Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain

Zhaoyang Meng¹, Xiaobin Xu¹, Weili Lin², Yulin Xie³⁴, Bo Song³, Shihui Jia¹⁵, Rui Zhang⁶⁷, Wei Peng¹, Ying Wang¹, Hongbin Cheng¹, Wen Yang⁵, Huarong Zhao¹

¹ State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
² CMA Meteorological Observation Centre, Beijing 100081, China
³ University of Science and Technology Beijing, Beijing 100083, China
⁴ Baotou Steel Group Mining Research Institute, Baotou 014010, China
⁵ South China University of Technology, Guangzhou 510641, China
⁶ Chinese Research Academy of Environmental Sciences, Beijing 100012, China
⁷ Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China

Correspondence to: Zhaoyang Meng (mengzy@camscma.cn)

Abstract. The real-time measurements of NH₃ and trace gases were conducted, in conjunction with semi-continuous measurements of water-soluble ions in PM₂.₅ at a rural site in the North China Plain (NCP) from May to September 2013 in order to better understand of chemical characteristics for ammonia, and of the impact on formation of secondary ammonium aerosols in the NCP. Extremely high NH₃ and NH₄⁺ concentrations were observed after a precipitation event within 7-10 days following urea application. Elevated NH₃ levels coincided with elevated NH₄⁺, suggesting that NH₃ plays a vital role in enhancing particulate ammonium. For the sampling period, the average oxidation/conversion ratios for SO₄²⁻ (SOR), NO₃⁻ (NOR) and NH₄⁺ (NHR) were estimated to be 64%, 24% and 30%, respectively. The increased NH₃ concentrations mainly from agricultural activities, coincided with the prevailing meteorological conditions could promote the secondary transformation, resulting in higher hourly SOR, NOR and NHR. The concentrations of NH₃, NH₄⁺, and NHR had clear diurnal variations, which could be attributed to their sources, meteorological conditions, and formation mechanisms. The back trajectory analysis indicates that the transport of air masses from the North China Plain region contributed to the atmospheric NH₃ variations, and both regional sources and long-distance transport from southeast played important roles in the observed ammonium aerosol at rural site in the NCP. The findings of this study are expected to facilitate developing future NH₃ emission control policies for the North China Plain.
Keywords: Ambient ammonia; ammonium in PM\(_{2.5}\); the conversion ratio of NH\(_4^+\); agricultural activity; North China Plain.

1 Introduction

Ammonia (NH\(_3\)) is a very important alkaline constituent in the atmosphere, plays an important role in atmospheric chemistry and is closely related to ecosystems. NH\(_3\) has both direct and indirect impacts on critical environmental issues, including regional fine particles, acid rain, and eutrophication (Roelle and Aneja, 2002; Krupa, 2003; Reche et al., 2012). In addition, NH\(_3\) is a key species for neutralising H\(_2\)SO\(_4\) and HNO\(_3\) in the atmosphere and forming (NH\(_4\))\(_2\)SO\(_4\), NH\(_4\)HSO\(_4\), and NH\(_4\)NO\(_3\) (Erisman and Schaap, 2004; Walker et al., 2004), which are major components of fine particulate matters and contribute to regional haze (Ye et al., 2011; Meng et al., 2014; Wei et al., 2015). Global ammonia emission has more than doubled since pre-industrial times, mainly because of agricultural intensification (Galloway et al., 2015). The total ammonia emission in China in 2006 was estimated to be 16.07 million tons (Mt)(Dong et al., 2015). Such high emission makes NH\(_3\) one of the key species related to atmospheric environmental problems. Many studies have indicated that ammonia is a crucial precursor in the formation of fine particles (Cao et al., 2009; Wu et al., 2009; Meng et al., 2011; Shen et al., 2011; Park et al., 2014; Wang et al., 2015).

