A HIGH-RESOLUTION AND OBSERVATIONALLY CONSTRAINED OMI NO$_2$
SATELLITE RETRIEVAL

Daniel L. Goldberg*,1,2, Lok N. Lamsal3,4, Christopher P. Loughner5,6,
Zifeng Lu1,2, and David G. Streets1,2

1Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439, USA
2Computation Institute, University of Chicago, Chicago, IL 60637, USA
3Goddard Earth Sciences Technology and Research, Universities Space Research
Association, Columbia, MD 21046, USA
4NASA Goddard Space Flight Center, Code 614, Greenbelt, MD 20771, USA
5NOAA Air Resources Laboratory, College Park, MD 20740, USA
6Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD
20740, USA

*Corresponding author. Phone: (630) 252-3931; Fax: (630) 252-8007; Email: dgoldberg@anl.gov.
A high-resolution and observationally constrained OMI NO$_2$ satellite retrieval

Daniel L. Goldberg1,2, Lok N. Lamsal3,4, Christopher P. Loughner5,6, Zifeng Lu1,2, and David G. Streets1,2

1Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439, USA
2Computation Institute, University of Chicago, Chicago, IL 60637, USA
3Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD 21046, USA
4NASA Goddard Space Flight Center, Code 614, Greenbelt, MD 20771, USA
5NOAA Air Resources Laboratory, College Park, MD 20740, USA
6Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA

Correspondence to: Daniel L. Goldberg (dgoldberg@anl.gov)

Abstract. This work presents a new high resolution NO$_2$ dataset derived from the standard NASA Ozone Monitoring Instrument (OMI) NO$_2$ version 3.0 retrieval that can be used to estimate surface level concentrations. The standard NASA product uses NO$_2$ vertical profile shape factors from a 1.25° × 1° (~110 × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO$_2$ vertical columns. To better estimate vertical profile shape factors, we use a high resolution Community Multi-scale Air Quality (CMAQ) model simulation (1.33 × 1.33 km) to generate tropospheric air mass factors and tropospheric NO$_2$ columns during summertime in the eastern United States. Results show OMI NO$_2$ tropospheric columns in this new product increase by up to 160% in city centers, and decrease by 20 – 50% in the rural areas outside of urban areas when compared to the operational product. This new product shows much better agreement with the Pandora NO$_2$ spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between this satellite product and EPA NO$_2$ monitors in urban areas has improved dramatically: $r^2 = 0.60$ in new product, $r^2 = 0.39$ in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use high resolution models to re-calculate satellite data in areas with large spatial heterogeneities in NOx emissions. Although the current work is focused on the eastern United States, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO$_2$ satellite retrievals.
1 Introduction

Tropospheric NO$_2$ is a trace gas toxic to human health and during ideal atmospheric conditions can photolyze to create O$_3$, another toxic air pollutant with a longer atmospheric lifetime. The eventual fate of tropospheric NO$_2$ is often HNO$_3$, a chemical species easily dissolved in water and responsible for acid rain. HNO$_3$ can also react with ammonia to create nitrate aerosols, which contribute to haze and are harmful to human health.

There are some natural sources of nitrogen oxides (NO$_x$ = NO+NO$_2$), such as from soil through microbial nitrification and denitrification (Conrad, 1996), lightning (Ridley et al., 1996), and natural wildfires (Val Martin et al., 2006), but the majority of the NO$_2$ in our atmosphere today originates from anthropogenic sources (van Vuuren et al., 2011). When temperatures are greater than 1500 K, such as in fuel combustion, nitrogen (N$_2$) and oxygen (O$_2$) spontaneously react to create NO via the endothermic Zeldovich mechanism. The nitrogen in fuels are also converted to NO during combustion making fuels rich in nitrogen, such as coal, more efficient at creating NO. NO is quickly oxidized to NO$_2$ in the atmosphere, most often by ozone, in a matter of seconds. Thus the NO and NO$_2$ species are often grouped into a single species called NO$_x$. In the presence of HO$_2$, NO can also be oxidized to NO$_2$ without consuming ozone. This is the rate-limiting step in the chemical chain reaction producing tropospheric ozone.

NO$_2$ is a strong absorber of radiation within the 400 – 450 nm wavelength region (Vandaele et al., 1998), which approximately corresponds to violet visible light. Satellite instruments measure the absorption of solar backscatter in the UV-visible spectral range, enabling estimation of the amount of NO$_2$ in the atmosphere between the instrument and the surface. By comparing observed spectra with a reference spectrum, we can derive total column amounts; this technique is called differential optical absorption spectroscopy (DOAS) (Platt, 1994).

NO$_2$ has been continuously measured from satellites for over two decades now. The first instrument to remotely measure NO$_2$ was the Global Ozone Monitoring Experiment (GOME) launched aboard the ERS-2 satellite in April 1995 (Burrows et al., 1999). Despite its coarse temporal and spatial resolution (global coverage once every three days and pixel size of 40 × 320 km), it was the first remotely sensed instrument to characterize NO$_2$ columns from space, showing enhanced tropospheric NO$_2$ over North America and Europe (Martin et al., 2002; Martin et al., 2003). In the early 2000s, Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) (Bovensmann et al., 1999) and Ozone Monitoring Instrument (OMI) (Levelt et al., 2006; Bucsela et al., 2006; Boersma et al., 2007) became additional space-based instruments to measure NO$_2$. These instruments were designed to achieve better spatial resolution (SCIAMACHY: 30 × 60 km, OMI: 13 × 24 km) than GOME. Boersma et al. (2008a) documented the differences between the two retrievals. In early 2012, ground operators lost contact with SCIAMACHY, but OMI is still operational as of 2017. There are two operational OMI NO$_2$ retrievals: the KNMI DOMINO v2.0 product (Boersma et al., 2007) and the NASA OMNO2 v3.0 product (Krotkov et al., 2017).
OMI NO$_2$ has been used to estimate NO$_x$ emissions from various areas around the globe (Streets et al., 2013) including North America (Boersma et al., 2008b; Lu et al., 2015), Asia (Zhang et al., 2008; Han et al., 2015; Kuhlmann et al., 2015), the Middle East (Beirle et al., 2011), and Europe (Huijnen et al., 2010; Curier et al., 2014). It has also been used to generate and validate NO$_x$ emission estimates from source sectors such as soil (Hudman et al., 2010; Vinken et al., 2014a; Rasool et al., 2016), lightning (Allen et al., 2012; Liaskos et al., 2015; Pickering et al., 2016), power plants (de Foy et al., 2015), aircraft (Pujadas et al., 2011), marine vessels (Vinken et al., 2014b; Boersma et al., 2015), and urban centers (Lu et al., 2015; Canty et al., 2015; Souri et al., 2016). More recently, there has been an emphasis on analyzing emission trends because OMI has been retrieving high-quality tropospheric NO$_2$ data for over ten years. Over this decade, some areas have seen increases, such as India (Lu and Streets, 2012), China (Verstraeten et al., 2015), the Canadian oil sands region (McLinden et al., 2015), and other oil extraction regions (Duncan et al., 2016), while areas such as the eastern United States (Russell et al., 2012; Lamsal et al., 2015; Krotkov et al., 2016) and Europe (Curier et al., 2014; Duncan et al., 2016) have seen large decreases due to a switch to cleaner fuels and the implementation of emission control technologies.

