Thank you for the revised version. As you will see by the comments of reviewer 2 and 3 and by my own comments below, there are still plenty of technical corrections and clarifications to be done before the manuscript can finally be published in ACP. The current manuscript is not in the form to proceed. A thorough (!) editorial read is inevitable. Please have a look at the manuscript preparation guidelines before adding the technical corrections: https://www.atmospheric-chemistry-and-physics.net/for_authors/manuscript_preparation.html.

Detailed comments:

- Table 2: There are a few typos here (e.g. ‘pane’). Please double-check the density of the humic acid droplet, which seems quite unreasonable.
 “Panel” has been substituted for “pane”, although pane is a legitimate English word for a sub-section of a figure or graph.
 The mass densities are correct and reasonable. The following text has been added to the table caption to explain:
 “Note that the mass densities of the wood smoke extract in isopropanol and aqueous humic acid solutions refers to the mass of either woodsmoke extract or humic acid in the volume of isopropanol or water respectively and are not the mass densities of the pure compounds which are also reported in the table.”.

- In the abstract, check that the units are correctly set (incl. space between number and unit)
 The units in abstract have been corrected.

- Check that all acronyms are properly defined (e.g. DPPC on page 2, line 22 is not defined).
 DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and any other undefined acronyms have now been defined.

- The citation style is often not properly done. For example, inline citations often end with two parenthesis in a row (see line 27 or 18 on page 2 or line 12, page 4). Within sentences, please put the ‘e.g.’ inside the parentheses. For example, ‘...in conjunction with Mie spectroscopy e.g. Bohren and Huffman (1983).’ should be ‘...in conjunction with Mie spectroscopy (see e.g. Bohren and Huffman, 1983).’
 The citation style has been adopted throughout the paper.

- Page 2, line 6-8: Please rephrase.
 The lines have been re-phrased and now reads
 “The current understanding of the atmospheric aerosol radiative forcing and the cloud albedo effect is currently regarded as low compared to other radiative effects such as greenhouse gases (see e.g. Stocker et al., 2013; Fuzzi et al., 2005). Atmospheric aerosols contain a complex mixture of many different chemical compounds with a wide variety of physio-chemical properties (see e.g. Cappa et al., 2011; Cai et al., 2016; Cochran et al., 2016).”

- Throughout the text: Please use the proper unit for ‘percent’, ‘degree’, ‘microns’, etc.
 Throughout “percent” has been replaced by %, degree by °, and micron by µm.
• First sentence of page 6 (before Eq. 1): Please rephrase and check for correct punctuation.
The sentence has been broken down into smaller sentences for clarity and now reads “The measured Mie spectrum was simulated using the computational methods of Bohren and Huffman (1983); integrating over a cone angle of backscattered light of 25°. The simulated Mie spectrum was calculated as a function of wavelength, with wavelength dependence of the refractive index being described by a Cauchy equation.”.

• Page 6, line 11: Please double-check the units of the Cauchy coefficients.
Corrected.

• Page 6, line 22: It should be ‘by fitting the Ångström equation’. Or are there different versions of the Ångström equation? If so, please clarify.
Corrected as suggested.

• Throughout the manuscript: There should be a space between number and unit. Please also check the correct abbreviations and correct comma placements!
Spaces inserted between numbers and units. Abbreviations checked and comma placements corrected.

• Please harmonize the usage of ‘UV-VIS’ and ‘UV-Vis’.
All occurrences of “UV-VIS” converted to “UV-Vis”.

• Page 8: Equation 4 has already been mentioned and shown on page 7. Again, you need to thoroughly revise your manuscript to exclude further potential sloppiness!
Equations renumbered and only appear once in the paper.

• Page 10, line 5: ‘0.1812’ should only be given with two digits after the comma.
Now reported as 0.18.

• Page 11, second half: Many inconsistencies in capitalization of certain words (figure, Summer, Urban, etc), please revise.
Figure now either “Fig.” or “Figure” as per instructions. The names of the samples, e.g. Summer, Winter etc, are now lower case.

• Page 12, line 2: Add ‘the’ before ‘Cauchy’.
Word added.

• The abbreviation of the variables in Eq. 5 is not very fortunate. If you find a better variable for albedo (which is main parameter here), e.g. omega, then ‘TOA’ and ‘no aerosol’/’aerosol’ should be in the superscript and subscript, respectively.
As suggested the equation is changed to \(ARE_{TOT} = \alpha_{TOA}^{aerosol} - \alpha_{TOA}^{no\ aerosol} \).

• Page 14, line 14: I can’t find \(\sigma \) in the equations above. Please revise.
Word added.

• Figure 1: The first lines in the graph (remote Antarctic aerosol extract) is not mentioned in the caption.
The word “Antarctic” is added after the word “remote” in the figure caption to be clear.
• **Caption of Fig. 2:** The panel labels (a) and (b) are not shown in the actual figure. The “(a)” and the “(b)” have been removed from the figure caption as they are superfluous.

• **Table 1 on page 30:** I would recommend to replace ‘Aerosols Analyzed’ by ‘Particles Analyzed’ since you only target the particle and not the gas phase. “Aerosols Analyzed” has been replaced by “Particles Analysed”.

• **Page 30 and 31:** The table labeling is wrong. Table 1 exists two times. Please double-check that the labeling is also correct for the figures and tables within the text. The second table and all references to it are labelled as table 2.
Reply to Referee 2, report 1.

Text from Reviewer/Editor is red coloured.
Text from Authors is blue coloured.

I thank the authors for acknowledging my comments and making changes accordingly. My comment on the use of Raman scattering in optical tweezers pertained to the angular-independence of whispering gallery modes, as compared to the interference pattern observed in the present study. I acknowledge that in the size range the authors are working that cavity-enhanced resonances will not be possible to detect, and thus my point is moot.

The following are minor technical points:

• Equation A2 should have \(\lambda_0 \) in the denominator of the denominator on the left hand side.
 Corrected. \(\lambda_0 \) has been added to the denominator.

• The wording on Line 17, Page 14 needs correcting.
 The sentence has been rephrased to “The data presented in the study can be found at http://doi.org/10.5281/zenodo.834450.”.

• Equation number is off in the main text due to inclusion of additional equations (eq. 4 features on page 7 and 8, and the page 8 version is the same as eq. 5 on the previous page).
 Corrected. All equations have been re-numbered.

• Some inconsistencies in American vs British English (particularly nebulizer vs nebuliser)
 The remaining “-ize” changed to “-ise”.

• Page 7 line 1: spelling of measurable, page 11 line 4: spelling of respectively.
 Both spellings corrected.
Reply to Referee3, report 2

Text from Review/Editor is red coloured.
Text from Authors is blue coloured.

Re-review of Shepherd et al.

- I recommend the manuscript for publication subject to the following minor corrections.
 Thank you.

- Page 6, line 11: The authors should give some indication of the step sized used when
 varying radius and A, B and C values.
 The step size used was 0.0001. The following text was added “(in steps of \(\Delta A = 0.0001 \), \(\Delta B = 25 \text{nm}^2 \), and \(\Delta C = 5 \times 10^6 \text{nm}^4 \)). ”.

- Page 6, line 13: The units of B are nm^{-2} not nm^{-2}. Corrected. Thank you for spotting this.

- Section 2.4: Changes have been made here following the comment in my initial review;
 but I still find the text to be confusing. It would be very helpful if the authors inserted
 the text they used in their response directly to me in to the manuscript at the start of
 the section (copied below) as this was very clear.
 ‘The Angstrom exponent was determined from the measurement of the absorbance of
 an aerosol sample in isopropanol using a UV-Vis spectrometer. The value of Angstrom
 exponent was then adjusted (converted) for use with the imaginary refractive index as
 described in the appendix.’
 The above text has been inserted at the beginning of section 2.5 as requested.

- Whole manuscript: equations need renumbering as there are now two equation (4)?s
 and two equation (5)?s. Corrected. All equations have been re-numbered.

- Page 13 and Figure 6: In the text the y-axis is still labelled ARETOT but on the figure
 it is ARETOA
 Corrected. The axis label in Figure 6 has been fixed.

- Equation A2: It should be \(\lambda_0 \) in the denominator on the left hand side.
 Corrected. \(\lambda_0 \) has been added to the denominator.

- Page 15, line 3: There is no sigma in the equations.
 Corrected. Definition of \(\sigma \) has been removed from the text.

- Figure 5: Please try and place the label boxes so that they don’t obscure the peaks and
 troughs in the spectra.
 Figure 5 has been redrawn. Reducing the text font size and movement of the text boxes
 has achieved the reviewer’s request.

