Long term O\textsubscript{3}-precursor relationships in Hong Kong: Field observation and model simulation

Yu Wang1, Hao Wang1, Hai Guo*1, Xiaopu Lyu1, Hairong Cheng**2, Zhenhao Ling3, Peter. K.K. Louie4, Isobel J. Simpson5, Simone Meinardi5, Donald R. Blake5

1 Air Quality Studies, Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong
2 Department of Environmental Engineering, Wuhan University, Wuhan, China
3 School of Atmospheric Sciences, Sun Yat-sen University, China
4 Air Group, Hong Kong Environmental Protection Department, Hong Kong
5 Department of Chemistry, University of California, Irvine, CA, USA

Correspondence to: ceguohai@polyu.edu.hk; chenghr@whu.edu.cn

Abstract. Over the past ten years (2005-2014), ground-level O\textsubscript{3} in Hong Kong has consistently increased in all seasons except winter, despite the yearly reduction of its precursors, \textit{i.e.}, nitrogen oxides (NO\textsubscript{x}=NO+NO\textsubscript{2}), total volatile organic compounds (TVOCs) and carbon monoxide (CO). To explain the contradictory phenomenon, an observation-based box model (OBM) coupled with CB05 mechanism was applied in order to understand the influence of both locally-produced O\textsubscript{3} and regional transport. The simulation of locally-produced O\textsubscript{3} showed an increasing trend in spring, a decreasing trend in autumn and no changes in summer and winter. The O\textsubscript{3} increase in spring was caused by the net effect of more rapid decrease of NO titration and unchanged TVOC reactivity despite decreased TVOC mixing ratios, while the decreased local O\textsubscript{3} formation in autumn was mainly due to the reduction of aromatic VOC mixing ratios and the TVOC reactivity and much slower decrease of NO titration. However, the decreased in-situ O\textsubscript{3} formation in autumn was overridden by the regional contribution, resulting in elevated O\textsubscript{3} observations. Furthermore, the OBM-derived relative incremental reactivity indicated that the O\textsubscript{3} formation was VOC-limited in all seasons, and the long-term O\textsubscript{3} formation was more sensitive to VOCs and less to NO\textsubscript{x} and CO in the past 10 years. In addition, the OBM results found that the contributions of aromatics to O\textsubscript{3} formation decreased in all seasons of these years, particularly in autumn, likely due to effective control of solvent-related sources. In contrast, the contributions of alkenes increased, suggesting a continuing need to reduce traffic emissions. The findings provided updated information on photochemical pollution and its impact in Hong Kong.

Keywords: Ozone; VOCs; Long term; Observation-based model
1 Introduction

Ozone (O₃), one of the most important photochemical products influencing atmospheric oxidative capacity, human and vegetation health, and climate change, is formed through a series of photochemical reactions among volatile organic compounds (VOCs) and nitrogen oxides (NOₓ) in the atmosphere (Seinfeld and Pandis, 2006). Due to the non-linear relationship between O₃ and its precursors, the development of appropriate control measures of O₃ is still problematic in mega cities (Sillman, 1999).

Distinguished from short-term O₃ studies, investigation of long-term O₃ variations enables us to understand the seasonal and inter-annual characteristics of O₃, the influence of meteorological parameters on O₃ formation, and the O₃-precursor relationships in different years. Subsequently, more effective and sustainable O₃ control strategies can be formulated and implemented. Hence, earlier efforts have been made to investigate long-term variations of O₃ in different atmospheric conditions. For example, multi-year data analysis showed that the O₃ levels started to decrease around 2000 in Europe (e.g., Jungfraujoch, Zugspitze, Mace Head) and North America excluding western US rural sites (e.g., US Pacific, Lassen Volcanic National Park) (Lefohn et al., 2010; Cui et al., 2011; Parrish et al., 2012; Pollack et al., 2013; Lin et al., 2017), due to a decrease in the emissions of O₃ precursors since the early 1990s (Cui et al., 2011; Derwent et al., 2013). In contrast, the O₃ levels in East Asia increased at a rate of 1.0 ppbv yr⁻¹ from 1998 to 2006, based on measurements at Mt. Hatto, Japan (Parrish et al., 2012; Tanimoto, 2009). In China, with rapid economic growth and urbanization over the past three decades, increasing O₃ levels have been found in many locations. For instance, based on the data collected between 1991 and 2006 at Lin'an, a NOₓ-limited rural area close to Shanghai, Xu et al. (2008) reported that the maximum mixing ratios of O₃ increased by 2.0% yr⁻¹, 2.7% yr⁻¹, 2.4% yr⁻¹ and 2.0% yr⁻¹ in spring, summer, autumn and winter, respectively, which were likely related to increased mixing ratios of NO₂. In the North China Plain (NCP), Ding et al. (2008) reported that O₃ in the lower troposphere over Beijing had a positive trend of ~2.0% yr⁻¹ from 1995 to 2005, while Zhang et al. (2014) found that the daytime average O₃ in summer in Beijing significantly increased by 2.6 ppbv yr⁻¹ from 2005 to 2011, due to decreased NO titration (-1.4 ppbv yr⁻¹ of NO₃ over the study period) and elevated regional background O₃ levels (~0.58 - 1.0 ppbv yr⁻¹) in the NCP.

Hong Kong, together with the inland Pearl River Delta (PRD) region of southern China, has suffered from high O₃ mixing ratios in recent years (Chan et al., 1998a; Chan et al., 1998b; Wang and Kwok, 2003; Ding et al., 2004; Zhang et al., 2007; Guo et al., 2009 and 2013). In 2014, O₃ exceeding the Chinese national air quality standard (80 ppbv, for the daily 8 hour maximum average, DMA8) was > 90 days in some areas of the PRD, with the highest DMA8 value of 165 ppbv (GDEMC and HKEPD, 2015). Based on the observational data at a newly-established regional monitoring network, Li et al. (2014) found that O₃ mixing ratios in the inland PRD region increased at a rate of 0.86 ppbv yr⁻¹ from 2006 to 2011 because of the rapid reduction of NO in this VOC-limited region. Similarly, Wang et al. (2009) reported a continuous record of increased surface O₃ at Hok Tsui (HT), a regional background site in Hong Kong, with a rate of 0.58 ppbv yr⁻¹ based on observations conducted from 1994 to 2007, concluding that the increased NO₂ column concentration in upwind eastern China might significantly contribute to the increased O₃ in Hong Kong. Even so, knowledge gaps still exist on long-term characteristics of O₃, long-term O₃-precursor
relationships, and the mechanisms for the varying \(\text{O}_3 \) trends in the PRD region, because of the lack of long-term observations of VOCs in the region, where photochemical \(\text{O}_3 \) formation is sensitive to VOCs in urban areas, and where the levels of VOCs and \(\text{NO}_x \) have varied significantly due to more stringent control measures since 2005 (Zhong et al., 2013). It is noteworthy that although Xue et al. (2014) reported increasing \(\text{O}_3 \) trends in 2002-2013 in Hong Kong and investigated the roles of VOCs and \(\text{NO}_x \) in the long-term \(\text{O}_3 \) variations, only data in autumn were used, which could not provide a consistently full picture of the long-term variations of \(\text{O}_3 \), VOCs, \(\text{NO}_x \) and their relationships.

