Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
15 Mar 2017
Review status
This discussion paper is a preprint. A revision of this manuscript was accepted for the journal Atmospheric Chemistry and Physics (ACP) and is expected to appear here in due course.
Illustration of microphysical processes in Amazonian deep convective clouds in the Gamma phase space: Introduction and potential applications
Micael A. Cecchini1, Luiz A. T. Machado1, Manfred Wendisch2, Anja Costa3, Martina Krämer3, Meinrat O. Andreae4,5, Armin Afchine3, Rachel I. Albrecht6, Paulo Artaxo7, Stepahn Borrmann4,8, Daniel Fütterer9, Thomas Klimach4, Christoph Mahnke4,8, Scot T. Martin10, Andreas Minikin11, Sergej Molleker8, Lianet H. Pardo1, Christopher Pöhlker4, Mira L. Pöhlker4, Ulrich Pöschl4, Daniel Rosenfeld12, and Bernadett Weinzierl9,13,14 1Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Brasil
2Leipziger Institut für Meteorologie (LIM), Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
3Forschungszentrum Jülich, Institut für Energie und Klimaforschung (IEK-7), Jülich, Germany
4Biogeochemistry, Multiphase Chemistry, and Particle Chemistry Departments, Max Planck Institute for Chemistry, P.O. Box 3060, 55020, Mainz, Germany
5Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
6Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG), Universidade de São Paulo (USP), Brasil
7Instituto de Física (IF), Universidade de São Paulo (USP), São Paulo, Brasil
8Institut für Physik der Atmosphäre (IPA), Johannes Gutenberg-Universität, Mainz, Germany
9Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82234 Wessling, Germany
10School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
11Flugexperimente, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
12Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel
13Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
14Ludwig-Maximilians-Universität, Meteorologisches Institut, München, Germany
Abstract. The behavior of tropical clouds remains a major open scientific question, given that the associated phys-ics is not well represented by models. One challenge is to realistically reproduce cloud droplet size dis-tributions (DSD) and their evolution over time and space. Many applications, not limited to models, use the Gamma function to represent DSDs. However, there is almost no study dedicated to understanding the phase space of this function, which is given by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and inter-comparisons. Here, we introduce the phase-space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, where the relative dispersion parameter of the DSD can play a significant role. Overall, the Gamma phase-space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on Gamma DSDs.

Citation: Cecchini, M. A., Machado, L. A. T., Wendisch, M., Costa, A., Krämer, M., Andreae, M. O., Afchine, A., Albrecht, R. I., Artaxo, P., Borrmann, S., Fütterer, D., Klimach, T., Mahnke, C., Martin, S. T., Minikin, A., Molleker, S., Pardo, L. H., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., and Weinzierl, B.: Illustration of microphysical processes in Amazonian deep convective clouds in the Gamma phase space: Introduction and potential applications, Atmos. Chem. Phys. Discuss.,, in review, 2017.
Micael A. Cecchini et al.
Micael A. Cecchini et al.


Total article views: 915 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
639 222 54 915 22 62

Views and downloads (calculated since 15 Mar 2017)

Cumulative views and downloads (calculated since 15 Mar 2017)

Viewed (geographical distribution)

Total article views: 915 (including HTML, PDF, and XML)

Thereof 913 with geography defined and 2 with unknown origin.

Country # Views %
  • 1



Latest update: 19 Nov 2017
Publications Copernicus
Short summary
This study introduces and explores the concept of Gamma phase space. This space is able to represent all possible variations of the cloud droplet size distributions. The methodology was applied to recent in-situ aircraft measurements over the Amazon. It is shown that the phase space is able to represent several processes occurring in the clouds in a simple manner. The consequences for cloud studies, modeling, and the representation of the transition from warm to mixed phase are discussed.
This study introduces and explores the concept of Gamma phase space. This space is able to...