HO}_2^{\text{ret}}>(p)$, $<O_3^r>(p)$, $<O_3^{\text{ret}}>(p)$, $\sigma_{\text{OH}}^r(p)$, $\sigma_{\text{OH}^{\text{ret}}}(p)$, $\sigma_{\text{HO}_2}^r(p)$, $\sigma_{\text{HO}_2^{\text{ret}}}(p)$, $\sigma_{O_3}^r(p)$, $\sigma_{O_3^{\text{ret}}}(p)$ were found at each point of the globe along the satellite track. Numerical integration was performed by a Monte Carlo method. For each pressure level, a sample of about $5 \cdot 10^5$ pairs of random variable values distributed with normalized probability density given by Eq. (191) with $P_{\text{apr}}(u_1, u_2) \equiv 1$ was generated with the help of the Metropolis-Hastings algorithm (Chib and Greenberg, 1995). In this case, the statistical moments in Eq. (20)–(24) were determined by summation over the sample.

A typical example of retrieved profiles HO_2^r, O_3^r and OH^r, HO_2^{ret}, O_3^{ret} and OH^{ret} (black curves) in comparison with the measured HO_2^{MLS}, O_3^{MLS} and $O\text{H}^{\text{MLS}}$ (red curves) is given in Fig. 24. First of all, note that statistics of the retrieved data is in satisfactory agreement with the initial measurement of OH and O_3 concentrations, but not of HO_2. The error of satellite measurement, $\sigma_{\text{HO}_2^{\text{MLS}}}$, greatly exceeds the uncertainty of retrieval, $\sigma_{\text{HO}_2^r}$, $\sigma_{\text{HO}_2^{\text{ret}}}$, so at some altitudes the values of $<\text{HO}_2^{\text{MLS}}>$ (red dashed curves) do not fall within the corresponding intervals $<\text{HO}_2^r> \pm \sigma_{\text{HO}_2^r}$, $<\text{HO}_2^{\text{ret}}> \pm \sigma_{\text{HO}_2^{\text{ret}}}$. Second, the results of a single measurement of all three components and their retrieved values have considerable uncertainties relative to their means within the whole interval of altitudes. Therefore, the observed and retrieved data should be compared using the commonly accepted approach (e.g., Pickett et al., 2008) of averaging large ensembles of profiles within certain latitude and time ranges, or zones. It is supposed that the noise of satellite measurement instruments is delta-correlated, so that random values corresponding to each single measured or retrieved profile are statistically independent. In this case the dispersion of a measured or retrieved zonal mean profile is determined by summation
\[\sigma^2 = \frac{1}{N} \sum_{k=1}^{N} \sigma_k^2, \]

where \(N \) is the number of measured or retrieved profiles within the zone and \(\sigma_k^2 \) is the dispersion of the \(k \)-th measured or retrieved profile.

The range of latitudes \(\pm 82^\circ \) N-covered by the satellite trajectory was divided into 46 equal zones, each 17 bins of 10° each. About 3000 single profiles of each chemical component fall into one zone during each month of MLS/Aura observations. Therefore, the resulting uncertainties due to measurement noise of OH, HO\textsubscript{2} and O\textsubscript{3} concentration profiles (both measured and retrieved) averaged over such ensembles are significantly (about one and a half order of magnitude) lower than the uncertainties of individual profiles. Examples of such profiles for January, May and September 2005 are presented in Fig. 35. One can see that the indicated uncertainties are now small enough to make clear conclusions about the extent to which the observed and retrieved profiles agree by comparing their averaged values only, i.e. \(< \text{OH}^{\text{MLS}} > \), \(< \text{HO}_2^{\text{MLS}} > \), \(< \text{O}_3^{\text{MLS}} > \) and \(< \text{OH}^{\text{ret}} > \), \(< \text{HO}_2^{\text{ret}} > \), \(< \text{O}_3^{\text{ret}} > \).