In this study, field measurements and model simulations were combined to characterize the long-term variations of \(\text{O}_3 \) and its precursors, the variations of locally-produced \(\text{O}_3 \), and the impact of regional transport in Hong Kong from 2005 to 2014. In addition, the long-term contribution of different VOC groups to the \(\text{O}_3 \) formation was explored. The findings aim at providing the most updated information on the characteristics of photochemical pollution and its impact in Hong Kong.

2 Methodology

2.1 Site description

Field measurements were carried out at the Tung Chung (TC) Air Quality Monitoring Station managed by the Hong Kong Environmental Protection Department (HKEPD). The sampling site (22.29° N, 113.94° E) is located at about 24 km southwest of downtown Hong Kong and about 3 km south of the Hong Kong International Airport (Figure 1). The elevation of TC is 37.5 m above sea level. It is surrounded by a newly-developed residential town on the northern Lantau Island, and is downwind of urban Hong Kong and the inland PRD region when easterly and northeasterly winds are prevailing (Ou et al., 2015). At TC, the prevailing wind varies by seasons, with east winds for spring and autumn, southwest winds for summer and northeast for winter (see Figure S1). The selection of this site for the trend study was due to its downwind location being a good receptor for urbane plume, suffering high \(\text{O}_3 \) pollution and having the most comprehensive dataset. More detailed description of the TC site can be found in our previous papers (Jiang et al., 2010; Cheng et al., 2010; Ling et al., 2013; Ou et al., 2015).
Figure 1. Location of the sampling sites and surrounding environments. Guangzhou and Shenzhen are the two biggest cities in the inland PRD region with a population over 10 million for each city. Hok Tsui (HT) and Tap Mun (TM) are regional background sites. The Hong Kong University of Science and Technology (HKUST) is an Air Quality Research Supersite located in suburban area. Yuen Long (YL) is a typical urban site adjacent to main traffic roads and surrounded by residential and industrial blocks. Mong Kok is a typical roadside site in downtown with high traffic density.

2.2 Measurement techniques

Hourly observations of O₃, CO, SO₂, NO-NO₂-NOₓ and meteorological parameters at TC from 2005 to 2014 were obtained from the HKEPD (http://epic.epd.gov.hk/ca/uid/airdata). Briefly, O₃ was measured using a commercial UV photometric instrument (Advanced Pollution Instrumentation (API), Model 400A) with a detection limit of 0.6 ppbv. CO was measured with a gas filter correlation CO analyser (Thermo ElectronCorp. (TECO), Model 48C) with a detection limit of 0.04 ppm. SO₂ was measured using a pulsed fluorescence analyser (TECO, Model 43A) with a detection limit of 1.0 ppbv. NO-NO₂-NOₓ were detected using a commercial chemiluminescence with an internal molybdenum converter (API, Model 200A) and a detection limit of 0.4 ppbv. All the time resolutions for these gas analysers are 1 hour. To ensure a high degree of accuracy and precision, the QA/QC procedures for gaseous pollutants were identical to those in the US air quality monitoring program (http://epic.epd.gov.hk/ca/uid/airdata). The accuracy of the monitoring network is assessed by performance audits, while the precision, a measure of the repeatability, of the measurements is checked in accordance with HKEPD's quality manuals. For the gaseous pollutants, the accuracy and precision within the limits of ± 15 and ± 20 % are adopted, respectively (HKEPD 2015).

Real-time VOC data at TC were also measured by the HKEPD. An online GC-FID analyser (Synspec GC 955, Series 600/800) was used to collect VOC speciation data continuously with a time resolution of 30 minutes. The VOC analyser consists of two separate systems for detection of C₂–C₅ and C₆–C₁₀ hydrocarbons, respectively. Detailed description about the real-time VOC analyser can be found in Lyu et al. (2016). There were twenty-eight C₃–C₁₀ VOC species identified and quantified with this method. In terms of the QA/QC for VOC analysis, built-in computerized programs of quality control systems such as auto-linearization and auto-calibration were used. Weekly calibrations were conducted by using NPL standard gas (National Physical Laboratory, Teddington, Middlesex, UK). In general, the detection limits of the target VOCs ranged from 2 to 56 pptv. The accuracy of each species measured by online GC-FID was determined by the percentage difference between measured mixing ratio and actual mixing ratio based on weekly span checks and monthly calibrations. The precision was based on the 95% probability limits for the integrated precision check results. The accuracy of the measurements was about 1-7%, depending on the species, and the measurement precision was about 1-10% (Table S1). In addition, the quality of the real-time data was assured by regular comparison with whole-air canister samples collected and analysed by University of California at Irvine (UCI). More details can be found from previous studies in Hong Kong (Xue et al., 2014; Ou et al., 2015; Lyu et al., 2016).
For data analysis, linear regression and error bars represented as 95% confidence intervals were used. Trends of O\textsubscript{3} and its precursors with a \(p \) value < 0.05 were considered significant (Guo et al., 2009).

2.3 Observation-based model

In this study, an observation-based box model (OBM) coupled with carbon bond mechanism (CB05) was used to simulate photochemical O\textsubscript{3} formation and to evaluate the sensitivity of O\textsubscript{3} formation to its precursors. The CB05 mechanism is a condensed mechanism with high computational efficiency and reliable simulation, and has been successfully applied in many emission-based modelling systems such as Weather Research and Forecasting with Chemistry (WRF/Chem) and the Community Multiscale Air Quality (CMAQ) (Yarwood et al. 2005; Coates and Butler, 2015). Unlike emission-based models, the OBM in this study is based on the real time observations at the TC site in Hong Kong. The simulation was constrained by observed hourly data of meteorological parameters (temperature, relative humidity and pressure) and air pollutants (NO, NO\textsubscript{2}, CO, SO\textsubscript{2} and 22 C\textsubscript{3}-C\textsubscript{10} VOCs). In the CB05 module, VOCs are grouped according to carbon bond type and the reactions of individual VOCs were condensed using lumped structure technique (conversions from measured VOCs to CB05 grouped species are shown in Table S2). To better describe the photochemical reactions in Hong Kong, the photolysis rates of different species in the OBM model was determined using the output of the Tropospheric Ultraviolet and Visible Radiation model (TUV v5) (Madronich and Flocke, 1999) based on the actual conditions of Hong Kong, i.e., meteorological parameters, location, and time period of the field campaign. However, it is noteworthy that the atmospheric physical processes (i.e., vertical and horizontal transport), the deposition of species, and the radical loss to aerosol (George et al., 2013; Lakey et al., 2015) were not considered in the OBM model. In addition, a “spin-up” time was not applied in the model to get the radical intermediates well steady which might have caused a slight underestimation on the simulated O\textsubscript{3} production (Figure S2) and its sensitivity to precursors (Figure S3). In this study, we performed day-by-day OBM simulations for 2688 days during 2005–2014, where the missing days were due to lack of real-time VOC data (see Table S3). For each daily simulation, the model was run for a 24-hour period with 00:00 (local time, LT) as the initial time. The model output simulated mixing ratios of O\textsubscript{3}, radicals (i.e., OH, HO\textsubscript{2}, RO and RO\textsubscript{2}) and intermediates. The model performance was evaluated using the index of agreement (IOA) (Huang et al., 2005; Wang et al., 2015; Wang et al., 2013; Lyu et al., 2015).

\[
\text{IOA} = 1 - \frac{\sum_{i=1}^{n} (O_i - S_i)^2}{\sum_{i=1}^{n} \left(|O_i - \bar{O}| + |S_i - \bar{S}| \right)^2} \quad (\text{Eq. 1})
\]

where \(S_i \) and \(O_i \) represent simulated and observed values, respectively, \(\bar{O} \) represents the mean of observed values, and \(n \) is the number of samples. The IOA value lies between 0 and 1. The better agreement between simulated results and observed data, the higher the IOA (Huang et al., 2005).

