Photooxidation of cyclohexene in the presence of SO₂: SOA yield and chemical composition

Shijie Liu¹²³, Long Jia², Yongfu Xu², Narcisse T. Tsona¹, Shuangshuang Ge², Lin Du³¹²

¹Environment Research Institute, Shandong University, Jinan, 250100, China
²State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
³Shenzhen Research Institute, Shandong University, Shenzhen, 518057, China

Correspondence to: Lin Du (lindu@sdu.edu.cn); Yongfu Xu (xyf@mail.iap.ac.cn)

Abstract. Secondary organic aerosol (SOA) formation from cyclohexene/NOx system with various SO₂ concentrations under UV light was studied to understand the effects of cyclic alkenes on the atmospheric environment in polluted urban areas. A clear decrease at first and then increase of the SOA yield was found with increasing SO₂ concentrations. The lowest SOA yield was obtained when initial SO₂ concentration was in the range of 30-40 ppb, while higher SOA yield compared to that without SO₂ could not be obtained until the initial SO₂ concentration was higher than 85 ppb. SOA formation was enhanced by the acid-catalyzed heterogeneous reactions, which lead to an increase in the total organic aerosol mass. The competitive reaction of OH radicals with SO₂ and VOCs was the reason for the SOA yield decrease even under acidic conditions. The competitive reaction was an important factor for SOA yield and it should not be neglected in photooxidation, especially when acid-catalyzed mechanism could not significantly improve SOA yield. The composition of organic compounds in SOA was measured using several complementary techniques including Fourier transform infrared (FTIR) spectrometer, ion chromatograph (IC) and electrospray ionization high-resolution quadrupole mass spectrometer (ESI-HR-MS). We present the first evidence that organosulfates were produced from the photooxidation of cyclohexene in the presence of SO₂.

1 Introduction

Alkenes are widely emitted from biogenic and anthropogenic sources (Zielinska et al., 1996), and their gas-phase oxidation reactions with OH, NO₃, or O₃ are among the most important processes in the atmosphere (Atkinson, 1997). The reactions of ozone with alkenes are an important source of free radicals in the lower atmosphere, which influences the oxidative capacity of the atmosphere (Paulson and Orlando, 1996). Some of the products have sufficiently low vapor pressures to condense with other gaseous species, and contribute to the secondary organic aerosol (SOA) mass (Sarwar and Corsi, 2007; Sakamoto et al., 2013; Nah et al., 2016; Jimenez et al., 2016). SOA formation from VOCs oxidation has been receiving significant attention due to its large implication in the formation of atmospheric fine particulate matter. SOA has significant impacts on
human health (Pope III and Dockery, 2006), air quality (Kanakidou et al., 2005; Jaoui et al., 2012; McFiggans et al., 2006), and global climate change (Hansen and Sato, 2001; Adams et al., 2001; Pokhrel et al., 2016).

Although cyclic alkenes widely exist in the atmosphere, their gas-phase oxidation received less attention than those of linear or branched alkenes (Sipilä et al., 2013). Cyclohexene is an important industrial chemical (Sun et al., 2013), and is also widespread in urban areas (Grosjean et al., 1978). Cyclohexene has been extensively studied as a monoterpene surrogate for inferring oxidation mechanisms and aerosol formation characteristics, because it shows the basic structural unit in abundant biogenic monoterpenes and sesquiterpenes (Carlsson et al., 2012; Keywood et al., 2004). The rate constants for gas-phase reactions of cyclohexene with OH, O₃ and NO₃ were measured at room temperature to be \((6.4 \pm 0.1) \times 10^{-11}\), \((8.1 \pm 1.8) \times 10^{-17}\) and \((5.4 \pm 0.2) \times 10^{-11}\) cm³ molecule⁻¹ s⁻¹, respectively (Stewart et al., 2013; Aschmann et al., 2012). A correlation between the logarithm of the rate constants and the molecular orbital energies for simple cyclic alkenes was observed. The effect of the pressure and that of the presence of SO₂ on the formation of stable gas-phase products and SOA from ozonolysis of cyclohexene were investigated (Carlsson et al., 2012). It was found that the collisional stabilization of initial clusters was an important aspect for SOA formation processes involving sulfuric acid (H₂SO₄) and organic compounds. The effect of the structure of the hydrocarbon parent molecule on SOA formation was investigated for a series of cyclic alkenes and related compounds (Keywood et al., 2004). The SOA yield was found to be a function of the number of carbons present in the cyclic alkenes ring. The relative SOA yields from ozonolysis of cyclic alkenes can be quantitatively predicted from properties of the parent hydrocarbons, like the presence of a methyl group and an exocyclic double bond.

SO₂, one of the most important inorganic pollutants in urban area, plays an important role on SOA formation (Wang et al., 2005; Lonsdale et al., 2012; Liu et al., 2016). Seasonal variations of SO₂ concentrations were found to be consistent with seasonal variations of PM₂.₅ concentration (Cheng et al., 2015). Smog chamber simulations have indicated that SO₂ could enhance the formation of SOA from VOCs oxidation under acidic conditions by increasing aerosol acidity and ammonium sulfate aerosol formation (Edney et al., 2005; Liu et al., 2016; Attwood et al., 2014). Anthropogenic SO₂ emissions can impact new particle formation, and SOA composition (Lonsdale et al., 2012).