As global food production requirements increase, agriculture plays an increasingly important role in local, regional, and global air quality (Walker et al., 2006). The North China Plain (NCP) is a highly populated region with intensive agricultural production as well as heavy industry. The region has been affected by severe haze and photochemical pollution in recent years (Guo et al., 2010; Wang et al., 2010; Luo et al., 2013). Covering only 3.3% of the national area, the NCP region provides 40% and 25% of China’s wheat and corn production. To sustain such high agricultural productivity, chemical fertilisers have been intensively applied. Less than 30% efficiency in N application causes approximately 40% N loss through various routes including the leaching of NO\(_3^-\) and emission of NH\(_3\), N\(_2\)O, and N\(_2\)(Zhang et al., 2010). So far, only a few limited studies have paid attentions to impacts of NH\(_3\) on air pollution in the NCP region. According to some studies (Dong et al., 2010; Ianniello et al., 2010 Meng et al., 2011; Shen et al., 2011; Meng et al., 2015), the high NH\(_3\) emission intensities observed in the NCP have been caused by high fertiliser application rates and numerous intensive
livestock farms. However there were few simultaneous high time resolution measurements of NH₃ and NH₄⁺ in PM₂.₅, and investigating the role in fine particulate formation in China. These studies are necessary to improve our understanding of ammonia pollution on regional air quality, and of the impact on formation of secondary ammonium aerosols in the NCP.

During May–September 2013, the intensive field measurements of NH₃ and other trace gases, water-soluble ions in PM₂.₅, and meteorological parameters took place at a rural site in the NCP. In this article, we report the results on NH₃, trace gases and major water-soluble ions in PM₂.₅. We discuss temporal variations and diurnal patterns of NH₃ and NH₄⁺, and examine their sources and chemical conversion mechanism.

2 Description of Experiment

2.1 Measurement site

The measurements were performed from May to September 2013 at Gucheng (39°08′N, 115°40′E, 15.2 m a.s.l.), a rural site in the NCP, which is an Integrated Ecological Meteorological Observation and Experiment Station of the Chinese Academy of Meteorological Sciences. In Fig. 1, the location of the site is shown on the NCP map with the NH₃ emission distribution for the year 2012 from the multi-resolution emission inventory of China (http://meicmodel.org/index.html). The measurement site chosen is situated for monitoring regional background concentrations of air pollutants in the North China Plain, has good regional representativeness (Lin et al., 2009). The site is approximately 110 km southwest of Beijing, 130 km west of Tianjin, and 160 km northeast of Shijiazhuang City in Hebei Province. The site is surrounded by farms, dense villages, and transportation networks. The main crops in the area surrounding the site are wheat (winter and spring) and corn (summer and fall). The site is influenced by high NH₃ emissions from fertiliser use and animal husbandry in the surrounding area. Being in the warm temperate zone, the site has a typical temperate continental monsoon climate. Precipitation occurs mainly between May to August.

2.2 Sampling and analysis

Ambient NH₃ was measured using an ammonia analyser (DLT-100, Los Gatos Research, USA), which utilize a unique laser absorption technology called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). The analyzer has a precision of 0.2 ppb at 100 sec average and a maximum drift of 0.2 ppb over 24 hrs. During the campaign, NH₃ data were recorded as 50-s average. A set of commercial instruments from Thermo Environmental Instruments, Inc. was used to measure O₃ (TE 49C),
NO/NO₂/NOₓ (TE 42CTL), CO (TE 48C), and SO₂ (TE 43CTL). All instruments were housed in an air-conditioned room in the observation building at the Gucheng site. Two parallel inlet tubes (Teflon, 4.8 mm ID×8 m length) were shared by the analyzers. The height of the inlets was 1.8 m above the roof of the building and about 8 m above the ground. The inlet residence time was estimated to be less than 5 s.