One of the reasons why the usage of satellite data remains tepid in policy-making communities is due to their inability to detect surface concentrations; improving this ability may spur their use. In particular, detecting the spatial heterogeneities of NO$_2$ in and around city centers are of strong interest as many people are exposed to NO$_2$ or co-located pollutants exceeding policy thresholds in these areas. Satellite measurements with spatial resolution > 13 km, such as OMI, have difficulty observing the fine structure of NO$_2$ plumes at or near the surface (e.g., highways, power plants, factories, etc.) (Chen et al., 2009; Ma et al., 2013; Flynn et al., 2014), which are often less than 10 km in width (Heue et al., 2008). This can lead to a spatial smoothing of pollution, which does not exist in reality (Hilboll et al., 2013). Remote sensing instruments with finer spatial resolution, such as TROPOMI (Veefkind et al., 2012) and TEMPO (Zoogman et al., 2017), may be able to resolve this issue.

Until the next generation of satellites is launched, there have been several techniques to modify OMI NO$_2$ data a posteriori. Kim et al. (2016) developed a technique in which users can utilize regional air quality model information to spatially downscale OMI NO$_2$ measurements. This technique has shown to increase the variability of OMI NO$_2$ within urban areas, which is in better agreement with observations in these regions. In another effort to merge model and satellite data, Lamsal et al. (2008) was able to infer surface level NO$_2$ concentrations from OMI NO$_2$ by applying local scaling factors from a global model. There has also been an emergence of a technique that combines land-use regression techniques with satellite information to infer ground-level NO$_2$ concentrations (Novotny et al., 2011; Vienneau et al., 2013; Lee et al., 2014; Bechle et al., 2015; Young et al., 2016). While each individual technique is useful, all of the aforementioned techniques use model data to adjust existing satellite data, but do not address issues inherent with the satellite retrieval methodology.

2 Methods

We use a method to re-calculate satellite data in lieu of using the operational product as is. There are three existing NO$_2$ products that follow a similar procedure: BeHR for the United States (Russell et al., 2011; Laughner et al.,
We build upon these studies by using an even higher resolution regional air quality model (1.33 km) to generate air mass factors, a value needed for calculation of tropospheric vertical column NO$_2$ amounts. We use a small region in the eastern United States as a case study in developing high resolution NO$_2$ tropospheric columns for urban metropolitan areas (200 × 200 km).

2.1 OMI NO$_2$

The Ozone Monitoring Instrument (OMI) has been operational on NASA’s Earth Observing System (EOS) Aura satellite since October 2004 (Levelt et al., 2006). The satellite follows a sun-synchronous, low-earth (705 km) orbit with an equator overpass time of approximately 13:45 local time. OMI measures total column amounts in a 2600 km swath divided into 60 unequal area “field-of-views”, or pixels. At nadir (center of the swath), pixel size is 13 × 24 km, but at the swath edges, pixels can be as large as 26 × 128 km. In a single orbit, OMI measures approximately 1650 swaths and achieves daily global coverage over 14 – 15 orbits (99 minutes per orbit). OMI measures solar backscatter within the 270–500 nm wavelength range. For this paper, we focus on the NO$_2$ retrieval which is derived from measurements in the 400 – 450 nm range. Since June 2007, there has been a partial blockage of the detector’s full field of view, which has limited the number of valid measurements; this is known in the community as the row anomaly (RA): http://projects.knmi.nl/omi/research/product/rowanomaly-background.php.

OMI measures radiances data between the instrument’s detector and the Earth’s surface. Comparison of these measurements with a reference spectrum (i.e., DOAS technique), allows for calculation of the total slant column density (SCD), which represents the integrated NO$_2$ abundance from surface, through the atmosphere, to the instrument’s detector. For tropospheric air quality studies, vertical column density (VCD) NO$_2$ data are more appropriate. This is done by subtracting the stratospheric slant column from the total (tropospheric + stratospheric) slant column and dividing by the tropospheric air mass factor (AMF), which is defined as the ratio of the SCD to the VCD, as shown in Eq. (1):

$$VCD_{trop} = \frac{SCD_{total} - SCD_{strat}}{AMF_{trop}}$$

where $$AMF_{trop} = \frac{SCD_{trop}}{VCD_{trop}}$$

The tropospheric AMF has been derived to be a function of the optical atmospheric/surface properties (surface albedo, cloud fraction, and cloud height) and a priori NO$_2$ shape profile (Palmer et al., 2001) and can be calculated as follows (Lamsal et al., 2014) in Eq. (2):

$$AMF_{trop} = \frac{\sum_{surface} SW \times x_a}{\sum_{tropopause} x_a}$$

Where x_a is the partial column NO$_2$. The optical atmospheric/surface properties are characterized by the scattering weight (SW) and are calculated by a forward radiative transfer model (TOMRAD) in the NASA product. The SWs are then adjusted real-time by NASA depending on observed viewing angle, surface albedo, cloud fraction, and
cloud height. The a priori NO\textsubscript{2} shape profiles must be provided by a model simulation. In an operational setting, NASA uses the Global Model Initiative (GMI) model (1.25° lon × 1° lat; ~110 km × 110 km in the mid-latitudes) to provide the a priori NO\textsubscript{2} shape profiles. Instead of using a global model, we derive tropospheric VCDs using a priori NO\textsubscript{2} shape profiles from a regional CMAQ simulation. All other parameters from the NASA Level 2 product including total SCD, stratospheric SCD, and SW remain unchanged.