Despite the existence of organosulfates in ambient aerosols was first observed in 2005 (Romero and Oehme, 2005), proper identification of these aerosols was made two years later. In a series of chamber experiments studies, it was shown that organosulfates present in ambient aerosols collected from various locations mostly originate from acid-catalyzed reactions of SOA formed from photooxidation of α-pinene and isoprene (Suratt et al., 2007). Recently, substantial amount of organosulfates have been observed in SOA around the world, and organosulfates have been identified as a group of compounds which have an important contribution to the total amount of SOA in the atmosphere (Suratt et al., 2008; Froyd et al., 2010; Kristensen and Glasius, 2011; Tolocka and Turpin, 2012; Wang et al., 2015). However, the formation and transformation process of organosulfates can be complex and varied, depending on the nature of the original organic compound involved. Extensive studies on their formation have been performed and several mechanisms based on a variety of reactions have been proposed. 2-Methyl-3-buten-2-ol (MBO) has been found to be an important precursor for organosulfates in the atmosphere. Smog chamber studies of OH-initiated oxidation of MBO under nitric oxide and aerosol
acidity conditions revealed the formation of organosulfates and SOA (Mael et al., 2015; Zhang et al., 2012). Chemical characterization of laboratory-generated MBO SOA revealed that an organosulfate species ($C_5H_{12}O_6S$) was formed and its formation was significantly enhanced with elevated aerosol acidity (Zhang et al., 2012). It has also been demonstrated that substantial formation of organosulfates could derive from acid-catalyzed reactive uptake of MBO-based epoxides formed during MBO photooxidation (Zhang et al., 2014). Using nuclear resonance techniques, isoprene-derived epoxides formed during isoprene photooxidation reactions were found to be important intermediates for organonitrates and organosulfates formation via potential SOA reactions (Darer et al., 2011; Hu et al., 2011). The authors further found that organonitrates could easily be transformed to organosulfates during hydrolysis in the presence of sulfate. Organosulfates formation was also found from oxidation of hydroxyhydroperoxides (Riva et al., 2016) and from heterogeneous reactions of SO_2 with selected long-chain alkenes and unsaturated fatty acids (Passananti et al., 2016).

Laboratory chamber studies showed that organosulfates were formed in the products of OH/NOx/O$_3$-initiated reactions with biogenic VOCs (BVOCs), such as isoprene (Surratt et al., 2007; Surratt et al., 2008; Hatch et al., 2011), monoterpenes (Surratt et al., 2007; Gomez-Gonzalez et al., 2008; Inumma et al., 2007) and sesquiterpenes (Chan et al., 2011). Reactions with sulfates or H_2SO_4 were the main formation processes of organosulfates. Qualitative analyses of the organosulfates in SOA have been gained more attention and development (Lin et al., 2012; Shalamzari et al., 2013; Staadt et al., 2014). Riva et al. investigated the formation of organosulfates from photooxidation of polycyclic aromatic hydrocarbons and found that, in the presence of sulfate aerosol, this photooxidation was a hitherto unrecognized source of anthropogenic secondary organosulfur (Riva et al., 2015). A more complete structural characterization of polar organosulfates that originate from isoprene SOA was performed (Shalamzari et al., 2013), and an organosulfate related to methyl vinyl ketone and minor polar organosulfates related to croton aldehyde were identified. However, there was no report about the yield and chemical composition of SOA obtained from photooxidation of cyclohexene with the presence of SO_2.

In the present work, we investigated the SOA yields and chemical composition during cyclohexene photooxidation under different SO_2 concentrations. A better understanding of the magnitude and chemical composition of SOA from different SO_2 concentrations will contribute to more accurate SOA prediction from anthropogenic sources and give valuable information related to air pollution in urban environments.

2 Methods

2.1 Chamber description

The experiments were performed in a 400 L Teflon FEP film chamber (wall thickness 125 μm) at the Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing. The details of the chamber, including the experimental setup and analysis techniques have been described elsewhere (Du et al., 2007; Jia and Xu, 2014), and only a brief description is presented here. The reactor was surrounded by 12 black light lamps (GE F40BLB) with emission band centered at 365 nm, which were used to simulate the spectrum of the UV band in solar irradiation. Stainless steel was covered on the chamber...
interior walls to maximize and homogenize the interior light intensity. Both inlet and outlet of the chamber were made of Teflon material. Atmospheric pressure was maintained in the chamber at all times. All the experiments were performed at room temperature (307±2 K) under dry conditions (RH < 10%). Prior to each experiment, the chamber was cleaned by purging with purified dry air for at least 8 h until residual hydrocarbons, O₃, NOx or particles could not be detected in the reactor. Known amounts of cyclohexene was injected into a 0.635 cm diameter Teflon FEP tube and dispensed into the chamber by purified dry air. Typical initial cyclohexene concentrations were 500 ppb. NOx was injected by a gas-tight syringe to make the mixing ratio of NOx in the reactor around 95 ppb during all the experiments. The mixed concentration ratios of VOCs/NOx were adjusted to be about 5. SOA formation experiments were carried out under UV irradiation in the presence of NOx to produce O₃ and OH radicals for cyclohexene oxidation. Although initial VOCs, NOx and average OH concentrations were different from typical urban conditions, efforts were made to maintain the initial concentrations of the reactants as similar as possible to make sure the effect of SO₂ was the main reason for the changes in the SOA yield. More details on the experimental conditions are shown in Table S1 of the Supplementary material.