Figures 46–68 show monthly averaged zonal mean pressure–latitude cross-sections of \(< \text{HO}_2^{\text{r}} > \), \(< \text{HO}_2^{\text{MLSR}} > \), \(< \text{HO}_2^{\text{MLSM}} > \), \(< \text{O}_3^{\text{r}} > \), \(< \text{O}_3^{\text{MLSR}} > \), \(< \text{O}_3^{\text{MLSM}} > \) and similar characteristics for OH and O\textsubscript{3} concentration profiles for three months of the year 2005. First, clearly, the distributions of \(< \text{OH}^{\text{r}} > \) and \(< \text{O}_3^{\text{r}} > \) are in good qualitative and quantitative agreement with the initial MLS/Aura measurement data at lower altitudes, below \(\sim 0.1 \) hPa. At higher altitudes, the distributions of \(< \text{OH}^{\text{r}} > \) reproduce all the main structural features of \(< \text{OH}^{\text{MLS}} > \) except for a small 2–3 km downward displacement of the OH layer. Moreover, at these altitudes the retrieved OH concentration has lower values than the observed one with a relative difference \(\text{OH} \Delta \) reaching several tens of percent at altitudes above \(\sim 0.05 \) hPa. The distribution of \(< \text{O}_3^{\text{r}} > \) above 0.1 hPa, in turn, differs considerably from \(< \text{O}_3^{\text{MLS}} > \), both in quantity and quality, especially within the 0.003–0.05 hPa altitude interval, where \(\Delta \text{O}_3 \) locally reaches several times. Second, for all months there are significant qualitative and quantitative differences between \(< \text{HO}_2^{\text{r}} > \) and \(< \text{HO}_2^{\text{MLSM}} > \), the most noticeable one being location of the mesospheric maximum of this component’s concentration.
According to the observations it is close to 0.1 hPa, while the retrieved data demonstrates the altitude of about 0.05 hPa. First, clearly, the distributions of $<\text{OH}^{\text{ret}}>$ and $<\text{O}_3^{\text{ret}}>$ are in good qualitative and quantitative agreement with the initial MLS/Aura measurement data at lower altitudes, below ~0.07 mbar and 0.1 mbar, correspondingly. At higher altitudes, the distributions of $<\text{OH}^{\text{ret}}>$ reproduce all the main structural features of $<\text{OH}^{\text{MLS}}>$, but the retrieved OH concentration has lower values than the observed one with a relative difference ΔOH reaching ~15% at the top. The distribution of $<\text{O}_3^{\text{ret}}>$ above 0.1 mbar, in turn, differs considerably from $<\text{O}_3^{\text{MLS}}>$, both in quantity and quality, and ΔO_3 locally reaches 50-60% and more. Second, for all months there are significant qualitative and quantitative differences between $<\text{HO}_2^{\text{ret}}>$ and $<\text{HO}_2^{\text{MLS}}>$, the most noticeable one being location of the mesospheric maximum of this component’s concentration. According to the observations it is close to 0.1 mbar, while the retrieved data demonstrate the altitudes of about ~0.046 mbar or higher. Our analysis of the applied method of statistical evaluation demonstrates that the higher position of this maximum in the distributions of $<\text{HO}_2^{\text{ret}}>$ is influenced by the OH^{MLS} data in which the mesospheric maximum (see Figs. 6-8) is also located notably higher than 0.1 mbar.

6. Discussion and conclusion

On the basis of the data presented in Section 5 we can conclude that, upon the whole, simultaneous OH, HO$_2$ and O$_3$ satellite measurements poorly satisfy the photochemical equilibrium condition. The HO$_2$ component biases from this condition most prominently. We can conjecture that a possible explanation for the bias is the significant systematic error in HO$_2$ measurements, in particular, in the height of the mesospheric maximum. The discrepancy between the measured and real HO$_2$, in turn, impacts the retrieved data for OH and O$_3$ and, above 0.1 hPa, leads to a significant mismatch between the averaged retrieved values ($<\text{OH}^{\prime}>$, $<\text{O}_3^{\prime}>$) and averaged measured values ($<\text{OH}^{\text{MLS}}>$, $<\text{O}_3^{\text{MLS}}>$). This assumption is supported by the calculation of the HO$_2$ distributions with the use of our 3D chemical transport model (see Fig. 9). It can be seen that the mesospheric maximum of HO$_2$ in these months, as well as of the $<\text{HO}_2^{\text{ret}}>$ distributions, lies...
above 0.046 mbar.