For this study, we filter the Level 2 OMI NO\textsubscript{2} data to ensure only valid pixels are used. We remove daily pixels with solar zenith angles ≥ 80°, cloud radiance fractions ≥ 0.5, or surface albedo ≥ 0.3. Furthermore, we remove the five largest pixels at the swath edges (i.e., pixel numbers 1 – 5 and 56 – 60). Finally, we remove any pixel flagged by NASA including pixels with NaN values, ‘XTrackQualityFlags’ ≠ 0 or 255 (RA flag), or ‘VcdQualityFlags’ > 0 and least significant bit ≠ 0 (ground pixel flag). The satellite product was oversampled for June & July over a 5-year period (2008-2012) by re-gridding to the CMAQ 1.33 km model grid and then averaging the data over the 10-month (two months × five years) period. We have chosen the June & July timeframe because the CMAQ simulation and DISOCVER-AQ Maryland data are only available during these two months.

2.2 DISCOVER-AQ NO\textsubscript{2} observations

In the validation of our new satellite product, we use in situ NO\textsubscript{2} observations from the DISCOVER-AQ Maryland field campaign. DISCOVER-AQ was a four-part field experiment designed to probe the atmosphere near urban areas in excruciating detail from aircrafts, ground station networks, and satellites. The first experimental campaign took place in Maryland (Baltimore, MD - Washington D.C. area) in July 2011. This campaign was particularly unique for an aircraft field campaign in that the focus was limited to single metropolitan area, whereas in other aircraft campaigns, spatial coverage is often over a larger domain. We utilize data acquired by three sources during this campaign: the P3-B aircraft, the ground-based Pandora spectrometer network, and the long-term EPA ground monitoring network. A typical P3-B aircraft flight path, Pandora NO\textsubscript{2} spectrometer locations, and ground monitor locations are shown in Figure 1. DISCOVER-AQ observations were retrieved from the online data archive: http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-2011. A further description of DISCOVER-AQ Maryland can be found in Crawford et al. (2014).

2.2.1 P3-B aircraft data

We use P3-B aircraft NO\textsubscript{2} data gathered by the Cohen group (instrument reference: (Day et al, 2002)) to assess the accuracy of our model simulation. We utilize one-minute averaged P3-B data from all fourteen flights during July 2011. One-minute averaged data is already pre-generated in the data archive. Hourly output from our model simulation is spatially and temporally matched to the observations. We then bin the data into different altitude ranges for our comparison.
2.2.2 Pandora NO₂ data

Measurements of total column NO₂ from the Pandora spectrometer (instrument reference: (Herman et al., 2009)) are used to evaluate the OMI NO₂ satellite products. Valid OMI NO₂ pixels are matched spatially and temporally to Pandora total column NO₂ observations. To smooth the data and eliminate brief small-scale plumes or anomalies, we average the Pandora observations over a two hour period (± one hour of the overpass time) before matching to the OMI NO₂ data. During July 2011, there were twelve Pandora NO₂ spectrometers operating during the experiment; this corresponded to only seventy-eight instances in which valid Pandora NO₂ observations matched valid OMI NO₂ column data.

2.2.3 EPA ground monitor data

There are eighteen EPA NO₂ monitoring sites within our area of interest that were operational during the 5-year period of interest. We gathered this data from the EPA AQS Data Mart (EPA, 2016). Monitoring data were filtered so that only days with valid satellite data were included. To smooth the data, we average all valid ground observations between 12 – 4 PM local time. All EPA monitors measure NO₂ by the chemiluminescence method which has a high bias when compared to other techniques (Dunlea et al., 2007; Lamsal et al., 2008; Lamsal et al., 2015). Dunlea et al. (2007) has shown the high bias to be 22 % in a polluted urban environment and as large as 50 % during the mid-afternoon. Lamsal et al. (2008) suggests the bias may be even higher, 50 – 65 %, in the eastern U.S. during the summertime. For this reason, we refer to NO₂ from these monitors as NO₂*.

2.3 GMI model simulation

The operational NASA OMI NO₂ product uses a Global Modeling Initiative (GMI) (Strahan et al., 2007) model simulation with a horizontal resolution of 1° × 1.25° (~110 × 110 km) to calculate a priori NO₂ shape factors. The model is driven by assimilated meteorological fields from the Goddard Earth Observing System (GEOS) at the NASA Global Modeling and Assimilation Office (GMAO, ttp://gmao.gsfc.nasa.gov/). The GEOS-5 meteorological data are provided every 3–6 h (3 h for surface fields and mixing depths) at 72 pressure levels in the vertical, extending from surface to 0.01 hPa. The model includes the latest available inventories for anthropogenic emissions as discussed in Strode et al. (2015) and Krotkov et al. (2017). These emissions are updated annually with annual scale factor estimates provided by individual countries (van Donkelaar et al., 2008). The GMI model also includes NOₓ emissions from soil, lightning, biomass burning, biofuel, and aircraft sources, as described in Duncan et al. (2007) with updates as discussed in Krotkov et al. (2017). The GMI simulation is conducted for 2004-2014, sampling hourly model output at the OMI overpass time. The standard operational retrieval is based on yearly-varying monthly average NO₂ profiles derived from the GMI simulation.

2.4 CMAQ model simulation

For the high resolution OMI NO₂ product, we use a CMAQ regional model simulation initially prepared for use in Loughner et al. (2014). CMAQ v5.0 is driven off-line by meteorological inputs from the WRF model v3.3 for June
and July 2011. Anthropogenic emissions are projected to 2012 from the 2005 EPA National Emissions Inventory (NEI); the 2011 NEI was unavailable when this model simulation was originally completed. Biogenic and lightning emissions are calculated online. The 1.33 km simulation, which we use exclusively in this study, is nested inside three larger domains: 36 km, 12 km, and 4 km. Boundary conditions for the 36 km domain are provided by the MOZART-4 global model. The CMAQ 1.33 km model domain is shown in Figure 1. For additional details, including a discussion on the uncertainty of the meteorological and chemical fields in this simulation, please reference Loughner et al. (2014).