Apart from the OBM (CB05), which is mainly for condensed VOC groups, a Master Chemical Mechanism (MCM, v3.2) was applied to inter-compare the modelling performance of OBM (CB05) (shown in section 3.2). Since the MCM utilizes the near-explicit mechanism describing the degradation of 143 primary VOCs and contains around 16,500 reactions involving
5,900 chemical species, it has a better performance in calculating the contribution of individual VOCs to O₃ production (Jenkin et al., 1997 and 2003; Saunders et al., 2003). The hourly input data of meteorological parameters, air pollutants and the photolysis rates in MCM were the same as in CB05. A more detailed description of the MCM can refer to Jenkin et al. (1997 and 2003) and Saunders et al. (2003). Some developments on localization of the MCM for Hong Kong and addition of chemical reaction pathways of more biogenic VOC species and alkyl nitrates are given in our previous papers (Lam et al., 2013; Cheng et al., 2013; Ling et al., 2014; Lyu et al., 2015).

The measured precursors (i.e., VOCs, NO and NO₂) at TC are a mixture of regional background values augmented by local source influences, and the two parts are very difficult to be fully separated. It is worth noting that the regional background values are those observed at locations where there is little influence from urban sources of pollution, while the baseline values mentioned in Section 3.2 are observations made at a site when it is not influenced by recent, locally emitted or produced pollution (TF HTAP, 2010). To minimize the influence of regional transport from the inland PRD region, the real-time regional background values in this study were simply subtracted off from the observations at TC. Previous studies have reported that Tap Mun (TM, 22.47° N, 114.36° E) and Hok Tsui (HT, 22.217° N, 114.25° E), are two background sites of Hong Kong (Lyu et al., 2016; So and Wang, 2003 and 2004; Wang et al., 2005; Wang et al., 2009). TM is a rural site that is upwind of Hong Kong in autumn/winter seasons and HT is a background site at southeastern tip of Hong Kong. Good trace gas correlations were found between both sites (Lyu et al., 2016). Since not all the data during the entire 10-year period were available at one background site, the hourly measured VOCs at HT and NO₂ at TM were treated as background values. The background data were excluded using the equations:

\[
\text{[VOC]}_{\text{local}} = \text{[VOC]}_{\text{observed}} - \text{[VOC]}_{\text{background}} \quad \text{(Eq. 2)}
\]

\[
\text{[NO]}_{\text{local}} = \text{[NO]}_{\text{observed}} - \text{[NO]}_{\text{background}} \quad \text{(Eq. 3)}
\]

\[
\text{[NO}_2\text{]}_{\text{local}} = \text{[NO}_2\text{]}_{\text{observed}} - \text{[NO}_2\text{]}_{\text{background}} \quad \text{(Eq. 4)}
\]

where \([xx]_{\text{local}}, [xx]_{\text{observed}}, \text{and } [xx]_{\text{background}}\) represent the local, observed and background values, respectively. In this study, mixing ratios of 21 anthropogenic VOC species with relatively long lifetimes (5h – 14d) at HT were selected as the background values for deducting from the observed data at TC. The lifetimes of these VOCs were estimated based on the reactions with OH radicals (Simpson et al., 2010). The rate constants used were from Atkinson and Arey (2003) by assuming a 12-h daytime average OH radical concentration of \(2.0 \times 10^6\) molecules cm⁻³. Isoprene was considered as not having a regional impact due to its short lifetime (1-2 h) (Ling et al., 2011). Furthermore, the lifetime of NO₂ is determined by the main sinks of OH+NO₂ reaction and the hydrolysis of N₂O₅ at the surface of wet aerosols, which highly depends on meteorological conditions, such as temperature and humidity (Dils et al. 2008; Evans and Jacob, 2005). Previous experimental studies showed an exponential relationship between the NO₂ lifetime and temperature (Dils et al., 2008; Merlaud et al., 2011; Rivera et al., 2013), which was used to estimate the lifetime of NO₂ in this study. The lifetime of NO₂ was calculated to be approximately 3.4±0.3 h, 2.2±0.1 h, 2.8±0.2 h and 5.2±0.3 h in spring, summer, autumn and winter, respectively, consistent with the lifetimes of NO₂ in different seasons in the PRD region (Beirle et al., 2011). Considering the shortest distance between the inland PRD and TC (i.e., from the center of Shenzhen to TC site, ~30 km) and the average wind speeds in different seasons (Ou et al., 2015), it would take
approximately 3.4±0.3 h, 4.3±0.3 h, 4.0±0.5 h and 3.7±0.4 h in spring, summer, autumn and winter, respectively, for NO₂ originating in the inland PRD to arrive at TC. Hence, although NO₂ emitted from the inland PRD is slightly more likely to arrive at TC in winter and spring than in summer and fall, the differences in travel time among the seasons are relatively small and it is difficult to be precise with seasonal average estimates of NO₂ lifetime and travel time. We have excluded background NO₂ values in spring and winter in this study during model simulations, but we recognize the limitations in these calculations.

In addition to the simulation of O₃ formation, the precursor sensitivity of O₃ formation was assessed by the OBM using the relative incremental reactivity (RIR) (Cardelino and Chameides, 1995; Lu et al., 2010; Cheng et al., 2010; Ling et al., 2011; Xue et al., 2014). A higher positive RIR of a given precursor means a greater probability that reducing emissions of this precursor will more significantly reduce O₃ production. The RIR is defined as the percent change in daytime O₃ production per percent change in precursors. The RIR for precursor X is given by:

\[
\text{RIR}(X) = \frac{[P_\text{O₃→NO}(X) - P_\text{O₃→NO}(X - \Delta X)]/P_\text{O₃→NO}(X)}{S(X)} \quad \text{(Eq. 5)}
\]

X represents a specific precursor (i.e., VOCs, NOₓ, or CO); the superscript "s" is used to denote the specific site where the measurements were made; S(X) is the measured mixing ratio of species X (ppbv); ΔS(X) is the hypothetical change in the mixing ratio of X; P₀₃→NO(X) and P₀₃→NO(X - ΔX) represent net O₃ production in a base run with original mixing ratios, and in a run with a hypothetical change (ΔS(X); 10% S(X) in this study) in species X. In both runs, O₃ production modulated by NO titration is considered during the evaluation period. The O₃ production P₀₃→NO was calculated by the output parameters of the OBM.