2.2 Gas and particle measurements

Ozone concentration in the reactor was measured using ozone analyzer (Model 49C, Thermo Electron Corporation, USA). A NO-NO₂-NOx analyzer (Model 42C, Thermo Electron Corporation, USA) was used to monitor the NOx concentration. Measurement of SO₂ concentration was made using a SO2 analyzer (Model 43i-TLE, Thermo Electron Corporation, USA). The uncertainty of the O₃, NOx and SO₂ measurement was less than ±1%. The detection limits of the different monitors were 0.40 ppb, 0.50 ppb, and 0.05 ppb for NOx, O₃, and SO₂, respectively.

Two Tenax absorption tubes (150 mm length × 6 mm O.D., 0.2 g sorbent) were used to collect the sample before the UV lights were turned on and at the end of each experiment, respectively. The volume of the sample was 60 mL and the sampling time was 3 min. Concentrations of cyclohexene and the main gas phase products were analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). A thermal desorption unit (Master TD, Dani, Italy) was combined with a 6890A gas chromatograph (6890A, Agilent Tech., USA) interfaced to a 5975C mass selective detector (5975C, Agilent Tech., USA). The GC was equipped with a HP-5MS capillary column (30 m × 0.25 mm, 0.25 μm film thickness). The temperature program was as follows: the initial temperature of 40 °C was held for 4 min, and then raised to 300 °C at a rate of 20 °C min⁻¹. The inlet temperature was set at 250 °C and the transfer line at 200 °C. The ionization method in MS was electron impact ionization, and Helium was used as the carrier gas at a constant flow (1.2 mL min⁻¹). Because a very diverse range of compounds might be present in the samples, SCAN mode (36-500 amu) was used in the MS detector. This mode is known to be a classical and typical detection method for GC-MS analysis. The results were analyzed with MSD Productivity ChemStation. Particle number concentrations and size distributions were measured with a scanning mobility particle sizer (SMPS), which consists of a differential mobility analyzer (DMA model 3081, TSI Inc., USA) and a condensation particle counter (CPC model 3776, TSI Inc., USA). A sheath flow/aerosol flow relationship of 3.0/0.3 L min⁻¹ was used for the measurements. The
particle size was measured in the range of 14 to 710 nm. Each scan was 180 s. An aerosol density of 1.2 g cm\(^{-3}\) was assumed to convert the particle volume concentration into the mass concentration (Zhang et al., 2015). Size distribution data were recorded and analyzed using the TSI AIM software v9.0.

2.3 Products composition analysis

The chemical composition of SOA was important for analyzing the degree of VOCs oxidation, and it was used to evaluate the transformation from gas phase to particle phase. Particle phase chemical composition was studied by means of Fourier transform infrared (FTIR) spectrometer (Nicolet iS10, Thermo Fisher, USA). The aerosols were sampled through a Dekati low pressure impactor (DLPI, DeKati Ltd, Finland). The impactor was connected to a pump working at a flow rate of 10 L min\(^{-1}\) while sampling a total volume of 300 L of gas for each experimental run. Aerosols, from 108 to 650 nm diameter, were collected on an ungreased zinc selenide (ZnSe) disk (25 mm in diameter) for FTIR measurements.

The characteristic bands of inorganic and organic sulfates overlap in IR spectrum. In order to distinguish between the inorganic and organic sulfates, ion chromatograph (IC, Dionex ICS-900, Thermo Fisher, USA) was used to analyze the inorganic sulfate anion (SO\(_4^{2-}\)) in SOA. SOA collected on ZnSe disks was firstly dissolved in high purity water (7 mL) and then measured by IC for SO\(_4^{2-}\) concentrations. The anions were analyzed with a Dionex IonPac AS14A analytical column and an ion self-regenerating suppressor Dionex ASRS was used as eluent. The flow rate was 1.0 mL min\(^{-1}\) with a mixture of 8.0 mmol L\(^{-1}\) Na\(_2\)CO\(_3\) and 1.0 mmol L\(^{-1}\) NaHCO\(_3\) for anions analyses. The suppressing current was 50 mA.

Chemical characterization of aerosols from photooxidation of cyclohexene was performed using an electrospray ionization high-resolution quadrupole mass spectrometer (ESI-HR-MS, Thermo Fisher, USA) operated in negative (-) ion mode, which was calibrated using the manufacturer’s calibration standards mixture allowing for mass accuracies <5 ppm in external calibration mode. The ionization voltage was 4.2 kV and the capillary temperature was set at 300 °C. N\(_2\) was used as both the sheath gas (70 U) and auxiliary gas (30 U). SOA was collected on the aluminum foil using the same method as FTIR analysis and then extracted with 1 mL of acetonitrile. The aluminum foil was used due to its ease to use and its non-reactivity with the sample. A total volume of 300 L was sampled at a flow rate of 10 L min\(^{-1}\). A volume of 5 μL of the extraction and a direct injection were used for the measurement. Xcalibur 2.2 software (Thermo Fisher, USA) was used for the calculation of chemical formula from the accurate measurement of m/z values.