This study is particularly unique in that we use a 1.33 km simulation in lieu of a model with a horizontal resolution more typical of OMI (>13 km). We do this so that we can capture the fine-scale variability within urban areas that cannot be simulated by coarser models and observations. To ensure a fair comparison, we average model information to the pixel size. Model outputs were sampled at the local time of OMI overpass. Since monthly mean values capture the seasonal variation, we derived monthly mean values for NO$_2$ and temperature profiles and tropopause pressures needed for the calculation of the AMF. The exception is for June & July 2011 in which daily NO$_2$ profiles (e.g., (Laughner et al., 2016)) were used to calculate the AMF.

3 Results

In this section, we describe the process to develop a new high resolution satellite product and our validation efforts. First, we compare a priori NO$_2$ shape profiles simulated by GMI (global model) and CMAQ (regional model). Next we develop an initial OMI NO$_2$ satellite product (OMI_CMAQ) using AMFs generated from the CMAQ a priori NO$_2$ profiles. We introduce two additional steps: improving a priori NO$_2$ shape profiles using aircraft observations and applying a spatial weighting kernel to further improve the spatial distribution of NO$_2$. We then evaluate our new product by comparing to DISCOVER-AQ observations. And finally we compare the new OMI NO$_2$ product with NO$_2$ VCDs from the original CMAQ simulation.

3.1 Evaluating modeled NO$_2$ shape profiles: GMI vs. CMAQ

Trace gas shape profiles provided by model simulations are a critical input to satellite retrievals. To understand the effects of model choice on the a priori NO$_2$ shape profile, we compare the mean 2 PM local time tropospheric NO$_2$ vertical profiles from CMAQ and GMI at several locations in the mid-Atlantic during June & July 2011. In the left panels of Figure 2, we show the mean NO$_2$ mixing ratio as function of altitude for three locations: downtown Baltimore Maryland (an urban area), the Morgantown Power Plant located in Newburg, Maryland 60 km south of the District of Columbia (D.C.), and Arendtsville, Pennslyvania (rural), a location 100 km northwest of Baltimore and upwind of major metropolitan areas during days with climatologically westerly winds. All three locations are shown on Figure 1. In Baltimore, GMI simulates a mean 2 PM surface NO$_2$ mixing ratio of 2.2 ppbv, while CMAQ simulates 9.6 ppbv at the same location. The “Oldtown” monitoring site in Baltimore registered a NO$_2^*$ mixing ratio of 10.5 ppbv within +/- 2 hours of valid co-located satellite overpasses. As discussed in Sect. 2.2.3, the corrected surface NO$_2$ mixing ratio may be up to 65% lower than observed NO$_2^*$; our best estimate of 8.2 ppbv
with error bars [3.7, 10.6] is shown by the black triangle on Figure 2. The value simulated by CMAQ (9.6 ppbv) is much closer to the observed value than GMI (2.2 ppbv). In the second row of panels, the panels representing the Morgantown power plant, CMAQ simulates a plume of NO$_2$ above the surface; the max value is 11.8 ppb corresponding to an altitude of 460 m. The GMI simulation cannot resolve power plant plumes. This yields significant errors in the NO$_2$ shape profiles simulated by GMI near observed large point sources. In the bottom row of panels, we show a location in rural Pennsylvania. CMAQ, once again, does better in simulating the surface concentration than GMI.

However, in the free troposphere (i.e., above 3 km and below the tropopause) CMAQ consistently simulates smaller NO$_2$ than GMI. CMAQ simulates NO$_2$ mixing ratios between 0.01- 0.04 ppbv, while GMI simulates NO$_2$ mixing ratios between 0.06 – 0.09 ppbv over the same altitudes; GMI simulates values which are a factor of three higher than CMAQ. Both simulations include lightning NO$_x$. The differences likely arise from the treatment of long-range transport, which has a dominating effect at these altitudes.

3.2 Calculation of air mass factors: GMI vs. CMAQ

A normalization of the NO$_2$ as a function of altitude (i.e., $x_a/\Sigma x_a$ in Eq. (2)) is the next step in the calculation of the AMF; these values are defined in the literature as shape factors. The center column panels show NO$_2$ shape factors for three locations. In Figure 2b (Baltimore), the GMI and CMAQ shape profiles (i.e., shape factors as a function of altitude) appear to be similar, but there are noticeable differences within the boundary layer and free troposphere. In Figure 2e, there are large differences in the shape profile within the boundary layer due to CMAQ capturing a localized power plant plume. And in Figure 2h, CMAQ suggests that the NO$_2$ gradient near the surface is not as sharp.

Since the AMF is also a function of the SW, small differences in NO$_2$ shape profiles can manifest very different AMFs. For example, small differences in the shape profile at 7.5 km, where the SW is a maximum (SW = 2.9), have an order of magnitude larger effect than differences at the surface (SW = 0.4).

To fully understand the differences caused by the new NO$_2$ shape factors, we multiply the two shape factors by the satellite scattering weights. Here we define the shape factors × scattering weight (i.e., $(x_a \times SW)/\Sigma x_a$ in Eq. (2)) as the adjusted shape factors. This is analogous to the values used for calculation of the air mass factor. The AMF is the integral of the adjusted shape factors with respect to height. In Figure 2c, the CMAQ adjusted shape profile shows values much closer to zero above 3 km than GMI. By using a priori shape profiles from CMAQ, we are enhancing the sensitivity of satellite observations to NO$_2$ concentrations within the boundary layer in Baltimore.

In Figure 2f, the adjusted shape profiles are even more dramatic. At this location, adjusted shape profile values from CMAQ are relatively large below 1 km, and close to zero above 1 km, while GMI shows nearly an order of magnitude larger sensitivity above 1 km. In Figure 2i, CMAQ shows larger values above the surface, but within the boundary layer, while GMI shows larger values directly at the surface. In areas, such as these, the adjusted shape factors yield only small changes. In Figures 2c and 2f, the area underneath the red curve is smaller than the area
underneath the blue curve. This will yield smaller AMFs when using CMAQ at these locations. As a result, we should expect the new OMI tropospheric NO$_2$ columns to be larger near urban areas and point sources which cannot be resolved by global models. At the rural location, the areas underneath the two curves are roughly the same, yielding similar AMFs and NO$_2$ columns.