EOS MLS data quality and description document (Livesey et al., 2017) states that scientifically useful pressure range for HO\textsubscript{2} measurements is 22 – 0.046 hPa. Exclusion from Figs. 4-6 of the range above 0.046 hPa diminishes the mismatch for OH and O\textsubscript{3} but not for HO\textsubscript{2}. An algorithm for offline retrieval of daily zonal means of HO\textsubscript{2} using averaged MLS radiances was performed by Millán et al. (2015). The product of the algorithm, the alternative dataset of night-time and daytime HO\textsubscript{2}, recently became available at https://mls.jpl.nasa.gov. Figure 7 shows the monthly averaged zonal means from the dataset (<HO\textsubscript{2}\textsubscript{MLSOFFLINE}>\textsubscript{offline}) corresponding to Figs. 4-6.

Figure 7 depicts the same monthly means as Figures 4-6. One can see that the results of the offline HO\textsubscript{2} retrieval show the same features as the results of our evaluation technique as compared to standard MLS retrieval: the height of mesospheric HO\textsubscript{2} maximum is higher. It is worth noting that the positions of the maximum in <HO\textsubscript{2}\textsubscript{r}> and <HO\textsubscript{2}\textsubscript{MLSOFFLINE}>\textsubscript{offline} distributions are close.

For detailed qualitative and quantitative comparison of <HO\textsubscript{2}\textsubscript{r}> and <HO\textsubscript{2}\textsubscript{MLSOFFLINE}>\textsubscript{offline} one should use the evaluation procedure technique for zonally averaged all three MLS components, which requires significant modification of the procedure and is beyond the scope of this technical Note.

Moreover, new data on the HO\textsubscript{2} distributions were recently obtained from the MLS measurements. Millán et al. (2015) performed the offline retrieval of daily zonal means of HO\textsubscript{2} profiles using averaged MLS radiances measured in 10° latitude bins. Averaged spectra have a better signal to noise ratio, which removes many of the limitations of the MLS standard product for HO\textsubscript{2}. In particular, the upper boundary of the altitude region in which daytime data is suitable for scientific use has reached 0.0032 mbar, and the "day-minus-night" correction is not needed at altitudes above 1 mbar. Comparison with various experimental and model data has shown that the offline retrieval reproduces the basic properties of the HO\textsubscript{2} distribution in the mesosphere relatively well (at least qualitatively) (Millán et al. 2015).