- Page 32: The new table should be labelled Table 2.
 Corrected. Second table now labelled as Table 2.
Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers

Rosalie H. Shepherd¹,², Martin D. King², Amelia Marks³, Neil Brough³ and Andrew D. Ward¹

¹Central Laser Facility, Research Complex, STFC Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
²Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
³British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK

Correspondence to: Martin King (m.king@rhul.ac.uk)

Optical trapping combined with Mie spectroscopy is a new technique used to record the refractive index of insoluble organic material extracted from atmospheric aerosol samples over a wide wavelength range. The refractive index of the insoluble organic extracts was shown to follow a Cauchy equation between 460 to 700 nm for organic aerosol extracts collected from urban (London) and remote (Antarctica) locations. Cauchy coefficients for the remote sample were for the Austral summer and gave the Cauchy coefficients of $A = 1.467$ and $B = 1000 \text{ nm}^2$ with a real refractive index of 1.489 at a wavelength of 589 nm. Cauchy coefficients for the urban samples varied with season, with extracts collected during summer having Cauchy coefficients of $A = 1.465\pm0.005$ and $B = 4625\pm1200 \text{ nm}^2$ with a representative real refractive index of 1.478 at a wavelength of 589 nm. The refractive index of absorbing aerosol was also recorded. The absorption Angström exponent was determined for wood smoke and humic acid aerosol extracts. Typical values of the Cauchy coefficient for the wood smoke aerosol extract were $A = 1.541\pm0.03$ and $B = 14800\pm2900 \text{ nm}^2$ resulting in a real refractive index of 1.584 at a wavelength of 589 nm and an absorption Angström exponent of 8.0. The measured values of refractive index compare well with previous monochromatic or very small wavelength range measurements of refractive index. In general, the real component of the refractive index increases from remote to urban to wood smoke. A one-dimensional radiative-transfer calculation of the top of the atmosphere albedo was applied to model an atmosphere containing a 3 km thick layer of aerosol comprising of pure water, pure insoluble organic aerosol or an aerosol consisting of an aqueous core-with an insoluble organic shell. The calculation demonstrated that the top of the atmosphere albedo increases by 0.01 to 0.04 for pure organic particles relative to water particles of the same size and the top of the atmosphere albedo increases by 0.03 for aqueous core-shell particles as volume fraction of the shell material increases to 25%.
Atmospheric aerosols affect the radiative balance of our planet (see e.g. Pöschl et al., 2005; Ramanathan et al., 2001; Stocker et al., 2013; Wild et al., 2009). Aerosols directly affect the radiative balance by absorbing or scattering incoming solar radiation (see e.g. Moise et al., 2015), and indirectly through their role as cloud condensation nuclei (see e.g. Breon et al., 2002; Lohmann and Feichter, 2005; Rosenfeld et al., 2008; Charlson et al., 2001). The current understanding of the atmospheric aerosol radiative forcing and the cloud albedo effect is currently regarded as low compared to other radiative effects such as greenhouse gases (see e.g. Stocker et al., 2013; Fuzzi et al., 2005).

Atmospheric aerosols contain a complex mixture of many different chemical compounds with a wide variety of physio-chemical properties (see e.g. Beddows et al., 2004; Cappa et al., 2011; Cai et al., 2016; Cochrane et al., 2016). The contrasting properties of the different compounds can result in atmospheric aerosols being coated in a film of organic material (see e.g. Gill et al., 1983; Donaldson and Vaida, 2006). The presence of a film may alter the physical, chemical and optical properties of the cloud droplet or aerosol particle by (a) reducing the rate of evaporation from the droplets or particles (see e.g. Davies et al., 2013; Eliason et al., 2003; Gill et al., 1983; Kaiser et al., 1996; McFiggans et al., 2005), (b) altering the transport of chemicals between gas and liquid phase (see e.g. Donaldson and Anderson, 1999; Donaldson and Valaparaj, 2010), (c) affecting gaseous uptake (see e.g. Enami et al., 2010), (d) reducing the scavenging by larger cloud droplets (see e.g. Andreae and Rosenfeld, 2008; Feingold and Chuang, 2002) and (e) altering the optical properties of the droplet (see e.g. Donaldson and Vaida, 2006; Li et al., 2011). To quantify the consequences of film formation on atmospheric aerosol particles and cloud droplets, further understanding of aerosol films is urgently required. However, obstacles such as accurately quantifying anthropogenic and natural aerosol emissions (see e.g. Kanakidou et al., 2005) or understanding the hugely varying chemistry of atmospheric aerosols (see e.g. Jacobson and Hansson, 2000) means the current understanding of atmospheric aerosol remains low (see e.g. Stocker et al., 2013; Flores et al., 2014).

Furthering the current understanding of film formation on cloud droplets or aerosols has largely been addressed by replicating the film with atmospheric proxy compounds such as oleic acid (see e.g. King et al., 2004,2009; Jones et al., 2015), methyl oleate (see e.g. Pfang et al., 2014; Sebastiani et al., 2015), pinonic acid (see e.g. Enami and Sakamoto, 2016), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (see e.g. Thompson et al., 2010), or nonanoic acid (see e.g. Tinel, 2016). However, organic material extracted from the environment has only featured in a limited number of studies that investigated the consequences of exposing organic films extracted from atmospheric aerosol and sea-water to ozone (see e.g. Jones et al., 2017), or studied the heterogeneous chemistry of material collected from the surface of the sea (see e.g. Zhou et al., 2014).

Research that focus on the sea-surface layer is highly relevant to atmospheric studies owing to sea-surface material often becoming aerosols (see e.g. Blanchard et al., 1964).

The work presented describes the application of the optical trapping technique to measure the refractive index of organic material that may form an organic film on atmospheric aerosol. The organic material was extracted from atmospheric aerosol (using the techniques of Folch and Lee, 1957 and Bligh and Dyer, 1959) and the refractive index of the aerosol...
measured through the application of white light scattering in conjunction with Mie spectroscopy (see e.g. Bohren and Huffman, 1983). The values of the refractive index were subsequently used to estimate the change in the top of the atmosphere albedo from radiative transfer calculations that modelled an aqueous aerosol with a thin film of the atmospheric aerosol film material.

Determining the refractive index of atmospheric aerosol is paramount to understanding the light scattering and absorption properties of atmospheric aerosol, and hence its contribution to global temperatures. Considerable work has focused on determining the real and imaginary component of the refractive indices of atmospheric aerosols (see e.g. Liu et al., 2013; Wex et al., 2009; Barkev et al., 2007; Moskhand et al., 2013; Nakayama et al., 2010; and Lang-Yona et al., 2010). The use of morphological dependent resonances in Raman Spectra to determine refractive index at a fixed wavelength has been reported by Lin et al. (1990) and references therein and Miles et al. (2012). The absorbing properties and optical extinction properties of atmospheric aerosols have been extensively studied (see e.g. Zhao et al., 2013). Washenfelder et al., (2013) studied aerosol extinction in the ultra-violet region and Liu et al., (2016) investigated the absorbing properties of brown carbon. In the study presented, wavelength dependent refractive indices were determined for common aerosol types such as organic atmospheric aerosol sourced from urban and remote locations and from wood smoke aerosol. In addition, the wavelength-dependent refractive index of the proxy atmospheric aerosol, humic acid, was determined.

Application of the optical trapping technique was successfully employed to determine the refractive index of aerosol over a wide wavelength range. The technique allowed the refractive index to be resolved to within 0.015 over a large wavelength range of 460 to 700 nm (see e.g. David et al., 2016; Jones et al., 2013, 2015). Previous studies have determined the refractive index of atmospheric aerosols either over a narrower or monochromatic wavelength range. Flores (2014) determined the refractive index for secondary organic aerosol over the wavelength range of 360 to 420 nm, whilst Lambe (2013), Guyon (2003) and Nakayama (2015) studied the refractive index of aerosols at individual wavelengths.

The technique also allowed the imaginary component of the refractive index and absorption Ångström exponent to be considered for the wood smoke aerosol extracts and aqueous humic acid aerosol owing to the samples absorbing at smaller wavelengths. The absorption Ångström exponent describes the wavelength dependence of the absorption of light by aerosols (see e.g. Mosomüller et al., 2011). The absorption Ångström exponent of atmospheric aerosols has been shown to be sensitive to wavelength (see e.g. Chakrabarty, 2010; Lewis, 2008), chemical composition (see e.g. Ajitai et al., 2011; Chakrabarty et al., 2010; Flowers et al., 2010; Park and Yu, 2016; Russell et al., 2009; Sandradewi et al., 2008), morphology (see e.g. Liu et al., 2008; Utry et al., 2014) and size (see e.g. Utry et al., 2014; Gyawali et al., 2009).

2. Materials and Methods

To optically trap aerosol extracts, aerosol was collected from the atmosphere by pulling air through a pre-combusted quartz filter using an air pump. The aerosol material was then extracted from the filter and transferred to isopropanol from which airborne aerosols could be generated by ultrasonic nebulisation. Additionally, a commercial sample of humic acid in an aqueous solution was studied as an aerosol. The airborne aerosols were optically trapped and illuminated with white light, the

Deleted: Considerable work has focused on determining the real and imaginary component of the refractive indices of atmospheric aerosols as demonstrated by the work carried out by Liu (2013), Wex (2009), Barkev (2007), Moskhand (2013), Nakayama (2010) and Lang-Yona (2010) to list a few. The use of morphological dependent resonances in Raman Spectra to determine refractive index at a fixed wavelength has been reported by Lin et al. (1990) and references therein and Miles et al. (2012). The absorbing properties of atmospheric aerosols have been extensively studied e.g. Zhao (2013) studied the optical extinction properties of aerosols. Washenfelder (2013) studied aerosol extinction in the ultra-violet region and Liu (2016) investigated the absorbing properties of brown carbon. In the study presented, wavelength dependent real refractive indices were determined for common aerosol types such as organic atmospheric aerosol sourced from urban and remote locations and from wood smoke aerosol. In addition, the wavelength-dependent refractive index of the proxy atmospheric aerosol, humic acid, was determined.