3.3 Calculation of OMI tropospheric column NO$_2$

3.3.1 Using CMAQ profiles

We use the AMFs based off the CMAQ simulation to generate NO$_2$ tropospheric column amounts; we call this the OMI_CMAQ product. For this product, tropospheric NO$_2$ columns are calculated from the NASA Level 2 OMI NO$_2$ total slant column using Eq. (1). For AMFs calculated in the months of June and July 2011, we use AMFs derived from daily NO$_2$ shape factors as described by Laughner et al. (2016), resulting in more day-to-day variability in the AMF. Daily CMAQ NO$_2$ shape profiles from the hourly output are matched temporally and spatially to the OMI pixel. For years other than 2011, we use a two-month (June and July) average of the 2011 NO$_2$ shape factors to derive “summertime” AMFs. Since the resolution of CMAQ is finer than the resolution of OMI, we average all CMAQ AMFs across each individual pixel. Often there are over two-hundred CMAQ AMFs within a single pixel. Since CMAQ is capturing the spatial heterogeneities in urban areas, using it in lieu of GMI to provide NO$_2$ shape profiles can yield large variability in the AMF between adjacent OMI pixels.

Figures 3a and 3b depict the OMI NO$_2$ tropospheric columns using a priori shape profile information from GMI (OMI_GMI; Figure 3a) and CMAQ (OMI_CMAQ; Figure 3b) in calculating the AMF. Both products are oversampled to 1.33 km for June & July over a 5-year period (2008-2012) by re-gridding to the CMAQ model grid and then averaging the data over the 10-month (two months × five years) period. We have chosen the June & July timeframe because the CMAQ simulation is only available during these two months. For the OMI_GMI product, the tropospheric NO$_2$ columns were taken directly from the NASA OMI NO$_2$ v3.0 Level 2 product. Figure 4a shows the ratio between the two products.

In the new product (OMI_CMAQ), there are large increases of the NO$_2$ VCDs in city centers. In the operational OMI_GMI product, over the 5-year period, the maximum tropospheric NO$_2$ column within Baltimore city limits is 3.9×10^{15} molecules per cm2. By contrast, in the OMI_CMAQ product, the maximum tropospheric NO$_2$ column within Baltimore city limits is 7.2×10^{15} molecules per cm2. These results indicate that by using a regional model, the tropospheric NO$_2$ VCDs in urban areas rise dramatically. This is due, in part, to the regional model being able to better capture NO$_2$ concentrations in the lower-most part of the troposphere (i.e., Figure 2). In suburban and rural locations, NO$_2$ tropospheric VCDs are roughly the same. For example, at the rural Pennsylvania (Arendtsville) location, the NO$_2$ tropospheric vertical column in the operational product is 2.8×10^{15} molecules per cm2 and 2.7×10^{15} molecules per cm2 in the new OMI_CMAQ product.
3.3.2 Improving modeled vertical profile information with in situ observations

While using CMAQ to calculate AMFs yields a marked improvement in simulating profile shape when compared to using GMI, this CMAQ simulation has a high bias in the calculation of total reactive nitrogen oxides (NO$_x$) (Goldberg et al., 2014; Anderson et al., 2014), which must be accounted for. Many literature sources, including others using different model set-ups (all are based on the NEI), also show a high bias in simulating summertime column NO$_x$ (Canty et al., 2015; Souri et al., 2016), NO$_x$ (Travis et al., 2016), and NO$_x$ (Goldberg et al., 2016).

In Figure 5, we show NO$_2$ observations acquired by the P3-B aircraft in the early afternoon between 300 m and 3 km during DISCOVER-AQ Maryland and matched CMAQ output. NO$_2$ mixing ratios simulated by CMAQ are consistently smaller throughout the mid- and upper-boundary layer and lower free troposphere (1 – 3 km) by up to a factor of three, but there is fairly good agreement below 1 km; similar results were found by Flynn et al. (2016).

Since the P3-B aircraft has limited measurements above 3 km, we have to use estimates from other literature sources to determine the validity of CMAQ in the free troposphere. Lamsal et al. (2017) used measurements from the Airborne Compact Atmospheric Mapper (ACAM) to deduce that GMI is better than CMAQ at simulating NO$_2$ in the free troposphere. In the upper free troposphere, above 10.5 km, Travis et al. (2016) note that NO$_2$ is significantly underestimated by global models, such as GMI. As shown in Figure 2, CMAQ simulates even lower NO$_2$ concentrations than GMI at these altitudes.

We apply a scaling factor inferred from in situ aircraft observations to account for the high model bias below 3 km, and low model bias above 3 km; this is a rudimentary form of data assimilation. Below 3 km, the model was scaled to observations from the P3-B by multiplying the original values at these altitudes by the fraction of NO$_2$ actually observed. For example, modeled NO$_2$ between 1000 – 1500 m was multiplied by 0.63 to account for the model high bias within this altitude bin. This procedure was repeated for all altitude bins in 500-m intervals from the surface up to 3 km. It should be noted that aircraft measurements from the DISCOVER-AQ Maryland campaign took place only within the Baltimore metropolitan region, and thus these scaling factors may not be fully applicable to upwind rural regions, and certainly cannot be applied to locations outside the eastern United States. Between the altitudes of 3 km – 10.5 km, we switched out the NO$_2$ mixing ratios from CMAQ for NO$_2$ mixing ratios from GMI. Between 10.5 km and the tropopause, we use GMI NO$_2$ mixing ratios multiplied by a factor of three; this scaling factor is based on summertime NO$_2$ observations during the SEAC4RS field campaign as described by Travis et al. (2016).

Using these scaled mixing ratios, we then re-calculate the AMFs and corresponding tropospheric NO$_2$ columns. Figure 3c shows observationally-constrained OMI_CMAQ (OMI_CMAQ_O) tropospheric NO$_2$ columns during the same 5-year summertime period. NO$_2$ tropospheric columns in this product are smaller in magnitude than OMI_CMAQ, and yet still noticeably larger in urban areas than the operational OMI_GMI retrieval (i.e., in Baltimore OMI_GMI: 3.9 x 1015, OMI_CMAQ: 7.2 x 1015, OMI_CMAQ_O: 5.0 x 1015). Retrievals in upwind rural areas in this new product are now lower than the operational product (i.e., in Arendtsville OMI_GMI: 2.8 x 1015, OMI_CMAQ: 2.7 x 1015, OMI_CMAQ_O: 1.7 x 1015).
3.3.3 Enhancing spatial resolution with spatial weighting kernels

Finally in a last step, we apply the method described by Kim et al. (2016) to downscale the OMI retrieval. This method applies a spatial-weighting kernel to portions of each pixel based on the estimated influence from each locality within the pixel. For example, if one side of a pixel overlaps a polluted region, while the other side of the pixel overlaps a cleaner area, the operational OMI product will denote that the entire area is moderately polluted. Instead, we weight portions of the individual pixel based on the variability simulated in CMAQ. Using this method, the quantity of the satellite data is numerically preserved. This yields a higher resolution snapshot of tropospheric column NO$_2$ that is still constrained by satellite data. Please reference Kim et al. (2016) for a visual representation of this method.