2.4 Chemicals

The chemicals used and their stated purities were as follows: cyclohexene (99%) was obtained from Aldrich and used without further purification. A zero air generator (Model 111, Thermo Scientific, USA) was used to generate clean air. The zero air has no detectable non-methane hydrocarbons (NMHC < 1 ppb), NO\(_x\) (< 1 ppb), low O\(_3\) concentration (< 3 ppb), and low particle numbers (< 5 cm\(^{-3}\)), and relative humidity (RH) below 10%. Ozone was produced from O\(_2\) via electrical discharge using a dynamic gas calibrator (Model 146i, Thermo Scientific, USA). NO\(_2\) (510 ppm), NO (50 ppm) and SO\(_2\) (25 ppm) with ultra-pure N\(_2\) (99.999%) as background gas was purchased from Beijing Huangyuan Gas Co., Ltd., China.
3 Results and discussion

3.1 Characterization of the chamber

The effective light intensity in the near ultraviolet region plays a decisive role in the formation of photochemical smog (Presto et al., 2005a). The effective light intensity of the chamber was represented by the photolysis rate constant of NO₂. In our study, the average effective light intensity was determined to be 0.177 min⁻¹.

Wall loss is the decrease of the concentration of reactive gas phase species caused by adsorption on the inner wall of the reactor. Residual reactant and product on the inner wall can also react with the gas phase species, which is another important reason for wall loss. Wall loss can directly affect the quantitative calculation of photooxidation rate and SOA yield. Correct evaluation of wall loss is therefore necessary to explain the experimental results of SOA yield. In the present study, the wall loss of cyclohexene in the chamber could be neglected. The wall loss of O₃, NOₓ, and SO₂ were first order because ln([X]₀/ [X]ₜ) had a good correlation with time (R²=0.994, 0.944, 0.999 for O₃, NOₓ, and SO₂, respectively). The measured wall loss rate constants for O₃, NOₓ and SO₂ were 5.05×10⁻⁶, 7.04×10⁻⁶ and 6.39×10⁻⁶ s⁻¹, respectively. The average value of the wall loss rate constant of particles was 4.7×10⁻⁵ s⁻¹, and the measured particle concentrations in this study were corrected using the same method as Pathak et al (Pathak et al., 2007). Typical profiles of the gas and particle phases are given in Figure S1 of the Supplementary material.

3.2 Effect of SO₂ on SOA number concentrations

The maximum particle number concentrations for cyclohexene/NOₓ/ SO₂ system with different initial SO₂ concentrations and the particle number concentrations at the maximum SOA yield are shown in Figure 1. After the black light lamps were turned on, SOA number concentrations increased rapidly to reach the maximum within 0.5 h in each experiment. Subsequently, the particle number concentrations gradually decreased accompanied by the growth of particle size by coagulation. The SOA mass concentration kept increasing until its maximum was reached (after ~2 h). Both types of particle number concentrations had similar trends against initial SO₂ concentrations. In general, maximum particle number concentrations were three times higher than the particle number concentrations at the maximum SOA yield. In the rest part of this paper, in order to better elaborate the effect of SO₂ on the formation of particles, the particle number concentration refers to the maximum particle number concentration. The particle number concentration increased with initial SO₂ concentration, and this increase could be divided into two stages: increasing stage and stable stage. In the increasing stage, with the initial SO₂ concentration increasing from 0 ppb to 30 ppb, the particle number concentration grew significantly under low initial SO₂ concentration (<5 ppb), then the growth rate reduced gradually. In the stable stage, when the SO₂ concentrations were varied systematically between 30 and 105 ppb, particle number concentrations practically maintained steady (2.5×10⁵-3.8×10⁵ cm⁻³), and there was no obvious growth as shown in Figure 1. For experiments with high initial SO₂ concentration, the maximum particle number concentrations were 10 times of those without SO₂, indicating enhanced new particle formation (NPF) when adding SO₂. It was found that wood
soot, a minor source of SO2 (Reddy and Venkataraman, 2002), resulted in a measurable positive deviation to the VOCs/NOx photooxidation reaction system without background aerosol (Jang et al., 2002). Our result was consistent with a range of previous studies (Jang et al., 2002; Liu et al., 2016), in which even small amount of SO2 could affect the new particle formation.

Nucleation is a fundamental step in the atmospheric new particle formation. Nucleation of particles in the atmosphere has been observed to be strongly dependent on the abundance of H2SO4 (Sihto et al., 2006; Xiao et al., 2015). Normally, SO2 was deemed to be oxidized by OH radicals to form H2SO4 through homogeneous reactions in gas phase (Calvert et al., 1978), or by H2O2 and O3 through in-cloud processes in aqueous phase (Lelieveld and Heintzenberg, 1992). The aqueous phase formation of H2SO4 is negligible in this study (RH<10%). As the precursor of H2SO4, SO2 at higher concentrations would lead to more H2SO4 formation, and thereby increase the nucleation rates and total particle number concentrations (Sipila et al., 2010). Because of the similar initial conditions for each experiment except SO2, the amount of OH radicals produced was assumed to be almost equal. In the presence of high concentration of SO2, new particle formation was not enhanced. This feature may indicate that no more sulfates formed when SO2 was in large excess (>30 ppb) and the OH radicals were insufficient. The quantity of OH radicals is the main restraint on H2SO4 formation at high initial SO2 concentrations, which could not lead to more H2SO4 formation in the present study. Therefore, the particle number concentration maintained steady, and it was independent of the SO2 concentrations in the second stage.