The offline retrieval product, the alternative dataset of daytime HO\textsubscript{2}, has recently become publicly available at https://mls.jpl.nasa.gov. Figure 10 shows the monthly averaged zonal means of offline retrieval data (<HO\textsubscript{2}\textsubscript{MLSOFFLINE}>\textsubscript{offline}) and relative differences with retrieved and MLS standard product data (<HO\textsubscript{2}\textsubscript{MLSOFFLINE}>\textsubscript{offline})/ <HO\textsubscript{2}\textsubscript{MLSOFFLINE}>\textsubscript{offline} and (<HO\textsubscript{2}\textsubscript{r}> – <HO\textsubscript{2}\textsubscript{MLSOFFLINE}>\textsubscript{offline})/ <HO\textsubscript{2}\textsubscript{MLSOFFLINE}>\textsubscript{offline}, correspondingly. Figure 10 represents the same time
periods as Figs. 6-8. It is worth noting that the distributions $<\text{HO}_2^{\text{MLS offline}}>$ depicted in Fig. 10 represent significantly different amounts of data. The data sets for May and September include 31 and 27 days of measurements, respectively, whereas the January dataset encompasses only 4 days. The latter makes the graphs in the first row in Fig. 10 noisier than the others. One can see that the results of the offline HO$_2$ retrieval show the same features as the results of our evaluation technique in comparison to the standard MLS retrieval, i.e. the height of mesospheric HO$_2$ maximum is notably higher. We can conclude that the distributions of $<\text{HO}_2^{\text{ret}}>$ better match $<\text{HO}_2^{\text{MLS offline}}>$ than $<\text{HO}_2^{\text{MLS}}>$, although some quantitative discrepancy between $<\text{HO}_2^{\text{ret}}>$ and $<\text{HO}_2^{\text{MLS offline}}>$ also exists. Note that this may be due to systematic errors in the $<\text{HO}_2^{\text{MLS}}>$ distributions, which cannot be excluded within the framework of the introduced technique. For a detailed qualitative and quantitative comparison of $<\text{HO}_2^{\text{ret}}>$ and $<\text{HO}_2^{\text{MLS offline}}>$ one should modify the method, so that a statistical evaluation of the $<\text{OH}^{\text{MLS}}>$ and $<\text{O}_3^{\text{MLS}}>$ standard products, and the data of the offline HO$_2$ retrieval could be conducted within the framework of a single procedure with no account for the $<\text{HO}_2^{\text{MLS}}>$ distributions. This modification is under way and will be presented elsewhere.

The proposed method for statistical evaluation of mesospheric species measurements can be readily generalized to other atmospheric photochemical systems that contain short-lifetime-lived components (see the Introduction). It may also be modified for assessing hard to measure chemical components, characteristics of atmospheric processes (like wind speed or turbulent diffusion rate), or poorly known reaction rates. Such evaluation will be correct from the statistical point of view.

Acknowledgments

This work was supported by the Russian Science Foundation (contract No. 15–17–10024 of June 04, 2015). The data used in this study is supported by the Institute of Applied Physics of the Russian Academy of Sciences (Nizhny Novgorod, Russia). Inquiries about calculated the distributions used for in this paper can be addressed to Mr. Belikovich (belikovich@ipfran.ru).

Evans, W.F.J., McDade, I. C., Yuen, J., and Llewellyn, E. J.: A rocket measurement of the O2 infrared atmospheric (0-0) band emission in the dayglow and a determination of the