Deleted: The technique also allowed the imaginary component of the refractive index and absorption Ångström exponent to be calculated for the wood smoke aerosol extracts and aqueous humic acid aerosol owing to the samples absorbing at smaller wavelengths. The absorption Ångström exponent describes the wavelength dependence of the absorption of light by aerosols e.g. Mosomüller (2011). The absorption Ångström exponent of atmospheric aerosols has been shown to be sensitive to wavelength e.g. Chakrabarty (2010) and Lewis (2008), chemical composition e.g. Ajitai (2011), Chakrabarty (2010), Flowers (2010), Park and Yu (2016), Russell (2009) and Sandradewi (2008), morphology e.g. Liu (2008) and Utry (2014) and size e.g. Utry (2014) and Gyawali (2009).
backscattered white light was collected to generate a Mie spectrum of scattered light intensity as a function of wavelength. From the Mie spectrum, the wavelength dependent refractive index and radius could be determined by replication with Mie calculations.

2.1. Collection of aerosol extracts

Three types of atmospheric aerosol were sampled to demonstrate the technique. The samples were chosen to represent (a) a “dirty” sample from an urban environment, (b) a “clean” sample from a remote location and (c) samples with strong light absorbing properties. Wood smoke aerosol extract and aqueous humic acid aerosol were chosen for this purpose.

The urban sample was collected from the campus of Royal Holloway, University of London. The proximity of Central London (30 km), major motorways (M25, M40 and M4) and the large international airport Heathrow (8 km) mean the sample has been categorized as urban for the purposes of the study. The urban atmospheric aerosol extracts were collected over 30-day periods and combined in the extraction process to allow seasonal (spring, summer, autumn and winter) analysis. Combining the urban aerosol extracts into seasons ensured enough material was present to create airborne aerosols and to optically trap, in a relatively inefficient process, as described in Sect. 2.2.

The remote atmospheric aerosol extract was collected at the Halley Clean Air Sector Laboratory operated by the British Antarctic Survey (see e.g. Jones et al., 2008). The sample was collected over the Antarctic summer of 2015 for 60 consecutive days. Antarctica is situated far from human populated areas, and therefore the sample has been called remote aerosol for the purpose of the study.

The wood smoke was collected over a six-hour time period from the smoke plume of a flaming log fire burning in a domestic wood burner. The firewood used in the wood burner was sourced from wild cherry trees. Two wood smoke samples were collected from two separate fires, and were labelled extract A and extract B.

To determine the contamination for each sample, corresponding analytical filter blanks were collected. To ensure all possible contamination sources were accounted for, the remote and wood smoke analytical blanks travelled to the field sites, and back with the collected sample.

The urban and wood smoke aerosols were sampled by using an air pump with a flow of 30 L min\(^{-1}\) through clean stainless steel pipelines into a PFA (perfluoroalkoxy) Savillex filter holder, whilst remote aerosols were sampled from Antarctic ambient air by using a short length of quarter inch O.D. PFA tubing at a flow rate of 20 L min\(^{-1}\) onto a filter holder using a Staplex low volume air sampler (Model VM-4). All filter holders contained pre-combusted quartz filters (SKC Ltd.) with a diameter of 47 mm. The air was pulled through the filter for a known time period, after which the sample and filter were frozen in the dark at -18 °C until the sample could be extracted from the filter (typically days).

After sample collection, the filter holder was dissembled in a clean glove box to prevent contamination. The filter encased in the filter holder was cut into two on clean PFA blocks with a stainless steel blade: one half was for analysis, the other for reference. The filter was placed in a glass conical flask with 10 ml of chloroform (Sigma-Aldrich, 0.5 to 1 % ethanol as stabiliser) and 10 ml of ultrapure water (> 18 MΩ cm\(^{-1}\)), and the mixture sonicated for 10 minutes. After sonication, the
mixture was filtered through pre-combusted quartz filters to remove filter debris. The filter debris with un-extracted material was discarded. Sequentially, the filtrate was poured into a glass separating funnel and the chloroform layer drawn off. The atmospheric aerosol extract studied was soluble in chloroform. The chloroform was removed from the atmospheric aerosol extract by evaporation under dry nitrogen. Once all the chloroform had been removed, 2 ml of isopropanol (Sigma-Aldrich, purity ≥ 99.8 %) was added to the sample and the sample was stored in the dark at -18 °C until use. All instrumentation used in the collection and extraction of the atmospheric aerosol extract was cleaned with ultrapure water and chloroform before use.

The sonication in the extraction process was not found to change the Langmuir isotherm of atmospheric material at the air-water interface.

Every sample extracted from the atmosphere had a corresponding analytical blank to check for potential contamination of the filters. The analytical blanks for each sample were extracted following the same procedure above.

In addition to atmospheric aerosol extracts, aqueous humic acid aerosol (Sigma-Aldrich, humic acid sodium salts, STBD5313V) was studied. The nebulised aqueous humic acid solution was prepared at a concentration of 0.0005 g cm⁻³.

2.3. Optical trapping of the aerosols

A vertically aligned, counter propagating optical trap was used to optically catch and levitate the aerosols. The optical trapping description is described in full by Jones et al., (2013), however a brief description will be given here. The optical trap consisted of two laser beams that were fibre coupled from a 1064 nm continuous wave Nd:YAG laser (Laser Quantum). The laser beams passed through beam expansion optics to two vertically opposed microscope objectives (Mitutoyo M Plan Apo 50 × NA 0.42). An aluminium sample cell (volume 38.4 cm³) was placed between the two microscope objectives and used to contain the aerosols. Borosilicate coverslip windows allowed the focused laser beams to pass into the sample cell and form the optical trap. The aerosol could be held for more than 24 hours once trapped (see e.g. Rkiouak et al., 2014). The relative humidity and the temperature of the trapping environment were held at ambient conditions (30 % relative humidity and 20 °C).

A nebuliser (ultrasonic nebuliser, Omron) was used to create aerosols from either the atmospheric aerosol extract in isopropanol or the aqueous humic acid solution. (see e.g. King et al., 2008). Inlet and exhaust ports allowed aerosol delivery into the sample cell. The solvent for the atmospheric aerosol extracts was exchanged from chloroform (removed by blowing down with nitrogen) to isopropanol prior to optically trapping as chloroform was found to be unsuitable for ultrasonic nebulisation. Isopropanol was added in the volume ratio 5:1 isopropanol to atmospheric extract, and this mixture was nebulised to deliver airborne droplets, Isopropanol evaporated from the aerosol both during transit and immediately upon capture in the optical trap.

2.3. Data analysis

The optically trapped aerosol droplet was illuminated with white light and the elastically backscattered light was collected over a 25° cone angle as a function of wavelength by an objective lens. Further optics described in Jones et al., (2013) focused the light onto a spectrometer (Acton SP250i). The resulting spectrum was a function of light intensity versus wavelength and...
will be called a Mie spectrum henceforth. The Mie spectrum covered the wavelength range 460 to 700 nm, with a resolution of 0.06 nm per pixel. The measured Mie spectrum was simulated using the computational methods of Bohren and Huffman (1983), integrating over a cone angle of backscattered light of 25°. The simulated Mie spectrum was calculated as a function of wavelength, with the wavelength dependence of the refractive index being described by a Cauchy equation:

\[n = A + \frac{B}{C - \lambda^2} \]

allowing determination of both size and a precise estimation of refractive index as a function of wavelength. The variables in Eq. (1) represent the refractive index, A, B, and C and wavelength, \(\lambda \). The values of the three empirical constants and the radius of the trapped aerosol were iterated until a good comparison was achieved between the simulated and the experimentally obtained Mie spectrum. Typically, the radius of droplet was fixed and the values of A, B, and C varied until a good fit between measured and simulated Mie spectra was achieved by simple comparison (inspection) of peak, trough and inflection point positions. The value of the radius was then iterated through a series of radii with \(\Delta \lambda = 6 \) Ångström to determine the uncertainty in the derived values of the refractive index and radius of the aerosol could be determined by variation of size, A and B in turn and comparing the experimental and simulated spectra. The value of the radius was between 0.4 to 0.5 µm typically. The imaginary component of the refractive index was considered only after the grid search for the real component of refractive index of the woodsmoke and humic acid samples.

