Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
https://doi.org/10.5194/acp-2017-511
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
04 Aug 2017
Review status
This discussion paper is a preprint. A revision of the manuscript is under review for the journal Atmospheric Chemistry and Physics (ACP).
Organic Functional Groups in the Submicron Aerosol at 82.5° N from 2012 to 2014
W. Richard Leaitch1, Lynn M. Russell2, Jun Liu2, Felicia Kolonjari1, Desiree Toom1, Lin Huang1, Sangeeta Sharma1, Alina Chivulescu1, Dan Veber1, and Wendy Zhang1 1Environment and Climate Change Canada (ECCC), Toronto, ON, Canada
2Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
Abstract. The first multi-year contributions from organic functional groups to the Arctic submicron aerosol are documented using 126 weekly-integrated samples collected from April, 2012 to October, 2014 at the Alert Observatory (82.45° N, 62.51° W). Results from the particle transport model FLEXPART, linear regressions among the organic and inorganic components and Positive Matrix Factorization (PMF) enable associations of organic aerosol components with source types and regions. Lower organic mass concentrations (OM) but higher ratios of OM to non-sea-salt sulphate mass concentrations (nss-SO4=) accompany smaller particles during the summer (JJA). Conversely, higher OM but lower OM/nss-SO4= accompany larger particles during winter-spring. OM ranges from 7–463 ng m−3, and the study average is 129 ng m−3. The monthly maximum in OM occurs during May, one month after the peak in nss-SO4= and two months after that of elemental carbon (EC). Winter (DJF), spring (MAM), summer and fall (SON) values of OM/nss-SO4= are 26 %, 28 %, 107 % and 39 %, respectively, and overall about 40 % of the weekly variability in the OM is associated with nss-SO4=. Respective study-averaged concentrations of alkane, alcohol, acid, amine and carbonyl groups are 57 ng m−3, 24 ng m−3, 23 ng m−3, 16 ng m−3 and 11 ng m−3, representing 42 %, 22 %, 18 %, 14 % and 5 % of the OM, respectively. Carbonyl groups, detected mostly during spring, may have a connection with snow chemistry. The seasonally highest O/C occurs during winter (0.85) and the lowest O/C is during spring (0.51); increases in O/C are largely due to increases in alcohol groups. During winter, more than 50 % of the alcohol groups are associated with primary marine emissions, consistent with Shaw et al. (2010) and Frossard et al. (2011). A secondary marine connection, rather than a primary source, is suggested for the highest and most persistence O/C observed during the coolest and cleanest summer (2013), when alcohol and acid groups made up 63% of the OM. A secondary marine source may be a general feature of the summer OM, but higher contributions from alkane groups to OM during the warmer summers of 2012 (53 %) and 2014 (50 %) were likely due to increased contributions from combustion sources. Evidence for significant contributions from biomass burning (BB) was present in 4 % of the weeks. During the dark months (NDJF), 29 %, 28 % and 14 % of the nss-SO4=, EC and OM were associated with transport times over the gas flaring region of Northern Russia and other parts of Eurasia. During spring, those percentages drop to 11 % and 8 % for nss-SO4= and EC, respectively, and there is no association of OM. Large percentages of the Arctic Haze characterized at Alert likely have origins farther than 10 days transport time and may be from outside of the Eurasian region. Possible sources of unusually high nss-SO4= and OM during September–October, 2014 are volcanic emissions or the Smoking Hills’ area of the Northwest Territories, Canada.

Citation: Leaitch, W. R., Russell, L. M., Liu, J., Kolonjari, F., Toom, D., Huang, L., Sharma, S., Chivulescu, A., Veber, D., and Zhang, W.: Organic Functional Groups in the Submicron Aerosol at 82.5° N from 2012 to 2014, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-511, in review, 2017.
W. Richard Leaitch et al.
W. Richard Leaitch et al.
W. Richard Leaitch et al.

Viewed

Total article views: 309 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
234 73 2 309 14 3 5

Views and downloads (calculated since 04 Aug 2017)

Cumulative views and downloads (calculated since 04 Aug 2017)

Viewed (geographical distribution)

Total article views: 309 (including HTML, PDF, and XML)

Thereof 305 with geography defined and 4 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 11 Dec 2017
Publications Copernicus
Download
Short summary
Chemical compositions and microphysical properties of atmospheric aerosol particles at the world's northernmost land observatory measured over a two and a half year period, including the first measurements of organic functional groups, offer a unique dataset for testing of models at high latitudes. In combination with atmospheric transport patterns and statistical analyses, the relative contributions to the particles from anthropogenic and natural marine sources are estimated.
Chemical compositions and microphysical properties of atmospheric aerosol particles at the...
Share