Besides, the mean diameter of particles increased with photooxidation reaction time, which suggests that not many new particles were generated after a burst increase at the initial stage of SOA formation. The burst increase stage of SOA may be related to fast increase of PM2.5 and occurrence of haze (He et al., 2014). Once new particles are formed, there is a competition between growth of existing particles by uptake of the precursors and formation of new particles. Our result agrees with previous studies that there was no obvious increase in aerosol number concentration when additional VOCs were injected, but a significant increase in SOA mass concentration (Presto et al., 2005a). Condensation onto existing aerosol particles was prior to the occurrence of new particle formation. If there was enough seed particle surface area, no new particles formation was expected to be observed.

3.3 Effect of SO2 on SOA yields

SOA yield (Y) is defined as $Y = \Delta M_0 / \Delta H C$, where ΔM_0 is the produced organic aerosol mass concentration ($\mu g \ m^{-3}$), and $\Delta H C$ is the mass concentration of reacted cyclohexene ($\mu g \ m^{-3}$). The SOA yields of cyclohexene at different SO2 concentration as determined by SMPS are shown in Figure 2. The numerical values of the aerosol mass concentration and SOA yields at different conditions are shown in Table S1 of the Supplementary material.

The SOA yields in the absence of SO2 were in the range of 2.5% to 2.7%, which were an order of magnitude lower than those reported in previous studies (Warren et al., 2009; Keywood et al., 2004; Kalberer et al., 2000). There are three possible explanations for this phenomenon. (1) SOA formation is closely related to the oxidation capacity in the photooxidation experiments and, therefore, is affected by the ratio of [VOC]0/[NOx]0 (Pandis et al., 1991). Experiments performed with
different SO$_2$ concentrations indicate that the SOA formation is partly controlled by the ability of the system to oxidize cyclohexene and contribute to the particle mass. As indicated in Figure S2 of the Supplementary material, even at 0 ppb of SO$_2$, the mass concentration of SOA quickly reaches its maximum. Experiments with higher NOx levels have been proved to get considerably lower SOA yield than those with lower NOx levels at the same VOCs concentration (Song et al., 2005).

The reactions of organo-peroxy radicals (RO$_2$) with NO and NO$_2$ instead of peroxy radicals (RO$_2$O or HO$_2$) under high NOx conditions resulted in the formation of volatile organic products and a decreased SOA yield (Lane et al., 2008). For [VOC]$_0$/[NOx]$_0$ ratios between 3 and 10, a greater amount of nitrate radical (NO$_3$) was available to react with VOCs, and the NO$_3$-initiated reaction was a poor source of SOA, which may also contribute to the reduction of SOA yield (Presto et al., 2005b). It was reported that SOA yield was constant for [VOC]$_0$/[NOx]$_0$>15, but decreased dramatically (by a factor of more than 4) as [VOC]$_0$/[NOx]$_0$ decreased (Presto et al., 2005b). In our study, the [VOC]$_0$/[NOx]$_0$ ratio was maintained at about 5.

Recently, the NOx dependence of SOA formation from photooxidation of β-pinene was comprehensively investigated (Sarrafzadeh et al., 2016), and it was shown that the NOx-induced OH concentration was the major factor influencing the SOA yield. The impacts of NOx on SOA formation were only moderate if the impact of NOx on OH concentration was eliminated. OH concentration in our study was relatively insufficient, which was the main limiting factor for SOA formation.

(2) UV light is another factor influencing the SOA yield. SOA yields between dark and UV-illuminated conditions were reported to be different (Presto et al., 2005a). Exposure to UV light could reduce SOA yield by 20%-40%, while more volatile products were formed (Griffin et al., 1999). (3) Temperature may have a pronounced influence on SOA yield (Qi et al., 2010; Emanuelsson et al., 2013). At lower temperature, semi-volatile organic compounds would favor the condensation of gas phase species and a higher SOA yield could be expected. Raising the chamber temperature by 10 K should cause a decrease of 10% in aerosol yield (Pathak et al., 2007). SOA yields reported in the present study were obtained at higher temperature, 307±2 K, instead of 298 K in most previous studies. On the basis of the discussion above, SOA yield from cyclohexene in our study was lower than observed in the previous studies.

SOA yields for the cyclohexene/NOx/SO$_2$ system were measured for initial SO$_2$ mixing ratios of 0-105 ppb. The experimental results showed a clear decrease at first and then an increase in the SOA yield with increasing SO$_2$ concentrations (Figure 2). When SO$_2$ concentrations increased from 0 to 40.8 ppb, there was a remarkable decrease in SOA yield with the increase of SO$_2$ concentration. The SOA yield dropped from 2.7% to 1.2%, reduced by 56%. For SO$_2$ concentrations higher than 40.8 ppb, SOA yield increased with increasing SO$_2$ concentration. The highest SOA yield was obtained to be 3.5%, at 104.7 ppb SO$_2$ concentration. The lowest SOA yield of cyclohexene photooxidation was obtained at the initial SO$_2$ concentration of 40 ppb. Although the SOA yield increased gradually with the initial SO$_2$ concentration at concentrations higher than 40 ppb, a higher SOA yield than that in the absence of SO$_2$ could not be obtained when the initial SO$_2$ concentration was lower than 85 ppb.