2.4. Ångström absorption coefficient

The Ångström exponent was determined from the measurement of the absorbance of an aerosol sample in isopropanol using a UV-Vis spectrometer. The value of Ångström exponent was then converted for use with the imaginary refractive index as described in the appendix. Samples including humic acid and those obtained from atmospheric sampling may have a measurable wavelength dependent absorption that can be defined by the Ångström exponent. In the context of Mie scattering, absorption is observed as a decrease in spectral intensity of the Mie spectrum. Inclusion of a wavelength dependent imaginary refractive index term in the Bohren and Huffman (1983) formalism can simulate the attenuation of intensity observed in the Mie spectra owing to absorption:

\[\frac{dA}{d\lambda} \propto \left(\frac{\lambda}{\lambda_0} \right)^{-\alpha} \]

The absorption Ångström exponent was determined by fitting an Ångström equation (see e.g., Moosmüller et al., 2011) to the absorbance spectra of the atmospheric aerosol extract in isopropanol or humic acid in water obtained using UV-Vis spectrometry.
where Abs is the absorbance measured by a UV-VIS spectrometer (Perkin Elmer Lambda 950), l is the wavelength and n is the absorption Ångström exponent. It should be noted that Abs_0 is the value of absorbance at the reference wavelength $\lambda_0 = 460$ nm. The absorbance spectra of the bulk atmospheric aerosol extracts dissolved in isopropanol or the humic acid dissolved in water were recorded with a spectrometer covering the wavelength range 460 to 640 nm. Wood smoke aerosol extract and aqueous humic acid both demonstrated measurable absorption at smaller wavelengths, however the spectra from the other samples were below the instrument detection limits. The quoted photometric noise for the UV-VIS spectrometer was 0.0002 A. However, the urban and remote aerosol extracts were diluted in isopropanol to fill the UV-VIS spectrometer cuvette and thus a value two orders of magnitude larger than 0.0002 A may provide an upper bound for the absorbance of the samples reported below the detection limit.

In a UV-VIS spectrometer the absorption coefficient, k, can be related to the Absorbance, Abs, by,

$$Abs = -A_0 l$$ \hspace{1cm} (3)

where l is the pathlength (1 cm for the work described here) and absorbance, Abs, has been corrected from base 10 to base e (see e.g. Petty, 2006). The absorption coefficient can be related to the imaginary refractive index, $k(l)$, by,

$$k(l) = \frac{A_0}{\pi}$$ \hspace{1cm} (4)

as described by Petty (2006). Substitution of Eq. 4, into Eq. 3, and subsequently into Eq. 2, demonstrates that the Ångström relationship for absorbance (Eq. 2) is modified to

$$\frac{\lambda}{\lambda_0} = \left(\frac{A_0}{\pi} \right)^{-\alpha(n-1)}$$ \hspace{1cm} (5)

for describing the imaginary refractive index (see appendix), where n, represents the imaginary refractive index, λ is the wavelength and α is the absorption Ångström exponent. In essence the value of Ångström exponent, α, measured by the UV-VIS spectrometer is larger than the corresponding value for the imaginary refractive index. Note for the work described here $\lambda_0 = 460$ nm. The values of k_0 and α were measured for dilute solutions of the wood smoke extract in isopropanol and humic acid in water. In the optical trap the droplet of wood smoke extract in isopropanol had all of the isopropanol solvent to evaporate, as expected, leaving pure wood smoke extract. The aqueous humic acid solution lost some water to evaporation, but remained an aqueous but more concentrated, solution. As will be described below the mass density of the woodsmoke extract was measured independently. Thus, for the wood smoke extract droplet the values of k_0 and Abs_0 were corrected for the mass density of wood smoke extract in the optical trap and the attenuation of the resulting Mie spectrum will be shown to be consistent. For the aqueous humic acid solution, the value of k_0 was determined by fitting the attenuation of the Mie spectrum by inspection, i.e. by changing the value of k_0 until the intensity attenuation of the simulated and experimental Mie spectra.
3. Results

Aqueous humic acid aerosol and extracts of atmospheric aerosols were optically trapped and the real component of the refractive index determined through comparison of experimentally obtained Mie spectra to simulated Mie spectra by varying the radius and the Cauchy coefficients \(A \) and \(B \). The correct simulation of the Mie spectra requires the variation of absorption with wavelength to be described in terms of the imaginary refractive index \(\Delta \). The mass density of the pure material was calculated gravimetrically by evaporating isopropanol from a pre-weighed sample of the extract. For the measurement of mass density obtained by the densitometer, a plot of the inverse of the density versus its corresponding weight fraction allowed the mass density of the sample to be determined. The Ångström coefficient determined for the absorbance in isopropanol or water was adjusted for use with the imaginary refractive index Ångström relationship (see Appendix). Simulated Mie spectra of wood smoke aerosol and humic acid aerosol were then calculated with and without application of an Ångström exponent absorption to demonstrate that the attenuation in Mie resonance intensity was consistent with absorption.

The mass density of the two pure wood smoke aerosol extracts was determined to be 1.47 g cm\(^{-3}\) for extract A and 1.64 g cm\(^{-3}\) for extract B. The values are similar to the values Hoffer et al. (2005) reported for humic like substances (HULIS) sourced from a biomass burning plume: 1.502 to 1.569 g cm\(^{-3}\) and Dinair et al. (2008) reported 1.42 to 1.51 g cm\(^{-3}\). The mass density of the aqueous humic acid solution in the nebuliser was 0.0005 g cm\(^{-3}\), i.e. the mass of humic acid per unit volume of solution the mass density of the pure humic acid was reported from the supplier Sigma-Aldrich to be 1.52 g cm\(^{-3}\). The absorption spectrum and imaginary component of the refractive index over the wavelength range of 460 to 640 nm for the wood smoke and humic acid samples are shown in Fig. 3. Table 2 contains the values of the \(k_a, k_b, k_c, \Delta n, \) and \(\alpha \) determined in the study presented here. The dependence of the Mie spectral intensity with and without contribution from the absorption are shown for the two absorbing samples in Fig. 2. Absorption attenuates the intensity of the Mie spectra and is most notable at shorter wavelengths where the mass absorption coefficient is largest.

Figure 2 demonstrates that it may be possible to determine the absorption spectra from Mie spectra recorded from optically trapped aerosol. The solvent (isopropanol) was lost from the trapped aerosol extracts by experimental design to ensure the pure extract was studied. In contrast the aqueous humic acid droplet retained some of its water in equilibrium with the local
humidity of the optical trapping cell. The trapped droplet was observed to lose water and consequently shrink in size. The simulated Mie spectra in Fig 2 were calculated with and without absorption described by an Ångström exponent to demonstrate that the attenuation of Mie resonances (especially at shorter wavelengths) was consistent with measured Mie spectra. The mass density of humic acid in an aqueous droplet is proportional to the imaginary refractive index, allowing the mass density of the optically trapped humic acid droplet to be calculated. The concentration of the trapped humic acid was determined to be 0.016 g cm$^{-3}$. The concentration of the aqueous humic acid droplet had increased by a factor of ~32 upon trapping, thus demonstrating that water had evaporated from the droplet during the trapping and aerosol equilibration process.

4. Discussion

Studies reporting the refractive index of atmospheric aerosol extracts are predominantly conducted at individual wavelengths (see e.g. Guyon et al., 2003; Hoffier et al., 2005; Kim and Paulson, 2013; Lambe et al., 2013; Lang-Yona et al., 2010; Nakayama et al., 2013; Redemann et al., 2000; Stelson et al., 1990). Yamase et al. (1998) determined the real component of the refractive index of smoke aerosol extracts to be 1.53, 1.55, 1.59, and 1.58, for wavelengths of 438, 670, 870, and 1020 nm respectively, whilst Shingler et al. (2016) conducted in-situ aerosol particle measurements of wildfire, biogenic, marine and urban air masses and discovered a refractive index of 1.52 to 1.54 at a wavelength of 532 nm. Contrastingly, the refractive index in the study presented here was not calculated at a single wavelength but over a large continuous wavelength range (400 to 700 nm).

4.1. Refractive index of atmospheric aerosol extracts

The variation in refractive index between the extracts investigated in the study indicates a distinctive difference between each sample from each location source. Figure 4 graphically compares the refractive index dispersion with wavelength obtained for the atmospheric aerosol extracts analysed in the study presented to selected values from literature. Large differences between the values of refractive index for remote, urban and wood smoke aerosol extracts can be easily observed in Fig. 4. Wood smoke aerosol extracts have the largest values of refractive index, followed by urban and then remote aerosol extracts. Antarctica is considered a clean environment owing to the physical remoteness of the continent and air that reaches Antarctica is considered relatively cleansed of anthropogenic particles (see e.g. Wolff et al., 1990). However, some particles do reach Antarctica, examples of such aerosol sources include sea spray, the transport of industrial emissions (see e.g. McConnell et al., 2014) and particulate material from biomass burning and tropical forest fires (see e.g. Tomasi et al., 2007). Aerosols from such sources have travelled far and have likely undergone chemical ageing, and are thus likely to be very different in chemical composition than their initial composition. The review authored by Moise et al. (2015) demonstrates the importance of chemical reactions in the alteration of the optical properties of atmospheric aerosols during atmospheric transport.

The urban aerosol extract samples have a wide distribution of the values of refractive index with values ranging from 1.478 to 1.522 at 589 nm. From the small sample analysed in the study presented, the autumn and winter samples are at the larger end of the refractive index range, with spring and summer at the mid to low end. The wavelength dependent refractive
index values determined for atmospheric aerosol extracts lie in good agreement with previous monochromatic literature results. Studies focusing on anthropogenic aerosols determined values of refractive index varying from 1.498 to 1.653 nm at 532 nm; the refractive index range found in literature encompasses the urban and wood smoke aerosol extract wavelength dependent refractive indices determined in the study (see e.g. Adler et al., 2011; Yamasoe et al., 1998; Hoffer et al., 2005; Shingler et al., 2016). Previous studies focused on the refractive index of aerosols sourced from Antarctica demonstrate similar values to those determined in the work presented: Virkkula et al. (2006) measured refractive indexes that generally lay between 1.4 and 1.5, but reached as low as 1.3 (an average of measurements from the wavelengths 450, 550 and 700 nm) for Antarctic aerosol extracts.