\[
P_{0₃→NO}^s \text{ is derived from the difference between O₃ gross production rate } G_{0₃→NO}^s \text{ and O₃ destruction rate } D_{0₃→NO}^s \text{ (Eq. 6).}
\]

\[
G_{0₃→NO}^s = k_{\text{HO}_2+\text{NO}}[\text{HO}_2][\text{NO}] + \sum k_{\text{RO}_2+\text{NO}}[\text{RO}_2][\text{NO}] \quad \text{(Eq. 7)}
\]

\[
D_{0₃→NO}^s = k_{\text{HO}_2+\text{O}_3}[\text{HO}_2][\text{O}_3] + k_{\text{OH}+\text{O}_2}[\text{OH}][\text{O}_3] + k_{\text{O}(\text{D})+\text{H}_2\text{O}}[\text{O}(\text{D})][\text{H}_2\text{O}] +
\]

\[
k_{\text{OH}+\text{NO}_2}[\text{OH}][\text{NO}_2] + k_{\text{O}_3 \text{LE}=\text{O}_3}[\text{alkene}][\text{O}_3] \quad \text{(Eq. 8)}
\]

In Eq.7 and Eq.8, k constants are the rate coefficients of their subscript reactions. Values of radicals and intermediates are simulated by the OBM. Details of the calculation can be found in Ling et al. (2014) and Xue et al. (2014).
Furthermore, the sensitivities in the OBM model to the uncertainties in initial concentrations of ozone precursors have been examined by running the model with varying NO\textsubscript{2} or VOCs initial concentrations in the range of ±95% confidence intervals, respectively. The results demonstrate that the modelled O\textsubscript{3} production was more sensitive to NO\textsubscript{2} than VOCs, with a percentage variation about ±13% and ±3.9%, respectively (see Table S4, Figure S4 & S5). In addition, the uncertainties associated with removing the background concentrations are also evaluated, suggesting a similar trend for simulated locally O\textsubscript{3} production for both approaches (see Figure S6 & Tables S5-S7).

3 Results and discussion

3.1 Long-term trends of O\textsubscript{3} and its precursors

Figure 2 shows trends of monthly-averaged mixing ratios of O\textsubscript{3} and its precursors, namely NO\textsubscript{x}, total VOCs (TVOCs) and CO measured at TC in the past 10 years. The TVOCs were defined as the sum of the 22 VOC species listed in Text S1. Note that not all detected VOCs were included in this study because of high rates of missing data. The limited number of VOC precursors would cause missing of reactivity which was estimated < 30% for total hydrocarbons based on our previous study (Guo et al., 2004). The missing reactivity would increase if carbonyls are considered (Cheng et al., 2010). It was found that both monthly-averaged O\textsubscript{3} and monthly maximum O\textsubscript{3} increased with a rate of 0.56±0.01 ppbv yr-1 (p<0.01) and 1.92±0.15 (p<0.05), respectively. The monthly maximum O\textsubscript{3} level, which was defined as the maximum of DMA8 O\textsubscript{3} in one month, increased from about 68 ppbv in 2005 to 86 ppbv in 2014, exceeding the ambient air quality standards in Hong Kong (i.e., 80 ppbv). Besides, the number of days per year (d yr-1) that DMA8 exceeded 80 ppbv also increased during 2005-2014 (1.16±0.26 d yr-1, p<0.05, see Figure S7), indicating increasing O\textsubscript{3} pollution in Hong Kong. This finding is consistent with other big cities and regions in the world, such as Beijing (Tang et al., 2009), west plains of Taiwan (Chou, et al., 2006), and Osaka (Itano et al., 2007). The annual average O\textsubscript{3} concentration in Hong Kong has increased by 0.56 ppbv yr-1 in 2004-2015 which is close to that reported for Osaka (0.6 ppbv yr-1) in 1985-2002, and in agreement with Lin et al. (2017) who found the annual mean O\textsubscript{3} over Hong Kong increased by about 0.5 ppbv yr-1 over 2000-2014. In contrast, NO\textsubscript{x} and CO significantly decreased with an average rate of -0.71±0.01 ppbv yr-1 (p<0.01) and -29.4±0.05 ppbv yr-1 (p<0.01), respectively, while TVOCs remained unchanged (p=0.71) in these years. The decreasing trends of NO\textsubscript{x} and CO, also observed in many other high population industrial urban areas (Geddes et al., 2009; Tang et al., 2009), suggest effective reduction of local emissions from transportation, power plants and other industrial activities (HKEPD, 2016). Unlike O\textsubscript{3} and NO\textsubscript{x}, the trend of TVOCs varied across different areas, for example, increasing in Beijing (Tang et al., 2009), decreasing in Toronto (Geddes et al., 2009) and Taiwan (Chou et al., 2006), while almost remained unchanged (p>0.05) in Hong Kong (Figure 2). Although the 10-year TVOCs trend did not change, their levels showed clear inter-annual variations in spring and autumn (Figure 3). Moreover, the long-term trends of individual VOCs, except for BVOC, were different from that of TVOCs (see Figure S18) because many control measures were taken in the last decade, which altered the composition of VOCs in the atmosphere, such as the reduction of toluene by solvent usage control
and the increase of alkanes in Liquefied Petroleum Gas (LPG) in 2005-2013 (Ou et al., 2015) and the decrease of LPG-alkanes in 2013-2014 (Lyu et al., 2016).
Figure 2. Trends of monthly averages of O₃ and its precursors, i.e., NOₓ, TVOCs and CO at TC during 2005–2014. Error bars represent 95% confidence interval of monthly averages.

Figure 3 displays variations of measured O₃ and its precursors (NOₓ, TVOCs and CO) in four seasons in 2005-2014. Here we defined December–February, March–May, June–August and September–November as winter, spring, summer and autumn, respectively. Generally, all precursors showed low values in summer and high levels in winter, mainly due to typical Asian monsoon circulations, which brought in clean marine air in summer and delivered pollutant-laden air from mainland China in winter (Wang et al., 2009). Subject to this reason, a similar seasonal variation was observed for the averages of TVOCs at different locations over Hong Kong (see Table S8). With lower (diluted) precursor concentrations, together with high frequency of rainy days, it is not uncommon for Hong Kong to see the lowest O₃ values in summertime (see Figure 3).