SOA formation was enhanced by the presence of SO$_2$ (Jang et al., 2002), which has been previously attributed to acid-catalyzed heterogeneous reactions and produced an increase of the total organic aerosol mass (Xu et al., 2014). Even small amounts of acid are capable of catalyzing heterogeneous reactions. Both NO and NO$_2$ was used as NOx for the repeated
experiments in our study. Despite the time of occurrence of the maximum SOA concentration for the experiment with NO\textsubscript{2} was half an hour earlier than that for the experiment with NO, the results of SOA yield were similar. However, there were some undiscovered processes in the cyclohexene/NO\textsubscript{x}/SO\textsubscript{2} system that offset potential multifold increases in the SOA yield by acid-catalyzed heterogeneous reactions. The competitive reaction between SO\textsubscript{2} and VOCs might be the reason for the decrease of the SOA yield. SO\textsubscript{2} could be oxidized by OH radicals to form H\textsubscript{2}SO\textsubscript{4} (Somnitz, 2004). Due to the presence of O\textsubscript{3} in our system, the formation of Criegee intermediates and their reactions with SO\textsubscript{2} could be expected (Criegee, 1975). However, the importance of these reactions can be kinetically limited. The reaction of cyclohexene with ozone has a rate constant of 8.1×10^{-11} cm3 molecule-1 s-1 (Stewart et al., 2013), considerably slower than e.g., its reaction with OH, which has a rate constant of 6.4×10^{-11} cm3 molecule-1 s-1 (Aschmann et al., 2012). In addition to the kinetic limitation of the cyclohexene reaction with O\textsubscript{3}, the typical concentration of O\textsubscript{3} in our chamber was 200 ppb and hence the importance of cyclohexene reaction with O\textsubscript{3} was expected to be less significant than that of its reaction with OH under any relevant SO\textsubscript{2} conditions. The competitive reaction resulted in a decrease of the concentration of OH radicals, which was one of the main oxidizers for the photooxidation in the chamber. As mentioned above, the photooxidation in this study was at high-NO\textsubscript{x} conditions and the OH was the main limiting factor for SOA formation because of its relatively low concentration. At lower OH radical concentration condition caused by the reaction between SO\textsubscript{2} and OH radical, the formation of SOA was inhibited. Accordingly, SOA yield showed descending trend with the increase of SO\textsubscript{2} concentration when the initial SO\textsubscript{2} concentration was lower than 40 ppb.

When the initial SO\textsubscript{2} concentration was greater than 40 ppb, the acid-catalyzed heterogeneous formation of SOA became more significant (Figure 2). The lowest SOA yield was obtained at 40 ppb initial SO\textsubscript{2} concentration. At this concentration, there was a balance between the inhibition of SOA formation by competitive reactions and the promotion by acid-catalyzed reactions. The same SOA yield was obtained in the absence of SO\textsubscript{2} and at 85 ppb initial SO\textsubscript{2} concentration. The competitive reaction plays an important role for SOA formation, and it should be taken into account in SOA simulation models or air quality models for more accurate prediction. The formation of low volatile organics (e.g. organosulfates) by photooxidation in the presence of SO\textsubscript{2} might be another reason for the increase of the SOA yield.

3.4 Organosulfates formation

When SO\textsubscript{2} was added into the chamber, the acidic aerosol particles were formed by photooxidation of SO\textsubscript{2} initiated by the reaction with OH. The amounts of SO\textsubscript{4}2- in particle phase and the consumption of SO\textsubscript{2} (ΔSO\textsubscript{2}) with different initial SO\textsubscript{2} concentrations are shown in Figure 3. The amounts of SO\textsubscript{4}2- grew rapidly at low concentration of SO\textsubscript{2}, but the relative growth rate dramatically decreased in the range of 20-60 ppb initial SO\textsubscript{2} concentrations. However, both the amount and the growth rate of ΔSO\textsubscript{2} increased with initial SO\textsubscript{2} concentrations. The ratio of the amount of SO\textsubscript{2} for SO\textsubscript{4}2- formation to ΔSO\textsubscript{2} reduced gradually with the increase of initial SO\textsubscript{2} concentrations (Figure 3), which indicated that other products formed from SO\textsubscript{2} besides SO\textsubscript{4}2- in the aerosols.
Typical IR spectra of aerosols from cyclohexene/NOx/SO2 system under different SO2 concentrations are presented in Figure 4. Based on the peak positions in the IR spectra, the functional groups represented by each peak are summarized as following. The broadband at 3100 to 3300 cm\(^{-1}\) is assigned as the O–H stretching of hydroxyl and carboxyl groups (Coury and Dilnner, 2008). The peak at 1717 cm\(^{-1}\) represents the C=O stretching of aldehydes, ketones, and carboxylic acids. The peaks at 1622 and 1278 cm\(^{-1}\) show good correlation and both are assigned to the ONO\(_2\) stretching (Liu et al., 2012; Jia and Xu, 2014). The characteristic absorption band at 1500-1350 cm\(^{-1}\) is the C–O stretching and O–H bending of COOH group (Ofner et al., 2011). The absorption peak of sulfate exists in the range of 1200-1000 cm\(^{-1}\) (Wu et al., 2013). The band at 1100 cm\(^{-1}\) in the IR spectra can be attributed to the sulfonic acid group and sulfate. It has been confirmed that the S=O absorption band in organic sulfate monoesters appears around 1040-1070 cm\(^{-1}\) (Chihara, 1958). Although, more studies on bands assignments in organosulfates are not currently available from the literature for further comparison, the 1100 cm\(^{-1}\) band from the current FTIR study can reasonably be assigned to S=O in sulfonic acid group.