Contrastingly, Guyon et al. (2003) studied the refractive index of biomass burning aerosols collected from the Amazon tropical forest and determined a refractive index of 1.41 at 545 nm (0.18 lower than the wavelength dependent refractive index determined in the study presented here at the same wavelength). A likely reason for the variation is that Guyon et al. (2003) collected samples from a station suspended 54 m above ground level (and 22 m above the forest canopy), whereas in the study presented here samples were drawn directly from the smoke plume from a burning fire and consequently samples did not have the opportunity to chemically age or to mix with other material present in the atmosphere. Refractive index values from literature for secondary organic aerosols demonstrate a wide range of refractive index values (see e.g. Kim et al., 2010, 2013; Lambe et al. 2013; Lang-Yona et al. 2010; Spindler et al. 2007; Yu et al. 2008). The work here indicates that a single refractive index value cannot be used to describe secondary organic aerosol, perhaps owing to the wide range of organics present in the aerosol (see e.g. Yu et al., 2008).

4.2. Refractive index of aqueous humic acid aerosol

Aqueous humic acid was studied to demonstrate the ability of using optical trapping and Mie spectroscopy to study a known absorbing aerosol. Humic acid was dissolved in water to form a solution prior to nebulisation. The measured refractive index of the aqueous aerosol droplet will have a different refractive index than a pure sample of humic acid owing to the water content of the aerosol. The refractive index of humic-like substances has been reported to be quite large, for example Hoffer et al. (2005) reported a refractive index of 1.653 for HULIS samples. However, in the study presented, the aqueous humic acid droplets had a refractive index lower than any of the atmospheric aerosol extracts because the atmospheric aerosol extracts were trapped as concentrated aerosol extracts (the solvent, isopropanol, used to allow the aerosol extracts to become airborne evaporated during nebulisation and trapping).

4.3. Calculation of the absorption Ångström exponent

Unlike the urban and remote atmospheric aerosol extracts, the wood smoke aerosol extract and aqueous humic acid aerosol had strong absorption properties as shown by UV-Vis experiments on samples dissolved in isopropanol and water, respectively. The imaginary component of the refractive index and absorption Ångström exponent could then be determined for the two samples.
Previous studies in the field have determined values for the absorption Ångström exponents to range from 2 to 16 for carbonaceous aerosol over the visible wavelength range (see e.g. Hoffer et al., 2005; Lewis et al., 2008; Chakrabarty et al., 2010; Flowers, 2010; Moosmüller et al., 2011; Urey et al., 2013; Zhang et al., 2013; He et al., 2015; Garg et al., 2016; Pokhrel et al., 2016; Rathod et al., 2016; Shen et al., 2017). More specifically, values in the range of 3.5 to 8.3 have been calculated for studies focusing on the absorption Ångström exponent for smoke aerosols. Lewis et al. (2008) studied the combustion of a variety of fuels with a dual wavelength photo-acoustic instrument to determine an absorption Ångström exponent of 3.5. Contrastingly, Hoffer et al. (2005) and Park and Yu (2016) obtained much larger values of the absorption Ångström exponents of 6 to 7 and 7.4 to 8.3 respectively for biomass burning aerosols.

The calculated absorption Ångström exponent for the wood smoke aerosol extract correlates with the absorption Ångström exponent measured in previous studies for biomass burning aerosols. Interestingly, it has been suggested that fire type plays a role in the amount of black carbon produced. A flaming fire has been shown to produce more particles (see e.g. Reid et al., 2005), and in particular produce more black carbon than smouldering fires (see e.g. Hoffer et al., 2005; Yamasoe et al., 2009). The fire from which the wood smoke aerosol extracts were collected was flaming and hence a high absorption Ångström exponent is expected. It ought to be noted that the wood smoke extract was included in this work as an exploratory sample with strong absorption behaviour and future work will explore smoke aerosol where the fuel and fire temperature are carefully controlled.

Considering the absorption Ångström exponent for the aqueous humic acid aerosol, it can be observed that the exponent correlates with studies that determined the absorption Ångström exponent for biomass fuels. For example, Schnaiter et al. (2006) deduced an absorption Ångström exponent between 2.2 and 3.5 for aerosols produced from the combustion of propane and Schnaiter et al. (2003) determined an absorption Ångström exponent of 1 for emissions produced from the combustion of diesel.

4.4. Uncertainty in Mie spectra fitting

The collection technique applied to extract remote and urban aerosols from the atmosphere was limited by airflow and filter size and therefore sample was very limited. Organic material extracted from filters used in high-volume aerosol samplers were not used in the study presented here as the filter blanks demonstrated contamination. The contamination was attributed to the quality of the filters used, demonstrating that pre-combusted filters are critical.

Owing to limited sample, only small droplets were optically trapped causing the collected Mie spectra to have little structure. A less structured Mie spectrum reduces the accuracy of the determined wavelength dependent refractive index, radius and absorption Ångström exponent. The Mie spectra in Fig. 1 of summer urban aerosol extracts are structured with pronounced peak shapes that allow the facile fitting between simulated and measured Mie spectra. Such spectra allow a relatively small range of values of the radius, the Cauchy coefficients A, B and C to provide a good fit between measured and simulated Mie spectra. The rest of the Mie spectra in Fig. 1 have significantly fewer Mie resonances and their peak shapes are less pronounced. The uncertainties become larger as the spectra become less structured. Despite the limitations in Mie spectra simulation, the...
typical uncertainty in radius and refractive index for a Mie spectra was typically ±6 nm and ±0.015 respectively, whilst the uncertainty for the absorption Ångström exponent was 7%, for the wood smoke aerosol extract and 5% for the aqueous humic acid aerosol.

The liquid droplets are assumed to be perfectly spherical. Mie scattering from droplets experiencing small deformation has been shown by Arnold et al. (1990) and Schweiger et al. (1990) to result in resonances which shift, broaden and split as the droplet asymmetry increases.

The sensitivity of the simulated Mie spectra to the refractive index (±0.015) and radius (±6 nm) of the droplet are shown in Figure 5. The simulated spectra, with the stated variations, and the experimental Mie spectra for the spring urban aerosol extract are plotted. Figure 5 also contains a third simulated set of Mie spectra calculated by re-optimising the values of A, B, and C in the Cauchy equation to achieve a fit between simulated and experimental Mie spectra for particles with a radius ±12 nm from the optimum fit to the experimental data. Figure 5 demonstrates that the quoted uncertainties in radius (±6 nm) and refractive index (±0.015) are realistic.

4.5. Atmospheric Implications

Atmospheric aerosol can increase the top of the atmosphere albedo by scattering incoming solar radiation and decrease the top of the atmosphere albedo by absorbing solar radiation. Using the refractive index data collected in the study presented, a radiative transfer model was applied to consider the change in top of the atmosphere albedo owing to an aerosol film forming with the same optical properties as the extracts studied in the presented study. The material extracted from the atmospheric samples described in the study may form an organic shell at the air-water interface of an aqueous aerosol (see e.g. Gill et al. (1983)). An atmospheric radiative-transfer model (see e.g. Stammes et al., 1988) was applied to study an atmospheric aerosol layer consisting of core aqueous aerosol coated in an organic shell with the optical properties of the atmospheric aerosol extract measured within the work presented here. The change in the top of the atmospheric albedo was calculated as the proportions of water and organic material were varied for different size aerosols.

The top of the atmosphere albedo was calculated for an aerosol layer with the composition of an aqueous core aerosol surrounded by a shell of either urban, wood smoke or remote atmospheric aerosol extract with the volume fraction varying from 0 to 1 (i.e. pure water to pure organic). The calculations represent only a small-scale study to simply identify potential effects on the top of the atmosphere albedo owing to the presence of pure core-shell particles in the atmosphere versus no aerosol present. The change in the top of the atmosphere albedo is reported as an aerosol relative effective, following the approach of Mishra et al. (2015).

Atmospheric aerosol can increase the top of the atmosphere albedo by scattering incoming solar radiation and decrease the top of the atmosphere albedo by absorbing solar radiation. Using the refractive index data collected in the study presented, a radiative transfer model was applied to consider the change in top of the atmosphere albedo owing to an aerosol film forming with the same optical properties as the extracts studied in the presented study. The material extracted from the atmospheric samples described in the study may form an organic shell at the air-water interface of an aqueous aerosol (see e.g. Gill et al. (1983)). An atmospheric radiative-transfer model (see e.g. Stammes et al., 1988) was applied to study an atmospheric aerosol layer consisting of core aqueous aerosol coated in an organic shell with the optical properties of the atmospheric aerosol extract measured within the work presented here. The change in the top of the atmospheric albedo was calculated as the proportions of water and organic material were varied for different size aerosols.