The long-term trends of CO in all seasons (slopes from spring to winter: -39.2±0.20, -16.8±0.12, -14.4±0.16 and -50.3±0.23 ppbv yr⁻¹, respectively) and NOₓ and TVOCs in spring (NOₓ: -0.69±0.01 ppbv yr⁻¹; TVOCs: -0.26±0.01 ppbv yr⁻¹) and autumn (NOₓ: -0.50±0.02 ppbv yr⁻¹; TVOCs: -0.32±0.01 ppbv yr⁻¹) showed significant decreases (p<0.05), whereas NOₓ and TVOCs did not have statistical variations in summer and winter during the 10 years (p>0.05). The different inter-annual trends of NOₓ and TVOCs in spring/autumn from those in summer/winter were probably because marine air significantly diluted air pollution in summer while continental air masses remarkably burdened air pollution in winter, which concealed the decreased local emissions of NOₓ and TVOCs in summer and winter (Wang et al., 2009). In contrast, the measured O₃ trends significantly increased in spring, summer and autumn, with the rate of 0.51±0.05, 0.50±0.04 and 0.67±0.07 ppbv yr⁻¹, respectively (p<0.05), while winter O₃ levels showed no significant trend (0.23±0.05 ppbv yr⁻¹, p=0.11). Apart from the impact of regional transport, the increased spring and autumn O₃ in these years was likely due to the reduction of NO titration overrode the O₃ decrease owing to the reduction of TVOCs, leading to net O₃ increase. Here the NO titration refers to the “titration reaction” between NO and O₃. Although NO–NO₂–O₃ reaction cycling (including the effects of NO titration, see reactions R1-R3) can be theoretically regarded as a null cycle and provides rapid cycling between NO and NO₂, the NO titration effect can retard the accumulation of O₃ in an urban environment by means of substantial NO emissions (Chou et al., 2006). Indeed, the observed NO at TC site decreased significantly during 2005-2010 (shown in Figure S8), which mitigated the effects of NO titration and led to the increase of O₃.

\[\text{NO}_2 + h\nu \rightarrow \text{NO} + \text{O} \quad \text{(R1)} \]
\[\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M} \quad \text{(R2)} \]
\[\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \quad \text{(R3)} \]

Interestingly, summer O₃ had a significant increase though NOₓ and TVOCs showed no differences in these years. Further investigation found that temperature and solar radiation in summer indeed increased (p<0.05) in these years (see Figure S9), whereas they had no significant change in other seasons (the reasons remained unclear), consistent with the fact that the increase of temperature and solar radiation would enhance the photochemical reaction rates, partly resulting in O₃ increase in
summer (Lee et al., 2014). On the other hand, the unchanged winter O$_3$ trend was in line with the unchanged NO$_x$ and TVOCs values in winter of past 10 years. Again, the impact of regional transport could not be ignored. To better understand the mechanisms of long-term trends of O$_3$ in different seasons in this study, the source origins of O$_3$, i.e., whether it was locally formed or transported from other regions, were explored.

Figure 3. Variations of O$_3$ and its precursors in four seasons at TC during 2005–2014. Each data point in the figure is obtained by averaging hourly values into a monthly value. Error bars represent 95% confidence interval of the averages. In the sub-plot for O$_3$ trend in autumn, the three extremely high values are not considered as outliers as each of them represents one month of data with relatively small uncertainty (see Figure S10).
3.2 Long-term trends of locally-produced O\textsubscript{3} and regional contribution

In this study, the OBM (CB05) model was used to simulate the long-term trends of O\textsubscript{3} produced by in-situ photochemical reactions (hereinafter locally-produced O\textsubscript{3} (simulated)). The comparisons of simulated and observed O\textsubscript{3} at TC during 2005–2014 are shown in Figures S11 (by year) and S12 (by month). Besides, Table S9 lists the IOA values between observed and locally-produced O\textsubscript{3} (simulated) at TC site in each year. As shown, the IOA values ranged from 0.71 to 0.89, indicating that the performance of the OBM model on the O\textsubscript{3} simulation was acceptable.

It is noteworthy that MCM has better simulation performance than CB05 due to its near-explicit rather than condensed chemical mechanism. Indeed, the overall IOA of MCM modeling (0.89) was higher than that of CB05 (0.81), according to our test on the same sampling days of 2005-2014 (shown in Figure S13, rainy days were excluded). Despite this, the high computational efficiency OBM (CB05) was used for the 10-year day-by-day O\textsubscript{3} simulations to investigate the long-term trend of O\textsubscript{3} in this study, because the simulated results of both CB05 and MCM models followed similar temporal patterns (p>0.05), and the difference of simulated values between the two models was reasonable (IOA value: 0.89 vs. 0.81), revealing that the condensed mechanism of CB05 would not significantly affect the long-term trends of O\textsubscript{3} in this study (shown in Figure S14).

Previous studies suggest that wind speed of 2 m/s could be used as a threshold to classify regional and local air masses in Hong Kong (Guo et al., 2013; Ou et al., 2015; Cheung et al., 2014). Namely, the O\textsubscript{3} values measured with < 2 m/s in this study were considered as locally-produced O\textsubscript{3} (hereinafter locally-produced O\textsubscript{3} (filtered)). Figure 4 presents the long-term trends of observed daytime O\textsubscript{3} (0700-1900LT) and locally-produced O\textsubscript{3} (filtered/simulated) in four seasons during 2005-2014. Please note, the trends of observed daytime O\textsubscript{3} in the four seasons were consistent with those of 24-hour observed O\textsubscript{3} (see Figure S15). It can be seen that the locally-produced O\textsubscript{3} (simulated) increased in spring (0.28±0.01 ppbv yr-1, p<0.05), decreased in autumn (-0.39±0.02 ppbv yr-1, p<0.05) and showed no change in summer and winter (p>0.05). Interestingly, the long-term trend of locally-produced O\textsubscript{3} (simulated) in autumn was opposite to that in spring though both NO\textsubscript{x} and TVOCs decreased in the two seasons. The reasons were because 1) NO\textsubscript{x} decreased faster while TVOCs slower (Figure 3) in spring than in autumn, leading to net increase of O\textsubscript{3} formation in spring and decrease in autumn; and 2) TVOC reactivity (described in Text S2 and Table S10) decreased in autumn (-0.03 s-1y-1, p<0.05) but showed insignificant variations in other seasons (p>0.1) (Figure S16), resulting in the reduction of O\textsubscript{3} production in autumn. The simulated springtime O\textsubscript{3} increase and unchanged winter values were consistent with the observed trends, whereas the simulated autumn O\textsubscript{3} decrease was opposite to the observed trend for the overall observations. However, locally-produced O\textsubscript{3} (filtered) values clearly showed similar trends to locally-produced O\textsubscript{3} (simulated) in spring, autumn and winter (see Figure 4), confirming that locally-produced O\textsubscript{3} indeed increased in spring and decreased in autumn in these years.

In comparison, a significant difference (ΔO\textsubscript{3} = O\textsubscript{3} overall observed − O\textsubscript{3} simulated, p<0.01) was found between measured and simulated O\textsubscript{3} in spring, implying the contribution of regional transport to the measured O\textsubscript{3}. The 10-year average ΔO\textsubscript{3} was 8.26±1.77 ppbv and the long-term trend of ΔO\textsubscript{3} showed no significant change (p=0.91), suggesting that the contribution of regional transport in spring was stable during last decade. The spring pattern of O\textsubscript{3} in this study is consistent with the findings
of Li et al. (2014) who reported the increasing O\textsubscript{3} trend (2.0 ppbv yr-1) in spring at urban clusters of PRD from 2006 to 2011. In conclusion, the increasing O\textsubscript{3} trend in spring at TC was caused by the increased local O\textsubscript{3} production, and the contribution of regional transport was steady in 2005-2014.