We call this product OMI_CMAQ observationally-constrained + downscaled (OMI_CMAQ_OD). Figure 3d shows OMI_CMAQ_OD tropospheric NO$_2$ columns. There is now large variability throughout the region, which is typical of a pollutant with a short lifetime (< 1 day) such as NO$_2$ in the summertime. NO$_2$ tropospheric columns in urban cores are now significantly larger than the operational product, (i.e., in Baltimore OMI_GMI: 3.9×10^{15}, OMI_CMAQ_OD: 10.2×10^{15}). The largest increases occur near power plants, cement kilns, and major highways. OMI_CMAQ_OD in upwind rural areas are 20 – 50 % lower than the operational product (i.e., in Arendtsville OMI_GMI: 2.8×10^{15}, OMI_CMAQ_OD: 1.6×10^{15}).

We must clarify, however, that these results are only applicable for our region of interest. While we find that rural areas within our mid-Atlantic model domain now have tropospheric NO$_2$ columns which are 20 – 50 % lower than the operational product, we cannot conclude that this would be the same elsewhere. The “rural” locations within our model domain are situated in a particularly precarious spot because they are close, but not too close to major urban areas. These sites are only “rural” in the sense that there are no major metropolitan areas within 200 km upwind of them. Because Arendtsville lies within 50 km of Harrisburg and 100 km of Baltimore, a GMI simulation with a resolution of $1.25^\circ \times 1^\circ$ (~110 × 110 km) will group this location into a grid cell also including Harrisburg and portions of Baltimore; both of which are not rural. Therefore a location that is 100’s of kilometers from the nearest city and with spatial homogeneity may be simulated with fidelity by GMI and therefore the operational OMI product may be an accurate representation of reality in these cases.

While this new product shows power plant plumes that are two to three times larger, we are not suggesting that emissions from power plants are larger than we thought. Instead we are suggesting that OMI can now “see” these individual plumes, where as in the operational product, these plumes are blended into an average across the entire OMI pixel. In rare cases, oversampling the operational product in and around very large rural point sources, can denote large power plant plumes (deFoy et al., 2015), but up until this point, smaller point sources or localized sources near major urban areas could not be seen by OMI.
3.4 Comparison of satellite products to in situ observations

To determine the accuracy of the new products, we compare the products to independent NO\textsubscript{2} observations. During DISCOVER-AQ Maryland, total column NO\textsubscript{2} was measured by a network of twelve Pandora instruments (Herman et al., 2009). We match daily valid Pandora NO\textsubscript{2} and valid satellite overpass information, and plot the information in Figure 6a. To calculate total OMI columns, we add the vertical stratospheric column information, a variable in the NASA OMI NO\textsubscript{2} Level 2 files, to the OMI tropospheric retrievals. While the operational product (OMI_GMI) shows some agreement at low values, it has poor agreement when observed NO\textsubscript{2} column amounts are greater than 10 × 1013 cm-2. This is due to coarse resolution of OMI pixels (24 × 13 km at nadir) and the AMFs computed with GMI a priori NO\textsubscript{2} profiles, among potential other factors. The slope of the OMI_GMI best-fit line is 0.45, representing a striking low bias at high values, and the $r^2 = 0.09$ denoting almost no correlation; similar results were found by Ialongo et al. (2016).

Table 1 shows the statistical comparison between the satellite products and observations. All OMI_CMAQ products yield slopes closer to one indicating that they are better at capturing the variability between low and high values observed by the ground monitors. The OMI_CMAQ_OD product eliminates the bias altogether. The slope of the OMI_CMAQ_OD best-fit is 1.02 and the r^2 increases. An improved but still low r^2-value in the newest product may indicate that a 1.33 km CMAQ simulation provides an improvement, but not an identical match, of daily NO\textsubscript{2} emissions and fine-scale winds responsible for plume dispersion. Furthermore, we cannot expect the satellite to match the exact spatial heterogeneity observed by the point measurements from Pandora.

The long-term EPA monitoring network provides surface observations outside the July 2011 timeframe. In Figure 6b, we compare mean NO\textsubscript{2} at each monitoring site to the two satellite products. All valid NO\textsubscript{2} data at each monitoring site over a 5-year (2008-2012) 2-month (June & July) period are averaged into a single point (up to 305 data entries) and is matched to an average of satellite data over the same time period. The correlation between OMI_GMI and surface observations is $r^2 = 0.39$, while the correlation between OMI_CMAQ_OD and surface observations is $r^2 = 0.60$, a substantial improvement. This suggests that a high resolution satellite product with improved AMFs, will be able to detect surface NO\textsubscript{2} concentrations with more accuracy. As shown in Table 1, OMI_CMAQ without observational constraints performs almost as good ($r^2 = 0.55$); this is especially encouraging since comprehensive field measurements, such as those from DISCOVER-AQ, are limited in spatial and temporal scope.

3.5 OMI_CMAQ vs. CMAQ

We can now more fairly assess the NO\textsubscript{2} columns simulated by CMAQ using a high resolution OMI NO\textsubscript{2} product. In Figure 7, we show a comparison between CMAQ and OMI_CMAQ_OD. Only model data within +/- 1 hour of and co-located with valid overpass data is shown in order to remove biases during cloudy days or days with invalid data. We see a consistent model low bias in rural areas, and consistent model high bias in urban areas. Interestingly the high bias is larger in the immediate Baltimore metropolitan area compared to the D.C. metropolitan region.
We attribute the model low bias in rural regions to several shortcomings of this model simulation. This simulation did not include NO\textsubscript{x} emissions from soils. Rasool et al. (2016) has shown soil NO\textsubscript{x} emissions to be particularly important in the central United States, with a lesser role in the eastern United States. Excluding these emissions may have resulted in less NO\textsubscript{x} being transported from upwind regions. This model simulation utilized CB05 gas-phase chemistry, which is known to underestimate the recycling of alkyl nitrates back to NO\textsubscript{2} (Hildebrandt-Ruiz and Yarwood, 2013; Canty et al., 2015). CB05e51 gas-phase chemistry, released in a newer version of CMAQ (https://www.airqualitymodeling.org/in-dex.php/CMAQ_v5.1_CB05_updates), better handles alkyl nitrates and employs faster recycling of short-lived alkyl nitrate species. Faster recycling of alkyl nitrates would yield higher NO\textsubscript{2} concentrations throughout the modeling domain. Travis et al. (2016) found that upper tropospheric NO\textsubscript{x} is too low when compared to observations from aircraft during SEAC4RS. This is possibly due to downward stratospheric transport, outflow from convection, or OH chemistry that is not characterized correctly by models. Lightning NO\textsubscript{x} is still a very active area of research (Pickering et al., 2016). Although this model simulation did include lightning NO\textsubscript{x} emissions, there is a possibility these emissions are underestimated.