The intensities of most absorption bands, such as O-H at 3100-3300 cm\(^{-1}\), C=O at 1717 cm\(^{-1}\), ONO\(_2\) at 1622 and 1278 cm\(^{-1}\), and C-H at 2930 cm\(^{-1}\), have similar trends with the change of SOA yield for initial SO\(_2\) concentrations between 11 and 105 ppb. However, the band of sulfate at 1100 cm\(^{-1}\) in IR spectra increases with the rise of initial SO\(_2\) concentration rather than the SOA yield, which suggests the formation of sulfonic acid group and sulfate product from SO\(_2\) photooxidation. The relative intensity of the band at 1100 cm\(^{-1}\) increased by 1.8 times when the initial SO\(_2\) concentration rose from 0 to 44 ppb, whereas the band increased by 7.2 times when the initial SO\(_2\) concentration was 105 ppb. The intensity of 1100 cm\(^{-1}\) band grew slowly at low SO\(_2\) concentrations due to the decrease of the formation of aerosols. To clearly show the amount of sulfonic acid group and sulfate in aerosols, the intensity of the band at 1100 cm\(^{-1}\) and the amount of SO\(_4^{2-}\) were compared in the same aerosol mass, and are shown in Figure 5, where the amount of ΔSO\(_2\) in the aerosols are also included. The relative intensity was set to 1 when the initial SO\(_2\) concentration was 44.3 ppb.

With the increase of SO\(_2\) concentration, the amount of SO\(_4^{2-}\) in unit mass of aerosols increased first and then decreased, which was negative correlation with SOA yield. However, ASO\(_2\) was in a linear relationship with the initial SO\(_2\) concentration (R\(^2\)=0.94). The relative band intensities at 1100 cm\(^{-1}\), which represented the intensity of both SO\(_4^{2-}\) and sulfonic acid group, also increased approximately in a linear form with the increase of initial SO\(_2\) concentration (R\(^2\)=0.91). If the 1100 cm\(^{-1}\) band originated from SO\(_4^{2-}\) only, the change of the band intensity was consistent with SO\(_4^{2-}\) concentration in unit mass of aerosols. Combined with the ratio of the amount of SO\(_2\) for SO\(_4^{2-}\) formation to ΔSO\(_2\), it was reasonable to believe that the 1100 cm\(^{-1}\) band originated not only from SO\(_4^{2-}\), but also from the sulfonic acid group. Organosulfates might be the products from the photooxidation of cyclohexene in the presence of SO\(_2\) under high-NOx conditions.

The composition of the cyclohexene SOA was examined with HR-MS using negative ion mode ESI and the mass spectrum was recorded at a resolution of 10\(^5\) (Figure 6). Organosulfates were identified in the particle phase from chamber experiments. Accurate mass fittings for measured ions of organosulfates in ESI negative ion mode are given in Table 1. As shown in Figure 6 and Table 1, 10 kinds of organosulfates were successfully detected and identified from cyclohexene SOA. The result not only first proved the formation of organosulfates from cyclohexene photooxidation at high-NOx condition.
with SO$_2$, but also provided evidence and reference for organosulfates identification by FTIR-IC joint technique. A deprotonated molecular ion at m/z=195.03322 (C$_6$H$_{11}$O$_5$S$^-$) had the maximum content (more than 60%) of all the organosulfates detected in our study. Its intensity was 6.5 times higher than that of the second highest abundant organosulfate. The intermediate product of cyclohexene with OH, i.e., CH(O)CH$_2$CH$_2$CH$_2$CH$_2$OH, has a hydroxyl group, and the organosulfate product (m/z=195.03322) might form from the intermediate product, not from end product.

The mass spectra showed a great abundance of peaks, detected as deprotonated molecular ions (M−H)$^-$ formed via proton abstraction. Most cyclohexene SOA contained carboxylic acid and/or aldehyde moieties. The products of the reaction of OH radicals with cyclohexene in the presence of NO were investigated and the products were identified as cyclic 1,2-hydroxynitrates and 1,6-hexanediol (Aschmann et al., 2012). These products couldn’t be detected by ESI-HR-MS in our study. Aldehydes could be oxidized by OH radicals to form carboxyls, which have been intensively identified in previous studies (Cameron et al., 2002; Goldsmith et al., 2012). The 1,6-hexanediol might be further oxidized in the atmospheric photooxidation reactions to form the 1,6-adipic acid (C$_6$H$_{10}$O$_4$) and 6-oxohexanoicacid (C$_6$H$_{10}$O$_3$), which were both observed in our MS results. In addition to the C$_6$ compounds observed in this study, a C$_3$H$_{11}$O$_5$$^-$ ion was detected with higher abundance than the C$_6$ compounds. Although the formation of this C$_3$ compound might be due to a carbonyl cleavage from a six-carbon atoms chain, a proper mechanism for its formation could not be determined. A C$_4$ compound was also detected in this study, likely as a result of a carbonyl cleavage from a C$_5$ compound. However, there was no evidence of the formation of compounds with less than four carbon atoms.