Table 1. List of reactions with corresponding reaction rates from Burkholder et al. (2015).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reaction</th>
<th>Reaction</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $O(\text{'D})+O_2 \rightarrow O+O_2$</td>
<td>22 $OH+O_3 \rightarrow O_2+HO_2$</td>
<td>43 $NO_2+O_3 \rightarrow NO_3+O_2$</td>
<td></td>
</tr>
<tr>
<td>2 $O(\text{'D})+N_2 \rightarrow O+N_2$</td>
<td>23 $HO_2+O_3 \rightarrow OH+2O_2$</td>
<td>44 $N+OH \rightarrow NO+H$</td>
<td></td>
</tr>
<tr>
<td>3 $O(\text{'D})+O_3 \rightarrow O_2+2O$</td>
<td>24 $H+OH+N_2 \rightarrow H_2O+N_2$</td>
<td>45 $NO+HO_2 \rightarrow NO_2+OH$</td>
<td></td>
</tr>
<tr>
<td>4 $O(\text{'D})+O_3 \rightarrow 2O_2$</td>
<td>25 $OH+H_2 \rightarrow H_2O+H$</td>
<td>46 $HO+NO_2 \rightarrow OH+NO$</td>
<td></td>
</tr>
<tr>
<td>5 $O(\text{'D})+N_2O \rightarrow 2NO$</td>
<td>26 $OH+OH \rightarrow H_2O+O$</td>
<td>47 $NO_3+NO \rightarrow 2NO_2$</td>
<td></td>
</tr>
<tr>
<td>6 $O(\text{'D})+N_2O \rightarrow N_2+O_2$</td>
<td>27 $OH+OH+M \rightarrow H_2O_2+M$</td>
<td>48 $N+NO \rightarrow N_2+O$</td>
<td></td>
</tr>
<tr>
<td>7 $O(\text{'D})+H_2O \rightarrow 2OH$</td>
<td>28 $OH+HO_2 \rightarrow H_2O+O_2$</td>
<td>49 $N+NO_2 \rightarrow N_2O+O$</td>
<td></td>
</tr>
<tr>
<td>8 $O(\text{'D})+H_2 \rightarrow H+OH$</td>
<td>29 $H_2O_2+OH \rightarrow H_2O+HO_2$</td>
<td>50 $O_2+hv \rightarrow 2O$</td>
<td></td>
</tr>
<tr>
<td>9 $O(\text{'D})+CH_4 \rightarrow CH_3+OH$</td>
<td>30 $HO_2+HO_2 \rightarrow H_2O_2+O_2$</td>
<td>51 $O_2+hv \rightarrow O+O(\text{'D})$</td>
<td></td>
</tr>
<tr>
<td>10 $O(\text{'D})+CH_4 \rightarrow H_2+CH_2O$</td>
<td>31 $HO_2+HO_2+M \rightarrow H_2O_2+O_2+M$</td>
<td>52 $O_2+hv \rightarrow O_2+O$</td>
<td></td>
</tr>
<tr>
<td>11 $O+O+M \rightarrow O_2+M$</td>
<td>32 $CH_3+O \rightarrow CH_2O+H$</td>
<td>53 $O_2+hv \rightarrow O_2+O(\text{'D})$</td>
<td></td>
</tr>
<tr>
<td>12 $O+O_2+M \rightarrow O_3+M$</td>
<td>33 $OH+CO \rightarrow H+CO_2$</td>
<td>54 $N_2+hv \rightarrow 2N$</td>
<td></td>
</tr>
<tr>
<td>13 $O+O_3 \rightarrow O_2 +O_2$</td>
<td>34 $CH_4+OH \rightarrow CH_3+H_2O$</td>
<td>55 $NO+hv \rightarrow N+O$</td>
<td></td>
</tr>
<tr>
<td>14 $H+HO_2 \rightarrow 2OH$</td>
<td>35 $CH_3+O_2+M \rightarrow CH_3O_2+M$</td>
<td>56 $NO_2+hv \rightarrow NO+O$</td>
<td></td>
</tr>
<tr>
<td>15 $H+HO_2 \rightarrow H_2O+O$</td>
<td>36 $O_3+N \rightarrow NO+O_2$</td>
<td>57 $N_2O+hv \rightarrow N_2+O(\text{'D})$</td>
<td></td>
</tr>
<tr>
<td>16 $H+HO_2 \rightarrow H_2+O_2$</td>
<td>37 $NO_3+O \rightarrow NO_2+O_2$</td>
<td>58 $N_2O+hv \rightarrow N+NO$</td>
<td></td>
</tr>
<tr>
<td>17 $OH+O \rightarrow H+O_2$</td>
<td>38 $O+NO+M \rightarrow NO_2+M$</td>
<td>59 $H_2O+hv \rightarrow H+OH$</td>
<td></td>
</tr>
<tr>
<td>18 $HO_2+O \rightarrow OH+O_2$</td>
<td>39 $NO_2+O \rightarrow NO+O_2$</td>
<td>60 $CH_2+hv \rightarrow CH_2+H_2$</td>
<td></td>
</tr>
<tr>
<td>19 $H_2O_2+O \rightarrow OH+HO_2$</td>
<td>40 $NO_2+O+M \rightarrow NO_3+M$</td>
<td>61 $H_2O_2+hv \rightarrow 2OH$</td>
<td></td>
</tr>
<tr>
<td>20 $H+O_2+M \rightarrow HO_2+M$</td>
<td>41 $N+O_2 \rightarrow NO+O$</td>
<td>62 $NO_3+hv \rightarrow NO_2+O$</td>
<td></td>
</tr>
<tr>
<td>21 $H+O_3 \rightarrow OH+O_2$</td>
<td>42 $NO+O_3 \rightarrow NO_2+O_2$</td>
<td>63 $CO_2+hv \rightarrow CO+O$</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Daytime monthly averaged zonal mean $<F>$ distributions.
Figure 1. Daytime monthly averaged zonal mean $F \rightarrow F$ distributions.
Figure 2. Daytime monthly averaged zonal mean P_{OH} distributions (in cm$^{-3}$s$^{-1}$).
Figure 3. Daytime monthly averaged zonal mean $P_{OH}^{H,O} / P_{OH}$ distributions.
Figure 2. Example of OH, HO\textsubscript{2} and O\textsubscript{3} vertical profiles measured (red curves) on 15 January 2005 at 13.07 UT, 38.53\textdegree N, 357.33\textdegree W and corresponding retrieved profiles (black curves). Solid curves: boundaries of the 65% confident intervals, dashed curves: medians.