We attribute the model high bias in urban regions to an overestimate of anthropogenic NO\textsubscript{x} emissions (Anderson et al., 2014; Souri et al., 2016). This may be due to an improper allocation of area and mobile (on-road and off-road) source emissions which are spatially distributed based on population and number of cars respectively, or quite simply an overestimate of these sector emissions. Quantifying the uncertainty in MOVES, the mobile emissions software, is an active area of research.

3.6 Comparison of model to satellite and in situ observations

To further evaluate the model, we compare the model simulation to DISCOVER-AQ and EPA observations. In Figure 8a, we show a Pandora NO\textsubscript{2} comparison in the same manner as Figure 6a. In addition to showing CMAQ, we also show OMI_CMAQ_OD. We add the stratospheric VCD information from the OMI NO\textsubscript{2} Level 2 product to the CMAQ tropospheric columns to ensure a fair comparison. Both the model and new OMI NO\textsubscript{2} product have a slope close to unity indicating that both are able to match the variability in NO\textsubscript{2} columns. There is, however, a consistent low offset. This may indicate that the stratospheric VCD in the NASA Level 2 retrieval may be too low during this two-month timeframe. The r2 of CMAQ is higher than OMI_CMAQ_OD. This is not particularly surprising because the resolution of the satellite is coarse, despite it being processed with new air mass factors.

In Figure 8b, we show a comparison between CMAQ, OMI_CMAQ_OD and ground monitors. The r2 between CMAQ and ground monitors to be 0.70, while the correlation with the new satellite product is 0.73. The OMI_CMAQ_OD product has a better correlation with ground NO\textsubscript{2} monitors than the 1.33 km CMAQ simulation alone indicating that there is added utility in the satellite data.
4 Summary and conclusions

This study demonstrates the critical importance of using high resolution a priori NO$_2$ shape factors to develop AMFs in and around metropolitan areas. We develop three new OMI NO$_2$ products: using high spatial resolution NO$_2$ profiles from a 1.33 km CMAQ model simulation (OMI_CMAQ), using CMAQ profiles constrained by in-situ observations (OMI_CMAQ_O), and applying model-derived spatial information (downscaling) to OMI_CMAQ_O (OMI_CMAQ_OD). When using high spatial resolution models to develop the AMF, the mean AMF in urban areas decreases by up to 50% causing the tropospheric VCDs in urban areas to increase by up to a factor of two. This is because high resolution models simulate larger concentrations near the surface in urban areas. In essence, we are reprocessing the satellite to look for NO$_2$ closer to the surface than in the original product. We believe this finding extends to other urban areas since coarse global models will consistently merge rural and urban pollution, and subsequently overestimate the AMF in city centers.

Another novel step in our re-processing technique is using in situ observations to enhance modeled NO$_2$ profile shapes. CMAQ NO$_2$ values in the Baltimore-Washington metropolitan region are generally too large within the boundary layer, too small in the mid-troposphere, and a factor of three too small in the uppermost troposphere. This may not be fully applicable to rural regions, since the DISCOVER-AQ field campaign was only focused in the urban corridor. As a result, our adjusted satellite product in rural regions must be taken with some uncertainty. With that said, constraining model simulations to observations yields an improved satellite product over the non-constrained product when comparing to Pandora NO$_2$. Furthermore, by constraining to observations, we reduce the dependence on a priori emission inventories (e.g., NEI) used in model simulations, which can have deficiencies (Anderson et al., 2014; Souri et al., 2016; Travis et al., 2016). For example, in the constraint-based product, VCDs in Baltimore are 30% lower than the OMI_CMAQ product. The tropospheric VCDs in rural Mid-Atlantic areas are 20–50% lower than both the OMI_CMAQ and operational products.

Lastly, we apply a technique developed by Kim et al. (2016) to downscale OMI NO$_2$ data. This technique is especially valuable for pollutant exposure health studies, which require high resolution long-term pollutant estimates. The downscaling procedure provides a higher spatial resolution snapshot of NO$_2$, while not altering the observed satellite pixel values. Instead this technique re-allocates values across the pixel based on the variability within the high resolution model. As a result, the new satellite product (OMI_CMAQ_OD) shows higher values in urban, polluted areas and lower values in rural, unpolluted areas than the operational OMI_GMI product. This new product better captures the urban-scale variability of NO$_2$ and has a much better correlation with ground monitors.

A deficiency with this technique is that if a localized source, such as a power plant plume or wildfire, is not simulated at all by the model, then this error will be passed on to the product. Therefore, we do not recommend using the downscaling technique in areas where the emission inventory is very uncertain.

The refined OMI_CMAQ_OD product provides a better NO$_2$ column measurement when compared to Pandora column NO$_2$; the slope is near unity and the r^2 increases over the operational OMI NO$_2$ product. An important finding of this work is that using a high resolution model, not the constraining to observations, provides the majority
of the improvement, when comparing to ground monitors. This suggests that a high resolution model with reasonable fidelity can be used anywhere in the world, and is not tied into an area in which a field experiment is located.

This technique can be used as a bridge until newer instruments such as TROPOMI are instituted. Future instruments will have increased spatial resolution, but comparison to OMI without using this technique may yield large differences around urban areas. At the same time, we demonstrate the importance of using a high resolution model simulation for retrievals from future satellite missions. A combination of both increased satellite resolution and model resolution are needed in order to improve NO₂ satellite retrievals. We urge other community members to generate high resolution OMI NO₂ data using this technique if it is to be used for small-scale (< 100 km length scale) studies as it provides a better alternative for urban areas than standard satellite products.

