Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Preprints
https://doi.org/10.5194/acp-2017-500
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-2017-500
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Submitted as: research article 12 Jun 2017

Submitted as: research article | 12 Jun 2017

Review status
This preprint has been withdrawn by the authors.

Inter-annual variation of aerosol pollution in East Asia and its relation with strong/weak East Asian winter monsoon

Min Xie1, Lei Shu1, Tijian Wang1, Da Gao1, Shu Li1, Bingliang Zhuang1, Anning Huang1, Dexian Fang2, Yong Han1, Mengmeng Li1, Pulong Chen1, Zhijun Liu1, Zheng Wu2, and Hua Lu2 Min Xie et al.
  • 1School of Atmospheric Sciences, CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
  • 2Chongqing Institute of Meteorology and Science, Chongqing 401147, China

Abstract. Aerosol has become one of the major air pollutants in East Asia, and its spatial distribution can be affected by the East Asian monsoon circulation. By means of the observational analysis and the numerical simulation, the inter-annual variation of wintertime aerosol pollution in East Asia and its association with strong/weak East Asian winter monsoon (EAWM) are investigated in this study. Firstly, the Moderate Resolution Imaging Spectroradiometer/Aerosol Optical Depth (MODIS/AOD) records during 2000–2013 are analyzed to reveal the inter-annual variation characteristics of aerosols. It is found that there is an increasing trend of AOD in East Asia over the last decade, implying the increasing aerosol loading in this region. The areas with obvious increasing AOD cover the Sichuan Basin (SCB), the North China Plain, and most of the Middle-Lower Yangtze River Plain in China. Secondly, the EAWM index (EAWMI) based on the characteristic of circulation are calculated to investigate the inter-annual variations of EAWM. The National Centers for Environmental Prediction (NCEP) reanalysis data are used in EAWMI calculation and meteorological analysis. Nine strong and thirteen weak EAWM years are identified from 1979 to 2014. In these strong EAWM years, the sea-land pressure contrast increases, the East Asian trough strengthens, and the northerly wind gets anomalous over East Asia. More cold air masses are forced to move southward by strengthened wind field and make cool. In the weak EAWM years, however, the situation is totally on the opposite. Finally, the effects of strong/weak EAWM on the distribution of aerosols in East Asia are discussed. It is found that the northerly wind strengthens (weakens) and transports more (less) aerosols southward in strong (weak) EAWM years, resulting in higher (lower) AOD in the north and lower (higher) AOD in the south. The long-term weakening trend of EAWM may potentially increase the aerosol loading. Apart from the changes in aerosol emissions, the weakening of EAWM should be another cause that results in the increase of AOD over the Yangtze River Delta (YRD) region, the Beijing-Tianjin-Hebei (BTH) region and SCB but the decrease of AOD over the Pearl River Delta (PRD) region. Using the Regional Climate-Chemistry coupled Model System (RegCCMS), we further prove that the intensity of EAWM has great impacts on the spatial distribution of aerosols. In strong (weak) EAWM years, there is a negative (positive) anomaly in the air column content of aerosol, with a reduction (increment) of −80 (25) mg m−2. The change pattern of aerosol concentrations in lower troposphere is different from that at 500 hPa, which is related with the different change pattern of meteorological fields in EAWM circulation at different altitude. More obvious changes occur in lower atmosphere, the change pattern of aerosol column content in different EAWM years is mainly decided by the change of aerosols in lower troposphere.

This preprint has been withdrawn.

Min Xie et al.

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Min Xie et al.

Min Xie et al.

Viewed

Total article views: 905 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
609 274 22 905 12 27
  • HTML: 609
  • PDF: 274
  • XML: 22
  • Total: 905
  • BibTeX: 12
  • EndNote: 27
Views and downloads (calculated since 12 Jun 2017)
Cumulative views and downloads (calculated since 12 Jun 2017)

Viewed (geographical distribution)

Total article views: 881 (including HTML, PDF, and XML) Thereof 876 with geography defined and 5 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 04 Jul 2020
Publications Copernicus
Download
Withdrawal notice

This preprint has been withdrawn.

Short summary
The spatial distribution of aerosol can be affected by monsoon circulation. With the aid of a EAWM index, the stong and the weak EAWM years are identified. The long-term trend of weakening EAWM may potentially increase the aerosol loading in YRD, BTH and SCB but decrease AOD in PRD. By using RegCCMS, we further prove that the intensity of EAWM has great impacts on the spatial distribution of aerosols. The change pattern is mainly decided by the change of aerosols in lower troposphere.
The spatial distribution of aerosol can be affected by monsoon circulation. With the aid of a...
Citation