4 Conclusion

We report a series of chamber experiments studies on the formation of secondary aerosols from the mixture of cyclohexene and SO$_2$. The experiments were based on Fourier transform infrared spectrometer, ion chromatography and electrospray ionization high-resolution quadrupole mass spectrometer, and were performed under NOx conditions. Although new particle formation was found to be enhanced with increasing SO$_2$ concentration, the yield of SOA was not enhanced for all SO$_2$ concentrations between 0 and 105 ppb. The SOA formation decreased at first and then was enhanced for all SO$_2$ concentration above 40 ppb. Both acid-catalysis and competitive OH reactions with cyclohexene and SO$_2$ were found to have important effects on the SOA formation and hence, should be taken into account in SOA simulation models or air quality models for a better understanding of haze pollution. The formation of organosulfates, an important part of atmospheric organic aerosol components, was first observed from cyclohexene SOA. The formation of organosulfates has a great significance for the particulate matter formation under high SO$_2$ concentrations in the atmosphere.
Acknowledgments

This work was supported by National Natural Science Foundation of China (91644214, 21577080, 41375129), Shenzhen Science and Technology Research and Development Funds, China (JCYJ20150402105524052), and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (XDB05010104).

References

Figure 1: Particle number concentrations for cyclohexene/NOx/SO2 system with different initial SO2 concentrations.

Figure 2: SOA yields of cyclohexene photooxidation in the presence of NOx at different initial SO2 concentrations. Solid line is least-square fitting to the data. The error bars were determined on the basis of propagation of uncertainties arising in the ΔHC measurements, including GC calibration uncertainties propagation and the variance in the initial cyclohexene measurements.
Figure 3: The amount of SO_4^{2-} in aerosols, consumption of SO_2 (ΔSO_2) and the ratio of the amount of SO_2 for SO_4^{2-} formation to ΔSO_2 with different initial SO_2 concentrations.

Figure 4: IR spectra of aerosols from cyclohexene/NOx/SO_2 system under different SO_2 concentrations.
Figure 5: The relative intensity of the band at 1100 cm$^{-1}$ (square), the amount of SO$_4^{2-}$ (triangle) and ΔSO$_2$ (circle) of unit mass of aerosols. The relative intensity was set to 1 when the initial SO$_2$ concentration was 44.3 ppb.

Figure 6: Negative ion mode ESI mass spectrum of SOA generated from the photooxidation of cyclohexene in the presence of SO$_2$. Red peaks correspond to formulae containing sulfonic acid group. The mass resolution is 105.

Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 15 February 2017
© Author(s) 2017. CC-BY 3.0 License."
Table 1. Accurate mass fittings for main products and measured organosulfates ions in ESI negative ion mode from cyclohexene photooxidation in the presence of SO₂ under high-NOx conditions

<table>
<thead>
<tr>
<th>Measured m/z</th>
<th>Ion</th>
<th>Proposed Ion Formula</th>
<th>Delta<sup>b</sup> (ppm)</th>
<th>RDB<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>115.03942</td>
<td>C₅H₇O₃<sup>-</sup></td>
<td>-5.628</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>145.05019</td>
<td>C₆H₉O₄<sup>-</sup></td>
<td>-3.048</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>131.03444</td>
<td>C₅H₇O₄<sup>-</sup></td>
<td>-4.136</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>101.06006</td>
<td>C₅H₇O₂<sup>-</sup></td>
<td>-7.351</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>97.04433</td>
<td>C₇H₉O₃<sup>-</sup></td>
<td>-9.453</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>129.05515</td>
<td>C₆H₉O₄<sup>-</sup></td>
<td>-4.397</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>99.04439</td>
<td>C₆H₉O₂<sup>-</sup></td>
<td>-7.702</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Organosulfates

<table>
<thead>
<tr>
<th>Measured m/z</th>
<th>Ion</th>
<th>Proposed Ion Formula</th>
<th>Delta<sup>b</sup> (ppm)</th>
<th>RDB<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>195.03322</td>
<td>C₆H₁₁O₅S<sup>-</sup></td>
<td>-0.243</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>225.00771</td>
<td>C₆H₉O₆S<sup>-</sup></td>
<td>1.171</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>179.00181</td>
<td>C₅H₇O₅S<sup>-</sup></td>
<td>-0.0879</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>211.02828</td>
<td>C₆H₁₁O₆S<sup>-</sup></td>
<td>0.464</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>167.00167</td>
<td>C₆H₉O₅S<sup>-</sup></td>
<td>-1.780</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>209.01257</td>
<td>C₆H₁₁O₇S<sup>-</sup></td>
<td>0.182</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>151.00658</td>
<td>C₆H₉O₄S<sup>-</sup></td>
<td>-3.130</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>241.00278</td>
<td>C₆H₉O₆S<sup>-</sup></td>
<td>1.738</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>182.99667</td>
<td>C₆H₉O₅S<sup>-</sup></td>
<td>-1.158</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>164.98594</td>
<td>C₆H₉O₄S<sup>-</sup></td>
<td>-2.287</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

^a Sort by abundance intensity.

^b Delta: label the peak with the difference between the theoretical and measured m/z.

^c RDB: ring and double bond equivalent.