Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
https://doi.org/10.5194/acp-2017-31
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
16 Jan 2017
Heterogeneous freezing of super cooled water droplets in micrometre range-freezing on a chip
Thomas Häusler1, Lorenz Witek2, Laura Felgitsch1, Regina Hitzenberger2, and Hinrich Grothe1 1Institute of Materials Chemistry, TU Wien, Vienna, 1060, Austria
2Institute of Aerosol Physics & Environmental Physics, University of Vienna, Vienna, 1090, Austria
Abstract. A new setup to analyse the freezing behaviour of ice nucleation particles (INPs) dispersed in aqueous droplets has been developed with the aim to analyse ensembles of droplets with sizes in the micrometre range, in which INPs are immersed. Major disadvantages of conventional drop-freezing experiments like varying drop sizes or interactions between the water-oil mixture and the INP, were solved by introducing a unique freezing-chip consisting of an etched and sputtered 15 × 15 × 1 mm gold-plated silicon or pure gold film. Using this chip, isolated micrometre-sized droplets can be generated with sizes similar to droplets in real world clouds. The experimental set-up for drop-freezing experiments was revised and improved by establishing automated process control and image evaluation. The new set-up is economical, quick in handling the sample, precise in measurement and the results are more next to real conditions than former approaches. We were able to show the efficiency and accuracy of our setup by comparing measured freezing temperatures of different INPs (Snomax®, K-feldspar, birch pollen (Betula pendula) washing water, juniper pollen suspension (Juniperus communis) and ultrapure water) with already published results. The T50 values of ultrapure water (T50 = −37.2 °C), birch pollen washing water (T50 = −18 °C) and juniper pollen (T50 = −22.7 °C) match the data given in literature. Microcline shows higher freezing temperatures (T50 = −16.4 °C) than literature values from us and others, which can be explained by different preparing/milling parameters. The slightly lower freezing temperature of Snomax® (T50 = −8.9 °C) received by using the freezing-chip, compared to measurements already published, can be explained by different concentrations and droplet sizes. Our measurements and comparisons with the literature data show the important impact of droplet size, INP concentration and number of active sites on the T50 values. Here, the new set-up exhibits its strength in reproducibility and accuracy which is due to the defined and isolated droplets. Finally, it opens a temperature window down to −37 °C for freezing experiments which was not accessible with many former approaches and allows determination of IN also with weak nucleation activity.
The discussion paper was formally withdrawn.


Citation: Häusler, T., Witek, L., Felgitsch, L., Hitzenberger, R., and Grothe, H.: Heterogeneous freezing of super cooled water droplets in micrometre range-freezing on a chip, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-31, 2017.
Thomas Häusler et al.
Thomas Häusler et al.

Viewed

Total article views: 554 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
372 133 49 554 18 17 50

Views and downloads (calculated since 16 Jan 2017)

Cumulative views and downloads (calculated since 16 Jan 2017)

Viewed (geographical distribution)

Total article views: 554 (including HTML, PDF, and XML)

Thereof 551 with geography defined and 3 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 17 Oct 2017
Publications Copernicus
Download
Short summary
Clouds play a major role for the Earth's climate system. On this account, it is important to fully understand the mechanisms taking place in a cloud. We are presenting a new approach to efficiently investigate the freezing processes in ice clouds, i.e. the behavior of ice nuclei. The new set-up exhibits its strength in reproducibility and accuracy. Finally, it opens a temperature window down to −37 °C for freezing experiments which was not accessible with many former approaches.
Clouds play a major role for the Earth's climate system. On this account, it is important to...
Share