Reply to Anonymous Referee #2

We thank the reviewer for the careful reading of the manuscript and helpful comments. We have revised the manuscript following the suggestion, as described below.

This paper evaluates the impact of uncertainties in aerosol simulations due to the meteorological initial conditions in WRF-Chem. The study appears to be thorough and the subject is timely. I am happy to recommend publication in Atmospheric Chemistry & Physics subject to minor revisions.

Minor Comments: The paper would benefit from additional proof reading. In particular, the abstract could be clarified and improved.

Response: We have polished the English of the manuscript as suggested.

1 Comment: Line 16: “have shown” suggests previous work – I don’t think that is what is intended here?

Response: We have changed “have shown” to “show”.

2 Comment: Line 20-23: This seemed confusing. What does the 30% refer to?

Response: The 30% refer to the ratio of the ensemble spread to ensemble mean. We have rephrased the sentence as: “and the RMSE for simulated PM$_{2.5}$ concentrations can be up to 30% at the region scale”

3 Comment: Line 24: Do you mean “evaluation” rather than “implementation” – the uncertainties are to do with analysis, not with actually doing something on the ground.

Response: Yes, “implementation” should read “evaluation”, and we have changed “implementation” to “evaluation”.

4 Comment: Line 26: Needs rephrasing: we cannot avoid the impact, but we can take it into account.
Response: We have rephrased the sentence as suggested: “Therefore, our results suggest that the ensemble simulation is imperative to take into account the impact of the initial meteorological uncertainties on the haze prediction.”

5 Comment: Line 98: Please give a summary of the method so that the reader can get a sense without looking up the references.

Response: We have clarified in Section 2: “The ensemble initialization method used in the present study is called “climatological ensemble initialization method” (Zhang et al., 2007; Bei et al. 2012). In the approach, dynamically consistent initial and boundary conditions are statistically sampled from a seasonal meteorological data set. In order to represent the wintertime climatological statistics, a data set during the period from 1 November 2013 to 28 February 2014 is generated using NCEP-FNL 1°×1° reanalysis data. The perturbed variables include the horizontal wind components, potential temperature, perturbation pressure, and mixing ratio of water vapor. Other prognostic variables such as vertical velocity and mixing ratios of hydrometeors are not perturbed. In general, the perturbation in horizontal wind components constitute the most important uncertainty in those variables (Bei et al., 2008, 2010). Thirty ensemble members are randomly chosen from this climatological data set. Similarly, boundary conditions for each ensemble member are generated from the same data set beginning at the randomly selected initial time of the given member, and extended for the same length of time as the simulated episode. Deviations of the initial and boundary condition data for each member from the climatological mean for the entire period are then scaled down to be 20% to reduce the ensemble spread to be less than typical observation error magnitudes (Nielsen-Gammon et al., 2007) and added to the unperturbed initial and boundary conditions derived directly from the NCEP-FNL analyses valid at 12:00 UTC on 12 January 2014, which are used for the 6-km domain ensemble simulation.”


Response: We have changed “clod” to “cold” and rephrased the sentence as suggested: “Therefore, the ensemble simulation is needed to take into consideration the impact of the meteorological uncertainties on the haze prediction.”

6 Comment: Fig 2: Could you show the spread of the ensemble initial conditions, for example with a boxplot?
Response: Since there are thirty-four layers in the vertical direction, when the spread of the ensemble initial conditions is shown using the boxplot, the figure looks rather busy. Therefore, we have included the standard deviation of the initial ensemble spread and replotted Figure 2.

7 Comment: Fig 3: This is rather busy. I think a legend and possibly splitting the graph by geographical area would help.

Response: We have divided the cities in BTH into megacities and non-megacities and replotted Figure 3 as suggested.