Acknowledgments

This work was supported by the EPA SEARCH (Solutions for Energy, Air, Climate, and Health) Air, Climate, and Energy (ACE) Center based at Yale University and led by Michelle Bell and co-led by Benjamin Hobbs of Johns Hopkins University. We would like to thank Ron Cohen and his research group for their observations NO₂ from the P3-B aircraft during DISCOVER-AQ Maryland. We would also like to thank Jay Herman and his research group for their Pandora NO₂ measurements during this same time period. All data from DISCOVER-AQ Maryland can be downloaded freely from http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-2011. EPA NO₂* data was downloaded from the AQS Data Mart, and can be freely retrieved from: https://aqs.epa.gov/aqsweb/documents/data_mart_wel-come.html. We would also like to thank Chinmay Satam for preparation of the emissions in the CMAQ model simulation. We acknowledge the free use of NO₂ column data from the OMI sensor available at: https://disc.gsfc.nasa.gov/Aura/data-holdings/OMI/omno2_v003.shtml. Argonne National Laboratory is operated by UChicago Argonne, LLC, under contract no. DE-AC2-06CH11357 with the U.S. Department of Energy. This publication was developed under Assistance Agreement No. RD835871 awarded by the U.S. Environmental Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication.
References

Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO), Microbiological reviews, 60, 609-640, 1996.

Figure 1. The Mid-Atlantic United States: the area of interest for this research project. Model domain and observation locations are depicted. There are eighteen EPA chemiluminescence monitors and twelve Pandora NO₂ measurement sites.
Figure 2. (a, d, g) Mean 2 PM local time June and July 2011 NO\textsubscript{2} mixing ratio as a function of altitude from a GMI (1.25° × 1°; ~110 × 110 km) model simulation and CMAQ (1.33 × 1.33 km) model simulation for three locations: (a) downtown Baltimore, (d) Morgantown power plant in Newburg, MD and (g) Arendtsville in rural Pennsylvania. Black triangles with error bars as discussed in the text represent co-located surface observations from the EPA monitoring network. (b, e, h) NO\textsubscript{2} shape profiles, partial NO\textsubscript{2} columns divided by total NO\textsubscript{2} column, as function of altitude for the same timeframe and locations; green line denotes co-located OMI scattering weight. (c, f, i) “Adjusted” shape profiles, partial NO\textsubscript{2} columns divided by total NO\textsubscript{2} columns multiplied by OMI scattering weight, as function of altitude for the same timeframe and locations.
Figure 3. Oversampled OMI NO$_2$ tropospheric columns at 1.33 km resolution in the Baltimore-Washington metropolitan area for June & July 2008 - 2012 (2 months x 5 years; 10 months total). (a) The NASA version 3.0 operational OMI NO$_2$ product using GMI NO$_2$ shape profiles (OMI_GMI). (b) OMI NO$_2$ using CMAQ a priori NO$_2$ shape profiles (OMI_CMAQ). (c) OMI NO$_2$ using CMAQ a priori NO$_2$ shape profiles constrained by observations (OMI_CMAQ_O). (d) OMI NO$_2$ using CMAQ a priori NO$_2$ shape profiles constrained by observations and spatial weighting downscaling kernels (OMI_CMAQ_OD). In all plots, Arendtsville, PA is denoted by the triangle.
Figure 4. Ratio between the three OMI_CMAQ tropospheric NO$_2$ retrievals and the operational NASA v3.0 OMI tropospheric NO$_2$ retrieval for June & July 2008 – 2012 (2 months × 5 years; 10 months total). (a) OMI_CMAQ / OMI_GMI. (b) OMI_CMAQ_O/ OMI_GMI. (c) OMI_CMAQ_OD/ OMI_GMI.

Figure 5. Vertical profiles of NO$_2$ binned in 500 m intervals (0 – 0.5 km, 0.5 – 1km, etc.) showing the 5th, 25th, 50th, 75th, and 95th percentiles within ± 2 hours of the OMI overpass time. (Black) One minute averaged data from the P3-B aircraft during DISCOVER-AQ Maryland. (Red) Model output from CMAQ matched spatially and temporally to the P3-B measurements at 1 min intervals. In both cases, the squares indicate the median values.
Figure 6. OMI NO$_2$ column amounts vs. in situ observations. (a) Total column NO$_2$ OMI_GMI and OMI_CMAQ_OD versus co-located spatially and temporally Pandora NO$_2$ total column measurements within ± 1 hour of a valid satellite overpass during July 2011. (b) Tropospheric column NO$_2$ OMI_GMI and OMI_CMAQ_OD versus co-located ground NO$_2$* chemiluminescence measurements within ± 2 hours of a valid satellite overpass during June & July 2008 through 2012; all ~300 daily ground monitor values are merged into a mean single value and compared to the satellite mean over the same corresponding time period.

Figure 7. Oversampled tropospheric column NO$_2$ at 1.33 km in the Baltimore-Washington metropolitan area for June & July 2011 only. (a) OMI_CMAQ_OD. (b) CMAQ NO$_2$ corresponding to valid overpass times. (c) Ratio between the two plots CMAQ / OMI_CMAQ_OD.
Figure 8. (a,b) Same as Figure 6(a,b), but now showing CMAQ instead of OMI_GMI. (b) Showing June & July 2011 only due to model availability during this timeframe.

Table 1. Slope and r^2 for all four OMI satellite products compared to Pandora NO$_2$ from July 2011 and EPA ground monitor NO$_2^*$ observations from June & July 2008 – 2012. Pandora NO$_2$ is compared to the OMI NO$_2$ total column products, while the EPA ground monitors are compared to OMI NO$_2$ tropospheric column products. Figure 6 shows values for OMI_GMI and OMI_CMAQ_OD only.

<table>
<thead>
<tr>
<th>Product</th>
<th>Pandora NO$_2$</th>
<th>EPA NO$_2^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope</td>
<td>r^2</td>
</tr>
<tr>
<td>OMI_GMI</td>
<td>0.45</td>
<td>0.09</td>
</tr>
<tr>
<td>OMI_CMAQ</td>
<td>1.27</td>
<td>0.11</td>
</tr>
<tr>
<td>OMI_CMAQ_O</td>
<td>0.67</td>
<td>0.16</td>
</tr>
<tr>
<td>OMI_CMAQ_OD</td>
<td>1.02</td>
<td>0.32</td>
</tr>
</tbody>
</table>