Supporting information for:

Integrated Impacts of Nitrous Acid and Nitryl Chloride on Ozone: New Module Developments for Reactive Nitrogen in WRF-Chem and Applications in summertime over China

Li Zhang 1, Qinyi Li 1, Tao Wang 1*, Ravan Ahmadov 2,3, Qiang Zhang 4, Meng Li 4, Mengyao Lv 5

1 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China,
2 Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA,
3 Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA,
4 Center for Earth System Science, Tsinghua University, Beijing, China,
5 National Meteorological Center, China Meteorological Administration, Beijing, China

*Correspondence to: T. Wang (cetwang@polyu.edu.hk)

Figure S1. Spatial distributions of the (a) observed daily-averaged NO2 concentration and modeled ones in (b) the Base case and (c) ReNOM case during the simulation period.
Figure S2. Regional averages of NO\textsubscript{y} partitioning over eastern China in (a) BASE case, (b) ReNOM_Cl case, (c) ReNOM_HONO case, and (d) ReNOM case.
Figure S3. Vertical distributions of daytime ozone enhancements in (a) ReNOM_HONO case, (b) ReNOM_Cl case, and (c) ReNOM case in the domain intercepting the northern China and central China. Vectors present the average v-w wind components (m s$^{-1}$), dash lines the temperature (°C), and black line the simulated planetary boundary layer height during daytime.