The top of the atmosphere albedo was calculated for an aerosol layer with the composition of an aqueous core aerosol surrounded by a shell of either urban, wood smoke or remote atmospheric aerosol extract with the volume fraction varying from 0 to 1 (i.e. pure water to pure organic). The calculations represent only a small-scale study to simply identify potential effects on the top of the atmosphere albedo owing to the presence of pure core-shell particles in the atmosphere versus no aerosol present. The change in the top of the atmosphere albedo is reported as an aerosol relative effective, following the approach of Mishra et al. (2015).

The atmospheric radiative-transfer model uses the DISORT code (see e.g. Stammes et al., 1988). The model uses values of the scattering, absorption and the asymmetry parameter of aerosols to calculate the change in solar radiation through the atmosphere. To calculate the scattering and absorption parameters for coated spheres Mie calculations were performed for the core-shell particles using BHCOAT, a code developed by Bohren and Huffman (1983), which was later modified to also
5. Conclusions

A new technique using optical trapping techniques applied alongside Mie spectroscopy was employed to determine the real and imaginary components of the refractive index of insoluble organic material from atmospheric aerosol extracts over a wide wavelength range. The atmospheric aerosol extract was successfully trapped, demonstrating that the material forms spherical liquid droplets which Mie theory could be applied. From application of Mie theory, the refractive indices of the atmospheric aerosol extract were determined to vary from 1.470 for aerosol extracted from Antarctica to 1.588 for wood smoke aerosol extract. Scattering, absorption and asymmetry parameter for the particle are calculated from the refractive index of the core and shell. For all aerosol particles, the refractive index of the core is a wavelength dependent value for water (IAPWS, 1997) and the refractive index of the surrounding medium a wavelength independent value for air of 1.00-0.01. The shell of the aerosol has a wavelength dependent refractive index of the urban, remote or wood smoke aerosol extracts, as displayed in Table 1. In addition, the absorption properties of the wood smoke aerosol extract were included in the calculation.

The core-shell Mie calculation was used to obtain scattering and absorption cross-sections and asymmetry parameters for particles with a radius of 100 to 10,000 nm (100 nm intervals from 100 to 1000 nm, and 1000 nm intervals from 1000 to 10,000 nm), and with the shell volume being a proportion of 0.01 to 0.99 of the whole particle volume. Calculations were performed over wavelengths covering 350 to 750 nm. The ground albedo was set to 0.1. Aerosol of one size was placed in three consecutive 1 km thick layers at the surface, forming a 3 km thick aerosol layer. The aerosol optical depth for each of these layers was set to 0.126, the global average for aerosol and no aerosol or cloud was placed in any subsequent layers. The solar zenith angle was set at 60°. The albedo of the top of the atmosphere was calculated as the ratio of incoming to outgoing irradiance at 100 km altitude and averaged over wavelengths from 350 to 750 nm for each particle size. Calculations were also performed for no aerosol present in the atmosphere. The aerosol radiative effect was then calculated using Eq. 6:

\[
\text{ARE}_{\text{TOT}} = \text{ARE}_{\text{TOT}, \text{albedo}_{\text{TOA}}} - \text{ARE}_{\text{TOT}, \text{albedo}_{\text{no aerosol}}}
\]

where \(\text{ARE}_{\text{TOT}}\) stands for total aerosol radiative effect, \(\text{ARE}_{\text{TOT}, \text{albedo}_{\text{TOA}}}\) stands for the top of the atmosphere albedo with aerosol present and \(\text{ARE}_{\text{TOT}, \text{albedo}_{\text{no aerosol}}}\) stands for the top of atmosphere albedo without aerosol present.

The results of these calculations are presented in Fig. 6. From Fig. 6, it can be observed that all aerosols have a positive effect on the total aerosol radiative effect, with the most positive effect observed for particle sizes of 600 and 800 nm for the urban and remote atmospheric aerosol extracts and 200 and 400 nm for the wood smoke aerosol extract. Note the change in top of the atmosphere albedo is most pronounced when the volume of shell increases from 0 to 25% of the total volume.

5. Conclusions

A new technique using optical trapping techniques applied alongside Mie spectroscopy was employed to determine the real and imaginary components of the refractive index of insoluble organic material from atmospheric aerosol extracts over a wide wavelength range. The atmospheric aerosol extract was successfully trapped, demonstrating that the material forms spherical liquid droplets which Mie theory could be applied. From application of Mie theory, the refractive indices of the atmospheric aerosol extract were determined to vary from 1.470 for aerosol extracted from Antarctica to 1.588 for wood smoke aerosol extract. Scattering, absorption and asymmetry parameter for the particle are calculated from the refractive index of the core and shell. For all aerosol particles, the refractive index of the core is a wavelength dependent value for water (IAPWS, 1997) and the refractive index of the surrounding medium a wavelength independent value for air of 1.00-0.01. The shell of the aerosol has a wavelength dependent refractive index of the urban, remote or wood smoke aerosol extracts, as displayed in Table 1. In addition, the absorption properties of the wood smoke aerosol extract were included in the calculation.

The core-shell Mie calculation was used to obtain scattering and absorption cross-sections and asymmetry parameters for particles with a radius of 100 to 10,000 nm (100 nm intervals from 100 to 1000 nm, and 1000 nm intervals from 1000 to 10,000 nm), and with the shell volume being a proportion of 0.01 to 0.99 of the whole particle volume. Calculations were performed over wavelengths covering 350 to 750 nm. The ground albedo was set to 0.1. Aerosol of one size was placed in three consecutive 1 km thick layers at the surface, forming a 3 km thick aerosol layer. The aerosol optical depth for each of these layers was set to 0.126, the global average for aerosol and no aerosol or cloud was placed in any subsequent layers. The solar zenith angle was set at 60°. The albedo of the top of the atmosphere was calculated as the ratio of incoming to outgoing irradiance at 100 km altitude and averaged over wavelengths from 350 to 750 nm for each particle size. Calculations were also performed for no aerosol present in the atmosphere. The aerosol radiative effect was then calculated using Eq. 6:

\[
\text{ARE}_{\text{TOT}} = \text{ARE}_{\text{TOT}, \text{albedo}_{\text{TOA}}} - \text{ARE}_{\text{TOT}, \text{albedo}_{\text{no aerosol}}}
\]

where \(\text{ARE}_{\text{TOT}}\) stands for total aerosol radiative effect, \(\text{ARE}_{\text{TOT}, \text{albedo}_{\text{TOA}}}\) stands for the top of the atmosphere albedo with aerosol present and \(\text{ARE}_{\text{TOT}, \text{albedo}_{\text{no aerosol}}}\) stands for the top of atmosphere albedo without aerosol present.

The results of these calculations are presented in Fig. 6. From Fig. 6, it can be observed that all aerosols have a positive effect on the total aerosol radiative effect, with the most positive effect observed for particle sizes of 600 and 800 nm for the urban and remote atmospheric aerosol extracts and 200 and 400 nm for the wood smoke aerosol extract. Note the change in top of the atmosphere albedo is most pronounced when the volume of shell increases from 0 to 25% of the total volume.
extracts at a wavelength 589 nm, whilst seasonal refractive index dependence was observed for atmospheric aerosol extracted from an urban environment.

Additionally, owing to the efficient light absorbing nature of the wood smoke aerosol extract and aqueous humic acid extract, the absorption Ångström exponent could be determined with a high level of certainty for the extract; through applying optical trapping and Mie spectroscopy alongside UV-Vis spectroscopy it was possible to determine the real and imaginary component of the refractive index.

The aerosol collected may exist as an aerosol in the atmosphere or it may coagulate with other atmospheric aerosols to form a film. Use of a simple one-dimensional radiative-transfer model to study an atmospheric layer of aerosol with a thin shell of atmospheric aerosol extracts on an aqueous spherical core indicates that the albedo \(\rho \) of the top of the atmosphere may change by up to 0.03 relative to a pure aqueous droplet.

Data Availability

The data presented in the study can be found at https://doi.org/10.5281/zenodo.834450.