Unlike in spring, though the observed and locally-produced O\textsubscript{3} (filtered) displayed increasing trends in summer (0.67±0.34 ppbv yr-1 and 0.61±0.41 ppbv yr-1, respectively; \(p < 0.05 \)), locally-produced O\textsubscript{3} (simulated) showed no significant change (\(p = 0.18 \)), consistent with the unchanged trends of precursors (NO\textsubscript{x} and TVOCs) in summer (Figure 3). Note that the influence of annual variation in solar radiation over the 10 years was not considered while the TUV model was used to calculate the photolysis rates, which could mask the actual trends of O\textsubscript{3} mixing ratios. Indeed, the total solar radiation (0.24±0.16 MJ m-2 yr-1, \(p < 0.01 \)) and temperature (0.095±0.034 K yr-1, \(p < 0.05 \)) in summer significantly increased during the past 10 years (see Figure S9), subsequently resulting in the enhanced in-situ photochemical reactivity of VOCs, although their quantitative contributions remain unknown and require further investigation. The increase of solar radiation might be due to the decreasing haze as the air quality has been getting better in Hong Kong and the PRD (Louie et al., 2013). Moreover, the summertime wind speeds significantly decreased at a rate of -0.062±0.041 m s-1 yr-1 (\(p < 0.05 \)), which might accumulate the locally-produced O\textsubscript{3}. Lastly, the locally-produced O\textsubscript{3} (filtered) trend was comparable to observed O\textsubscript{3} (\(p = 0.12 \)) and locally-produced O\textsubscript{3} (simulated) (\(p = 0.32 \)), respectively, indicating a negligible impact of regional transport on summer O\textsubscript{3} trend in 2005-2014 (thereby \(\Delta \text{O}_3 \) in summer not shown in Figure 4). As such, the increasing trend of summer O\textsubscript{3} was partly attributed to the increase of solar radiation and temperature from 2005 to 2014.

Consistent with the decreasing trends of NO\textsubscript{x} and TVOCs in autumn, both locally-produced O\textsubscript{3} (simulated) (\(p < 0.05 \)) and locally-produced O\textsubscript{3} (filtered) (\(p < 0.1 \)) remarkably decreased, suggesting the dominant impact of VOC reduction over the reduction of NO titration. The decreased locally-produced O\textsubscript{3} in autumn was consistent with the results of Xue et al. (2014), who found local O\textsubscript{3} production decreased in autumn from 2002 to 2013. Furthermore, the 10-year average \(\Delta \text{O}_3 \) was 7.35±3.16 ppbv and the long-term trend of \(\Delta \text{O}_3 \) increased with a rate of 1.09±0.21 ppbv yr-1 (\(p < 0.05 \)), suggesting an increased contribution of regional transport in autumn during the last decade, in line with the fact that autumn O\textsubscript{3} level in inland PRD was higher and increased more rapidly than in Hong Kong (Figure 5), and high O\textsubscript{3} mixing ratios were frequently observed in this season due to stronger solar radiation, lower wind speeds, and less vertical dilution of air pollution than in other seasons in this region. In summary, locally-produced O\textsubscript{3} in autumn decreased due to the reduction of dominant VOC precursors, while an increased contribution of regional transport negated the local reduction, leading to an elevated O\textsubscript{3} observation.

In winter, locally-produced O\textsubscript{3} (filtered and simulated) had similar trends (\(p = 0.93 \)) and the trends showed no significant changes (\(p > 0.05 \)), confirming similar locally-produced O\textsubscript{3} in these years, due to insignificant variations of NO\textsubscript{x} and TVOCs levels (Figure 3). Besides, locally-produced O\textsubscript{3} (both filtered and simulated) presented significant difference from the observed O\textsubscript{3} (\(p < 0.01 \)), implying the regional contribution in winter. The 10-year average \(\Delta \text{O}_3 \) was 4.56±0.78 ppbv and the long-term trend of \(\Delta \text{O}_3 \) was not significant (\(p = 0.98 \)).
Figure 4. Trends of locally-produced \(\text{O}_3\) simulated by OBM (red line), observed \(\text{O}_3\) (blue line: overall observed \(\text{O}_3\); green line: locally-produced \(\text{O}_3\) (filtered), i.e., observed \(\text{O}_3\) with hourly wind speed \(<2\text{ m/s}\)), and regional \(\text{O}_3\) (gold line, \(\Delta\text{O}_3 = \text{O}_3\) overall observed \(- \text{O}_3\) simulated) in four seasons at TC during 2005–2014. Note: all the data are based on daytime hours (0700-1900 LT). The regional \(\text{O}_3\) in summer was negligible and is not shown in the graph. Error bars represent 95% confidence interval of the averages.
To further investigate the regional transport from the PRD region to Hong Kong, the observed O\textsubscript{3} values at PRD sites and at TC site in four seasons during 2006–2014 are compared (Figure 5). Generally, the observed O\textsubscript{3} levels in PRD were all higher than those at TC in four seasons ($p<0.05$). Considering that the PRD is upwind of Hong Kong in spring/autumn/winter (Ou et al. 2015), high O\textsubscript{3}-laden air in the PRD region could transport to Hong Kong in the three seasons. Moreover, comparable long-term trends were found between the sites in PRD and the TC site in spring (PRD: 0.49±0.06 ppbv yr\(^{-1}\); TC: 0.51±0.05 ppbv yr\(^{-1}\)) and winter (PRD: 0.30±0.06 ppbv yr\(^{-1}\); TC: 0.23±0.05 ppbv yr\(^{-1}\)), indicating that regional transport in spring and winter was stable in these years. In comparison, autumn O\textsubscript{3} level in inland PRD increased (0.84±0.08 ppbv yr\(^{-1}\)) more rapidly than in Hong Kong (0.67±0.07 ppbv yr\(^{-1}\)), implying an elevated regional contribution to Hong Kong. Therefore, the differences of observed O\textsubscript{3} between PRD and TC in spring/autumn/winter were consistent with the above calculations of average \(\Delta O_3\), confirming regional contribution to the observed O\textsubscript{3} in Hong Kong. In contrast, though the increasing rate of O\textsubscript{3} level in PRD was much faster than at TC in summer, the impact of regional transport from PRD region was insignificant due to the dominance of southerly and southeasterly winds from the South China Sea.