Figure 4. Example of OH, HO\textsubscript{2} and O\textsubscript{3} vertical profiles measured (red curves) on 15 January 2005 at 16.03 UT, 37\textdegree3\textquoteleft N, 3\textdegree7\textquoteleft E and corresponding retrieved profiles (black curves). Solid curves: boundaries of the 65% confident intervals, dashed curves: medians.
Figure 3. Examples of monthly averaged zonal mean vertical profiles of OH, HO$_2$, and O$_3$ measured (red curves) in January, May and March 2005 and corresponding retrieved profiles (black curves). Solid curves: boundaries of the 65% confident intervals, dashed curves: medians.
Figure 5. Examples of monthly averaged zonal mean vertical profiles of OH, HO$_2$ and O$_3$ measured (red curves) in January, May and March 2005 and corresponding retrieved profiles (black curves). Solid curves: boundaries of the 65% confident intervals, dashed curves: medians.
Figure 4. Daytime monthly averaged zonal mean retrieved (left column) and measured (middle column) distributions of HO₂, OH, and O₃ and their relative difference (right column) in January 2005.
Figure 6. Daytime monthly averaged zonal mean retrieved (left column) and measured (middle column) distributions of HO₂, OH, and O₃ and their relative difference (right column) in January 2005.
Figure 5. Daytime monthly averaged zonal mean retrieved (left column) and measured (middle column) distributions of HO₂, OH, and O₃ and their relative difference (right column) for May 2005.
Figure 7. Daytime monthly averaged zonal mean retrieved (left column) and measured (middle column) distributions of HO$_2$, OH, and O$_3$ and their relative difference (right column) for May 2005.
Figure 6. Daytime monthly averaged zonal mean retrieved (left column) and measured (middle column) distributions of HO$_2$, OH, and O$_3$ and their relative difference (right column) for September 2005.
Figure 8. Daytime monthly averaged zonal mean retrieved (left column) and measured (middle column) distributions of HO₂, OH, and O₃ and their relative difference (right column) for September 2005.
Figure 9. Daytime monthly averaged zonal mean model distributions of HO$_2$ for January, May, and September.
Figure 7. Daytime mean monthly averaged distributions of HO$_2$ retrieved by Millán et al. (2015) from MLS primary data.
Figure 10. Daytime mean monthly averaged distributions of HO$_2$ retrieved by Millán et al. (2015) and relative differences $(\frac{<HO_2^{\text{MLS}}>-<HO_2^{\text{offline}}>}{<HO_2^{\text{MLS}}^{\text{offline}}>})$ and $(\frac{<HO_2^{\text{ret}}>-<HO_2^{\text{ML S}}^{\text{offline}}>}{<HO_2^{\text{ML S}}^{\text{offline}}>})$.