Appendix A

The absorption Ångström exponent and imaginary refractive index were calculated by using experimentally determined absorption in a series of equations. Equation (2) from Sect. 2.4. is

\[
\frac{\text{Abs}_{0}}{\text{Abs}} = \left(\frac{\lambda}{\lambda_0} \right)^{-\alpha}, \tag{A1}
\]

where \(\text{Abs} \) is the absorbance, \(\lambda \) is the wavelength and \(\alpha \) is the absorption Ångström exponent. It ought to be noted that \(\text{Abs}_{0} \) is the value of absorbance at the reference wavelength \(\lambda_0 \). By substituting Eq. (4) into Eq. (3) and then Eq. (4), the relationship between the two variables was determined:

\[
\left(\frac{\lambda_0}{\lambda} \right) = \left(\frac{\lambda}{\lambda_0} \right)^{-\alpha}, \tag{A2}
\]

\[
\left(\frac{\lambda}{\lambda_0} \right)^{\alpha} = \left(\frac{\lambda_0}{\lambda} \right), \tag{A3}
\]

\[
\left(\frac{\lambda}{\lambda_0} \right) = \left(\frac{\lambda_0}{\lambda} \right)^{1/(\alpha+1)}, \tag{A4}
\]

\[
\left(\frac{\lambda}{\lambda_0} \right) = \left(\frac{\lambda_0}{\lambda} \right)^{-\alpha/(\alpha+1)}, \tag{A5}
\]

where \(\lambda \) is the wavelength, \(\alpha \) is the absorption Ångström exponent and \(\kappa \) is the imaginary refractive index. Note that \(\kappa_0 \) is the imaginary refractive index at \(\lambda_0 \). Equation (A5) demonstrates that the relationship between the Ångström exponent of absorbance and Ångström exponent of imaginary refractive index occurs when the Ångström exponent of the imaginary refractive index is \(\alpha-1 \). Hence, throughout the paper the Ångström exponent is of the imaginary refractive index is \(\alpha-1 \).
Author Contributions

Rosalie H. Shepherd conducted all experiments, extracted all atmospheric aerosol, analysed and interpreted the data collected and wrote the paper. Martin D. King and Andrew D. Ward conceived the experiment and assisted during the experiment. Additionally, Martin D. King collected the urban atmospheric aerosol extracts. Amelia Marks with the assistance of Martin D. King modelled a film of atmospheric aerosol extract on an aqueous aerosol. Neil Brough collected aerosol samples from Antarctica.

Competing Interests

The authors declare that they have no conflict of interest.

Acknowledgments

The authors would like to thank the Central Laser Facility for granting access time on the optical trapping equipment at Rutherford Appleton Laboratories, Oxfordshire under the grant number 25130028. Rosalie H. Shepherd would like to thank STFC for funding the grant ST/L504279/1.

References

Figure 1: The typical Mie spectra as a function of wavelength obtained for the urban atmospheric aerosol extracts (collected over the four seasons) and the remote Antarctic atmospheric aerosol extract. From the Mie spectra, the refractive index and radius of the trapped droplet could be determined. Simulated and measured Mie spectra are compared.
Figure 2: Typical Mie spectra for the wood smoke aerosol extract B and the humic acid aerosol with simulated Mie spectra with and without absorption. The simulated Mie spectra when the measured absorption Ångström exponent, α, was included or when the absorption Ångström exponent was held at zero are shown for wood smoke aerosol extract and humic acid aerosol. Note the absorption measured in Fig. 3 is required to provide a good fit to the intensity of the data, especially at short wavelength.
Figure 3: The absorbance (base 10) of the aqueous humic acid solution and wood smoke aerosol in isopropanol. The mass density of humic acid in water is $7.00 \times 10^{-5} \text{ g cm}^{-3}$ and the mass density of the wood smoke extract in isopropanol is $6.60 \times 10^{-5} \text{ g cm}^{-3}$. Using mass densities of pure humic acid (1.52 g cm$^{-3}$) and wood smoke extract B (1.64 g cm$^{-3}$) allows calculation of the imaginary refractive index of the pure components as displayed in the second, lower panel. The simulated absorbance curves displayed in the figure are calculated using Eq. (2), using parameters contained in table 2. The simulated absorbance curves in the upper panel have been displaced upwards for clarity.
Figure 4: Refractive index dispersions for urban, remote and wood smoke atmospheric aerosol extracts and humic acid aerosol, compared to refractive index values from literature. A sample of literature studies investigated aerosols from (1) remote locations e.g., Virkkula et al. (2006), (2) biomass burning e.g., Hoffer et al. (2005), Guyon et al. (2003); (3) urban e.g., Yamazoe et al. (1998), Chakrabarty et al. (2010) and (4) organic aerosols e.g., Kim and Paulson (2013), Lambe et al. (2013), Spindler et al. (2007), Kim et al. (2010), Yu et al. (2008), Flores et al. (2014), Chakrabarty et al. (2010) and Trainic et al. (2011).
Figure 5: The experimental Mie spectra for the urban spring aerosol extract with the simulated best fit perturbed in three different scenarios to demonstrate the sensitivity of fitting simulated Mie spectra to experimental Mie spectra. Initially the simulated fit (red solid line) is recalculated with a refractive index increased and decreased by 0.015 (n±0.015), followed by the simulated fit (red solid line) recalculated with a radius increased and decreased by 6 nm (n±6 nm). The final set of simulated Mie spectra consider the simulated fit (red solid line) is recalculated with a droplet radius increased and decreased by 12 nm, but the refractive index re-optimised to get the best fit to the experimental fit (r±12 nm and RI re-optimised). A clear demonstration that the quoted uncertainties in radius (±6 nm) and refractive index (±0.015) are conservative and more than adequate.
Figure 6: The aerosol radiative effect for the change in top of the atmosphere albedo upon core-shell morphology formation in atmospheric aerosols. The shell material consists of the urban atmospheric aerosol extract (top), remote atmospheric aerosol extract (middle) or wood smoke atmospheric aerosol extract (bottom), whilst the core for all calculations was water. The radius of the core was varied 7 times. The left-hand side of the graph corresponds to pure aqueous droplets, the right-hand side to pure organic droplets.
Table 1: The number of aerosols studied, their determined Cauchy coefficients and the particle sizes. Many more particles were studied but were too small to produce Mie spectra that could be fitted with confidence (i.e. the Mie spectra lacked structure). A very limited amount of sample prevented a larger aerosol becoming optically trapped. Where more than one particle was analysed for a single type of sample, e.g. urban spring, the average and standard deviation of the Cauchy coefficients and real refractive index were reported for the particle studied. The standard deviation does not reflect the uncertainty estimated from the fitting process (which is ±0.015 for the real refractive index) but a spread of values obtained for the few particles studied. The range in particle sizes studied is also reported. Note the wood smoke aerosol extract was plentiful and repeated experiments could be performed.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Particles Analysed</th>
<th>X</th>
<th>B (nm²)</th>
<th>C (nm⁴)</th>
<th>Real Refractive Index (589 nm)</th>
<th>Radius Range (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Spring</td>
<td>3</td>
<td>1.478±0.010</td>
<td>3750±3250</td>
<td>0</td>
<td>1.489</td>
<td>0.49-0.762</td>
</tr>
<tr>
<td>Summer</td>
<td>4</td>
<td>1.465±0.005</td>
<td>4625±1200</td>
<td>0</td>
<td>1.478</td>
<td>0.474-1.252</td>
</tr>
<tr>
<td>Autumn</td>
<td>1</td>
<td>1.505</td>
<td>6000</td>
<td>0</td>
<td>1.522</td>
<td>0.492</td>
</tr>
<tr>
<td>Winter</td>
<td>2</td>
<td>1.495±0.007</td>
<td>4000</td>
<td>0</td>
<td>1.507</td>
<td>0.515</td>
</tr>
<tr>
<td>Antarctic summer 2015</td>
<td>1</td>
<td>1.467</td>
<td>1000</td>
<td>0</td>
<td>1.470</td>
<td>0.503</td>
</tr>
<tr>
<td>Wood Smoke Extract A</td>
<td>6</td>
<td>1.543</td>
<td>15700±750</td>
<td>0</td>
<td>1.588±0.002</td>
<td>0.508-0.723</td>
</tr>
<tr>
<td>Wood Smoke Extract B</td>
<td>6</td>
<td>1.541±0.003</td>
<td>14800±2900</td>
<td>0</td>
<td>1.584±0.007</td>
<td>0.475-0.593</td>
</tr>
<tr>
<td>Humic acid (aqueous)</td>
<td>1</td>
<td>1.449</td>
<td>3425</td>
<td>1.25×10⁻⁸</td>
<td>1.460</td>
<td>1.307</td>
</tr>
</tbody>
</table>
Table 2: The mass densities and absorption properties of the wood smoke and humic acid samples used in the work described here.
Note that the mass densities of the wood smoke extract in isopropanol and aqueous humic acid solutions refers to the mass of either woodsmoke extract or humic acid in the volume of isopropanol or water respectively and are not the mass densities of the pure compounds which are also reported in the table.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mass density / g cm(^{-3})</th>
<th>Absorption coefficient, b, at (\lambda_0 = 460) nm / cm(^{-1})</th>
<th>Absorption coefficient at (\lambda_0 = 460) nm / cm(^{-1})</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure wood smoke extract B</td>
<td>1.64</td>
<td>3033</td>
<td>0.0111±0.0010</td>
<td>-</td>
</tr>
<tr>
<td>Wood smoke extract B in isopropanol (Fig. 3 – top pane)</td>
<td>6.60×10(^{-5})</td>
<td>0.122</td>
<td>(4.47±0.40)×10(^{-3})</td>
<td>0.122</td>
</tr>
<tr>
<td>Aqueous humic acid (Fig. 3 – top pane)</td>
<td>7.00×10(^{-5})</td>
<td>1.513</td>
<td>(4.21±0.38)×10(^{-4})</td>
<td>0.499</td>
</tr>
<tr>
<td>Pure humic acid</td>
<td>1.52</td>
<td>25,000</td>
<td>0.092±0.046</td>
<td>-</td>
</tr>
<tr>
<td>Optically trapped aqueous humic acid droplet</td>
<td>0.016</td>
<td>275.2</td>
<td>(1.00±0.50)×10(^{-1})</td>
<td>-</td>
</tr>
</tbody>
</table>
Atmospheric aerosols affect the radiative balance of our planet e.g. Pöschl (2005), Ramanathan (2001), Stocker (2013) and Wild (2009). Aerosols directly affect the radiative balance by absorbing or scattering incoming solar radiation e.g. Moise (2015), and indirectly through their role as cloud condensation nuclei e.g Breon (2002), Lohmann and Feichter (2005), Rosenfeld (2008) and Charlson (2001). However, current understanding of the atmospheric aerosol radiative balance and the cloud albedo effect is currently regarded as low e.g. Stocker (2013) and Fuzzi (2005).