Figure 5. Trends of observed O\textsubscript{3} in inland PRD (red line) and at TC (blue line) in four seasons during 2006–2014. Each data point in the figure is obtained by averaging hourly values into a monthly value. Note: Due to the location of sites which might have O\textsubscript{3} transport to TC (Guo et al., 2009), three regional background sites (i.e., Wanqingsha, Jinguowan and Tianhu) and an urban site (i.e., Haogang) in Dongguan are used for comparison. Error bars represent 95% confidence interval of monthly averages.
Overall, locally-produced O$_3$ (simulated) in Hong Kong varied by season, showing an increase in spring, a decrease in autumn and no change in summer and winter. The elevated observed O$_3$ in spring/summer/autumn was mainly attributed to the increase of locally-produced springtime O$_3$ and constant regional contribution, increased summertime in-situ photochemical reactivity, and regional contribution in autumn. Moreover, since the NO$_x$ and NO levels significantly decreased during the last decade (Figure S8), the reduced effect of NO titration, to a certain extent, made contribution to local O$_3$ levels. The effect of NO titration has also been reported in other areas (i.e., Beijing, Taiwan, Guangdong Province in China and Osaka in Japan) (Chou et al., 2006; Itano et al., 2007; Tang et al., 2009; Li et al., 2014). To confirm the reduction of NO titration in this study, the variation of O$_x$, the total oxidant estimated by O$_3$+NO$_2$ was investigated. According to the reaction of NO titration (NO+O$_3$→NO$_2$+O$_2$), the sum of O$_3$ and NO$_2$ (i.e., total oxidant O$_x$) remained essentially constant regardless the variation of NO (Chou et al., 2006). Indeed, the mixing ratio of local O$_x$ (filtered by wind speed < 2m/s) showed no significant change ($p=0.42$) at TC site, during 2005-2013 (Figure 6), suggesting that the increase of O$_3$ was a result of the reduced NO titration. The reduction of NO titration was also confirmed by the increasing NO$_2$/NO$_x$ ratio at a roadside site (Mong Kok) in Hong Kong. The NO$_2$/NO$_x$ emission ratio is a parameter that can be used to examine the variation of NO titration (Carslaw, 2005; Yao et al., 2005; Dallmann et al., 2011; Tian et al., 2011; Ning et al., 2012; Lau et al., 2015). Generally, higher ratios of NO$_2$/NO$_x$ mean a lower potential of O$_3$ titration by NO, resulting in higher O$_3$. Indeed, the NO$_2$/NO$_x$ ratio at Mong Kok significantly increased, with an enhanced traffic related NO$_2$/NO$_x$ ratios observed at night, from 2005 to 2014 ($p<0.01$), leading to increased local O$_3$ levels (Figure 7). This finding was supported by the Hong Kong emission inventory, which indicated that the NO$_x$ emission decreased from 1997 to 2014 in Hong Kong (HKEPD, 2016), and studies conducted by Tian et al. (2011) and Lau et al. (2015), who found an increasing trend of primary NO$_2$ emission in Hong Kong due to several diesel retrofit programs in 1998-2008.
Figure 6. Annual trend of O_x, O_3 and NO_2 (filtered) at TC in 2005–2013. Error bars represent the 95% confidence interval of the averages.
Figure 7. Annual trend of monthly average NO₂/NOₓ ratio at MK site in daytime (a) and night-time (b) in Hong Kong in 2005–2014. Hourly observations of NO₂ and NOₓ are obtained at MK from the HKEPD (http://epic.epd.gov.hk/ca/uid/airdata). Note that data of October in 2014 are excluded due to the impact of Occupy Central event in Hong Kong.

Apart from the regional and local impact on O₃ trends, the impact of variations of baseline O₃ was also considered. Oltmans et al. (2013) reported that O₃ at mid-latitudes of the Northern Hemisphere was flat or declining during 1996-2010 and the limited data in the subtropical Pacific suggested very little change during the same period. Thus, the O₃ trend in Hong Kong might be...
unaffected or underestimated given the flat or decline of baseline O_3. Therefore, the increasing trend of O_3 in Hong Kong over the last decade was the integrated influence of its precursors, meteorological parameters and regional transport.

3.3 Ozone - precursor relationships

Ozone - precursor relationships are critical to determine the reduction plan of precursors for future O_3 control. In this study, the RIR of major O_3 precursors was calculated by the OBM, to directly reflect the O_3 alteration in response to the percentage changes of its precursors (see Section 2.3). Furthermore, the long-term trend of RIR was used to evaluate the variation of the sensitivity of O_3 formation to each individual precursor. Figure 8(a) shows the average RIR values of O_3 precursors in the four seasons during the last decade. The RIR values of TVOCs (AVOC+BVOC, where AVOC = anthropogenic VOC and BVOC = biogenic VOC, see Section 3.4 for the definition of BVOC) ranged from 0.78±0.04 to 0.89±0.04, followed by CO (0.32±0.01 to 0.37±0.01) in all seasons, suggesting the dominant role of TVOCs in photochemical O_3 formation. Among TVOCs, AVOCs had their highest RIR value in winter (0.80±0.03, $p<0.05$) and lowest in summer (0.39±0.02, $p<0.05$). Since RIR values are highly dependent on precursor mixing ratios (Eq. 5), the difference of RIR values of AVOCs in the four seasons was mainly caused by seasonal variations of observed AVOC levels (Figure 3). In contrast, BVOCs had the highest RIR in summer (0.47±0.02, $p<0.05$), followed by autumn, spring and winter (0.30±0.02, 0.28±0.02 and 0.09±0.01, respectively). The higher RIR of BVOCs in summer was mainly due to the higher biogenic emissions in summer. In addition, higher photochemical reactivity of BVOCs also contributed to higher RIR of BVOCs (Atkinson and Arey, 2003; Tsui et al., 2009). The RIR values of NO$_x$, in contrast, were negative in all seasons, indicating that reducing NO$_x$ would lead to an increase of photochemical O_3 formation. The RIR values of NO$_x$ were lower in spring (-1.15±0.02) and summer (-1.22±0.02) than in autumn (-1.05±0.02) and winter (-1.00±0.01, $p<0.05$), suggesting that reducing NO$_x$ would increase more O_3 in spring and summer. The aforementioned findings were consistent with the results of previous studies conducted in autumn in Hong Kong, which were based on modeled and observed VOC/NO$_x$ ratios (Zhang et al., 2007; Cheng et al., 2010; Ling et al., 2013; Guo et al., 2013). The relationship analyses suggest that the O_3 formation in Hong Kong was VOC-limited in all seasons in these years; that is, the O_3 formation was dominated by AVOCs in winter and was sensitive to both AVOCs and BVOCs in the other three seasons, whereas reducing NO$_x$ emissions enhanced O_3 formation, more so in spring and summer. The findings suggest that simultaneous cut of AVOCs and NO$_x$ (which is often the case in real situation) would be most effective in O_3 pollution control in winter, but least efficient in summer.

Figure 8(b) presents the long-term trends of RIR values of O_3 precursors from 2005 to 2014. The RIR values of TVOCs and NO$_x$ increased at an average rate of 0.014±0.012 yr$^{-1}$ ($p<0.05$) and 0.009±0.01 yr$^{-1}$ ($p<0.05$), respectively, while the RIR of CO decreased at an average rate of -0.014±0.007 yr$^{-1}$ ($p<0.01$). The evolution of RIR values suggested that the O_3 formation was more sensitive to TVOCs and less to CO and NO$_x$, indicating that VOCs reduction strategies would be more effective on O_3 control. The decreasing sensitivities of both CO and NO$_x$ to O_3 formation were consistent with the decrease of their mixing ratios during the last decade. The sensitivity of O_3 formation to TVOCs increased although the 10-year levels of TVOCs showed no significant trend, which might be attributed to the variations of speciated VOC levels and the VOC/NO$_x$ ratios in
these years (Ou et al., 2015). Furthermore, the monthly variation of VOC/NO\textsubscript{x} ratios showed a significant decreasing trend at a rate of -0.02 yr-1 (p<0.05) (see Figure S17), indicating that VOC reduction became more effective in reducing O\textsubscript{3} in the past 10 years, which is consistent with the conclusions from the above modeling results.