Owing to the complexity of material in the atmosphere, atmospheric aerosols often contain a mixture of different compounds e.g. Cappa (2011), Cai (2016) and Cochran (2016). The contrasting properties of the different compounds can result in atmospheric aerosols being coated in a film of organic material e.g. Gill (1983) and Donaldson and Vaida (2006). The presence of a film may alter the physical, chemical and optical properties of the cloud droplet or aerosol particle by (a) reducing the rate of evaporation from the droplets or particles e.g. Davies (2013), Eliason (2003), Gill (1983), Kaiser (1996) and McFiggans (2005), (b) altering the transport of chemicals between gas and liquid phase e.g. Donaldson and Anderson (1999) and Donaldson and Valsaraj (2010), (c) affecting gaseous uptake e.g. Enami, (2010), (d) reducing the scavenging by larger cloud droplets e.g. Andreaea and Rosenfeld (2008) and Feingold and Chuang (2002) and (e) altering the optical properties of the droplet e.g. Donaldson and Vaida (2006) and Li (2011). To quantify the consequences of film formation on atmospheric aerosol particles and cloud droplets, further understanding of aerosol films is urgently required. However, obstacles such as accurately quantifying anthropogenic and natural aerosol emissions (Kanakidou (2005)) or understanding the hugely varying chemistry of atmospheric aerosols (Jacobson and Hansson (2000)) means the current understanding of atmospheric aerosol remains low e.g. Stocker (2013) and Flores (2014).

Furthering the current understanding of film formation on cloud droplets or aerosols has largely been addressed by replicating the film with atmospheric proxy compounds such as oleic acid e.g. King (2004, 2009) and Jones (2015), methyl oleate e.g. Pfrang (2014) and Sebastiani (2015), pinonic acid e.g. Enami and Sakamoto (2016), DPPC (Thompson et al. 2010), or nonanoic acid e.g. Tinel (2016). However organic material extracted from the environment has only featured in a limited number of studies, e.g. Jones (2017) investigated the consequences of exposing organic films extracted from atmospheric aerosol and sea-water to ozone, whilst Zhou (2014) studied the heterogeneous chemistry of material collected from the surface of the sea. Research that focus on the sea-surface layer is highly relevant to atmospheric studies owing to sea-surface material often becoming aerosols (Blanchard (1964)).

2.2. Optical trapping of the aerosols

A vertically aligned, counter propagating optical trap was used to optically catch and levitate the aerosols. The optical trapping description is described in full by Jones (2013), however a brief description will be given here. The optical trap consisted of two laser beams that were fibre coupled from a 1064 nm continuous wave Nd:YAG laser (Laser Quantum). The laser beams passed through beam expansion optics to two vertically opposed microscope objectives (Mitutoyo M Plan Apo 50 × NA 0.42). An aluminium sample cell (volume 38.4 cm³) was placed between the two microscope objectives and used to contain the aerosols. Borosilicate coverslip windows allowed the focused laser beams to pass into the sample cell and form the optical trap. The aerosol could be held
for more than 24 hours once trapped e.g. Rkiouak (2014). The relative humidity and the temperature of the trapping environment were held at ambient conditions (30 percent relative humidity and 20 °C).

A nebulizer

\[
\frac{k}{k_0} = \left(\frac{\lambda}{\lambda_0}\right)^{-(\alpha-1)},
\]

where \(k\) represents the imaginary refractive index, \(\lambda\) is the wavelength and \(\alpha\) is the absorption Ångström exponent.

4.1. Refractive index of atmospheric aerosol extracts

The variation in refractive index between the extracts investigated in the study indicates a distinctive difference between each sample from each location source. Figure 4 graphically compares the refractive index dispersion with wavelength obtained for the atmospheric aerosol extracts analysed in the study presented to selected values from literature. Large differences between the values of refractive index for remote, urban and wood smoke aerosol extracts can be easily observed in Fig. 4. Wood smoke aerosol extracts have the largest values of refractive index, followed by urban and then remote aerosol extracts. Antarctica is considered a clean environment owing to the physical remoteness of the continent and air that reaches Antarctica is considered relatively cleansed of anthropogenic particles (Wolff, 1990). However, some particles do reach Antarctica, examples of such aerosol sources include sea spray, the transport of industrial emissions (McConnell, 2014) and particulate material from biomass burning and tropical forest fires (Tomasi, 2007). Aerosols from such sources have travelled far and have likely undergone chemical ageing, and are thus likely to be very different in chemical composition than their initial composition. The review authored by Moise, Flores and Rudich (2015) demonstrates the importance of chemical reactions in the alteration of the optical properties of atmospheric aerosols during atmospheric transport.

The urban aerosol extract samples have a wide distribution of the values of refractive index with values ranging from 1.478 to 1.522 at 589 nm. From the small sample analysed in the study presented, the autumn and winter samples are at the larger end of the refractive index range, with spring and summer at the mid to low end. The wavelength dependent refractive index values determined for atmospheric aerosol extracts lie in good agreement with previous monochromatic literature results. Studies focusing on anthropogenic aerosols determined values of refractive index varying from 1.498 to 1.653 nm at 532 nm; the refractive index range found in literature
encompasses the urban and wood smoke aerosol extract wavelength dependent refractive indices determined in the study e.g. Adler (2011), Yamasoe (1998), Hoffer (2005) and Shingler (2016). Similarly, studies focused on aerosols sourced from the Antarctica demonstrate refractive index values similar to the refractive index values determined for the aerosol extract sourced from Antarctica e.g. Virkkula (2006) measured a refractive index that generally lay between 1.4 and 1.5, but also reached as low as 1.3 for Antarctic aerosol extracts (these values are an average of measurements from the wavelengths 450, 550 and 700 nm).

Contrastingly, Guyon (2003) studied the refractive index of biomass burning aerosols collected from the Amazon tropical forest and determined a refractive index of 1.41 at 545 nm (0.1812 lower than the wavelength dependent refractive index determined in the study presented here at the same wavelength). A likely reason for the variation is that Guyon collected samples from a station suspended 54 m above ground level (and 22 m above the forest canopy), whereas in the study presented here samples were drawn directly from the smoke plume from a burning fire and consequently samples did not have the opportunity to chemically age or to mix with other material present in the atmosphere. Refractive index values from literature for secondary organic aerosols demonstrate a wide range of refractive index values, for example the work carried out by Kim (2010), Kim (2013), Lambe (2013), Lang-Yona (2010), Spindler (2007) and Yu (2008). The work indicates that a single refractive index value cannot be used to describe secondary organic aerosol, perhaps owing to the wide range of organics present in the aerosol e.g. Yu (2008).

Previous studies in the field have determined values for the absorption Ångström exponents to range from 2 to 16 for carbonaceous aerosol over the visible wavelength range e.g. Hoffer (2005), Lewis (2008); Chakrabarty (2010), Flowers (2010), Moosmüller (2011), Utry (2013), Zhang (2013), He (2015), Garg (2016), Pokhrel (2016), Rathod (2016) and Shen (2017). More specifically, values in the range of 3.5 to 8.3 have been calculated for studies focusing on the absorption Ångström exponent for smoke aerosols. Lewis (2008) studied the combustion of a variety of fuels with a dual wavelength photo-acoustic instrument to determine an absorption Ångström exponent of 3.5. Contrastingly, Hoffer (2005) and Park and Yu (2016) obtained a much higher absorption Ångström exponents of 6 to 7 and 7.4 to 8.3 respectively for biomass burning aerosols.

The calculated absorption Ångström exponent for the wood smoke aerosol extract correlates with the absorption Ångström exponent measured in previous studies for biomass burning aerosols. Interestingly, it has been suggested that fire type plays a role in the amount of black carbon produced. A flaming fire has been shown to produce more particles e.g. Reid (2005), and in particular produce more black carbon than smouldering fires e.g. Hoffer (2005) and Yamasoe (2000). The fire from which the wood smoke aerosol extracts were collected from was flaming and hence a high absorption Ångström exponent is more likely. It ought to be noted that the wood smoke extract was included in this work as an exploratory sample with a strong absorption and future work will explore smoke aerosol where the fuel and fire temperature are carefully controlled.

Considering the absorption Ångström exponent for the aqueous humic acid aerosol, it can be observed that the exponent correlates with studies that determined the absorption Ångström exponent for biomass fuels. For example, Schnaiter (2006) deduced an absorption Ångström exponent between 2.2 and 3.5 for aerosols produced from the combustion of propane and Schnaiter (2003) determined an absorption Ångström exponent of 1 for emissions produced from the combustion of diesel.