![Figure 8](image_url)

Figure 8. (a) Average RIR values of O\textsubscript{3} precursors in the four seasons; and (b) Trends of RIR values of O\textsubscript{3} precursors at TC from 2005 to 2014. AVOC represents anthropogenic VOCs, including 20 VOC species. BVOC means biogenic VOCs, including isoprene. Note: all the data are based on daytime hours (0700-1900 LT).

3.4 Contribution of VOC groups to O\textsubscript{3} formation

Since the local O\textsubscript{3} production was VOC-limited in Hong Kong, it is important to study the contribution of VOC species to the O\textsubscript{3} formation. To facilitate analysis and interpretation, AVOC species were categorized into three groups, namely, AVOC (Aromatics) (including benzene, toluene, m/o-xylene, ethylbenzene and three trimethylbenzene isomers), AVOC (Alkenes) (including propene, three butene isomers and 1, 3-butadiene) and AVOC (Alkanes) (including propane, n/i-butanes,
n/i-pentanes, n/i-hexanes and n-heptane). It is noteworthy that C_2 hydrocarbons were not included in the groups due to high missing rates of the C_2 data. The variations of the daytime averaged contributions of four VOC groups (i.e., AVOC (Alkanes/Alkenes/Aromatics) and BVOC) to O_3 mixing ratios were calculated by OBM and shown in Figure 9. Two scenarios were selected for data analysis. The first scenario was “origin”, which used all originally measured data as input. The second scenario was “AVOC (Aromatics/Alkenes/Alkanes) or BVOC group”, which excluded each of the four VOC groups in turn from the input data in the “origin” scenario. Hence, the contributions of VOC groups ((AVOC (Aromatics/Alkenes/Alkanes) and BVOC) were obtained from the difference of simulated O_3 between the scenario “origin” and the related “VOCs group (AVOC (Aromatics/Alkenes/Alkanes) or BVOC)”. Clearly, the contribution of AVOC (Aromatics) to O_3 mixing ratios significantly decreased with an average rate of -0.23±0.01 ppbv yr^{-1} (p<0.05), while AVOC (Alkenes) made increasing contribution to O_3 mixing ratio (p<0.05), and BVOC and AVOC (Alkanes) showed no significant changes (p>0.05). The decreased contribution of AVOC (Aromatics) to the O_3 mixing ratio was likely due to the decrease of C_6-C_8 aromatics, consistent with previous studies which found that aromatic levels decreased during 2005-2013 in Hong Kong (Ou et al., 2015). In fact, the Hong Kong Government has implemented a series of VOC-control measures since 2007 (HKEPD, 2016). From April 2007, the Air Pollution Control (VOCs) Regulation was implemented to control VOC emissions from regulated products, including architectural paints/coatings, printing inks and six selected categories of consumer products. In January 2010, the regulation was extended to control other high VOC-containing products, namely vehicle refinishing paints/coatings, vessel and pleasure craft paints/coatings, adhesives and sealants. The reduced contribution of AVOC (Aromatics) to O_3 formation in these years also agreed well with the decreasing O_3 production rate of aromatics in autumn at TC fr...
In addition, the seasonal variation of O$_3$ formation, of which the reaction rates of alkanes with OH radicals were high in summer and low in winter, would also blur the trend.

Furthermore, BVOC showed no evident change in the contribution to O$_3$ mixing ratios during the last decade (p=0.57), which was likely attributed to the no significant change of isoprene levels at TC site during 2005-2014 (shown in Figure S18). In this study, isoprene was defined as biogenic VOCs. The main known sources of isoprene are biogenic and anthropogenic (Borbon et al. 2001; Barletta et al., 2002; Reiman et al., 2000). It is noteworthy that according to the tunnel study in Hong Kong (Ho et al., 2009), vehicular emissions of isoprene are not significant in this city. Another tunnel study in the PRD region (Tsai et al., 2006) found that isoprene was not present in diesel-fueled vehicular emissions in Hong Kong, likely related to variations of fuel types and vehicular engines used in different countries (Ho et al., 2009). In addition, in low latitude areas like Hong Kong, with a high level of plant coverage (more than 70%), isoprene is mainly produced by biogenic emissions. The source of isoprene at TC site has been also investigated and confirmed by previous long-term source appointment studies, which reported that during 2005-2013 about 90% of isoprene was emitted from biogenic emissions and the contribution of traffic sources was not significant (<5%) (Ou et al., 2015). Therefore, in this study the traffic sources of isoprene in Hong Kong was disregarded and isoprene was defined as biogenic VOCs.
4 Conclusions

In this study, the long-term trends of O_3 and its precursors (NO_x, TVOCs and CO) were analyzed at TC from 2005 to 2014. It was found that NO_x and CO decreased while TVOCs remained unchanged, suggesting the effective reduction of some emissions in Hong Kong. However, ambient O_3 levels increased in these years and the locally-produced O_3 showed different variations in the four seasons, reflecting the complexity of photochemical pollution in Hong Kong. To effectively control locally-produced O_3, VOC control plays a vital role, since O_3 formation in Hong Kong was shown to be VOC-limited in these years. Moreover, trend studies found that the sensitivity of O_3 formation gradually increased with VOCs and decreased with NO_x and CO, indicating that controlling VOCs will be increasingly effective for O_3 control in the future. Among the VOCs, the contribution of aromatics to O_3 formation decreased from 2005-2014, consistent with their declining abundance over this period and implying effective control measures of solvent-related sources. By contrast, the contribution of anthropogenic alkenes increased, suggesting a continuing need for the control of traffic-related sources. In addition, of the four seasons, the highest AVOC sensitivity and relatively low NO_x sensitivity to O_3 formation concurrently appeared in winter, suggesting that winter is the best time for O_3 control. Lastly, in addition to locally-produced O_3, regional transport of O_3 from the PRD region made a substantial contribution to ambient O_3 in Hong Kong and even increased in autumn. In the future, the Hong Kong government should collaborate closely with Guangdong province to mitigate O_3 pollution in this region.

Acknowledgments.

We thank Hong Kong Environmental Protection Department for providing us the data. This work was supported by the Natural Science Foundation of China (41275122), the Research Grants Council (RGC) of the Hong Kong Government of Special Administrative Region (PolyU5154/13E, PolyU152052/14E, PolyU152052/16E and CRF/C5004-15E), the Innovation and Technology Commission of the HKSAR to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center, and the Hong Kong Polytechnic University PhD scholarships (project #RTTA). This study is partly supported by the Hong Kong PolyU internal grant (1-BBW4 and 1-BBYD).

References

Carslaw, D. C.: Evidence of an increasing NO$_2$/NO$_x$ emissions ratio from road traffic emissions, Atmos. Environ., 39, 4793-4802, 2005.