In principle, the NH₃ analyzer does not need external calibration, because the measured fractional absorption of light at an ammonia resonant wavelength is an absolute measurement of the ammonia density in the cell (Manual of Economical Ammonia Analyzer - Benchtop Model 908-0016, Los Gatos Research). However, we calibrated the NH₃ analyzer using a reference gas mixture NH₃/N₂ (Scottgas, USA) to avoid potential drifts caused by fine particles that may not be completely removed from the sample gas. During calibration, a sequence with 5 points of different NH₃ concentrations (including zero) were repeated overnight. Because of its absorbability, the duration time of each point was set to 3 hr for a fully stabilization. Zero and span checks of other trace gases were performed weekly to identify possible analyzer malfunctions and zero drifts. Multipoint calibrations of SO₂, NOₓ, CO and O₃ analysers were performed on the instruments at approximately 1-month intervals. After the correction of data on the basis of the multipoint calibrations, hourly average data were calculated and used for the analysis.

An Ambient Ion Monitor (AIM) (URG 9000D Series, USA) was deployed at the site to measure hourly concentrations of water-soluble inorganic components in PM₂.₅ during 15 June–11 August, 2013. The detection limit of the AIM is 0.1 μg m⁻³ for various ionic components. For the AIM, multipoint calibrations were performed weekly by using calibration standard solutions. Acceptable linearity of ions was obtained with an R² of ≥0.999. The flow rate of the AIM was maintained at 3 L min⁻¹ and checked weekly at the sample inlet. Hourly data were obtained for the concentrations of water-soluble inorganic ions.

Meteorological data, including wind, temperature, and RH, were also obtained from the site, with a resolution of 1 hour.

2.3 Data analysis

2.3.1 Chemical conversions of species

Sulfate and nitrate oxidation ratios (SOR and NOR) are defined as the molar ratio of SO₄²⁻ and NO₃⁻ in PM₂.₅ to the total oxidized S and N, respectively (Zhang et al., 2011).
\[
\text{SOR} = \frac{SO_4^{2-}}{SO_4^{2-} + SO_2} \quad (1)
\]

\[
\text{NOR} = \frac{NO_3^-}{NO_3^- + NO_x} \quad (2)
\]

Similarly, the conversion ratio of ammonium (NHR) is expressed in terms of the ratio of ammonium to total ammonia (NH\textsubscript{3}), which could be a measure of the extent of transformation from NH\textsubscript{3} to NH\textsubscript{4}+ in areas with major local NH\textsubscript{3} sources (Hu et al., 2014).

\[
\text{NHR} = \frac{NH_4^+}{NH_4^+ + NH_3} \quad (3)
\]

2.3.2 Trajectory calculation

The 72-h backward trajectories were calculated using the HYSPLIT 4.9 model (http://www.arl.noaa.gov/ready/hysplit4.html). The trajectories terminated on a height of 100 m above the ground. The trajectory calculations were done for four times (00:00, 06:00, 12:00, and 18:00 UTC) per day in summer 2013. The various back trajectories were grouped into five clusters. The number of clusters is identified according to the changes of total spatial variance (TSV). Five is chosen as the final number of clusters considering optimum separation of trajectories (larger number of clusters) and simplicity of display (lower number of cluster). The corresponding concentrations of trace gases and water soluble ions were averaged over the period of 3 h ahead and after the arrival time for each backward trajectory for further analysis.

3 Results and discussion

3.1 Overview of concentration levels of measured species

During 15 May–25 September 2013, the average concentrations of NH\textsubscript{3}, SO\textsubscript{2} and NO\textsubscript{x} were 36.2±56.4, 5.0±6.5 and 15.4±9.3 ppb, respectively. As listed in Table 1, the concentration of NH\textsubscript{3} at the NCP rural site was lower than those reported in Asian and Africa urban sites such as Lahore (Pakistan) (Biswas et al., 2009), Colonelganj (India) (Behera et al., 2010) and Cairo (Egypt) (Hassan et al., 2013), but higher than those from other areas in China, Europe and North America (Plessow et al., 2005; Yao et al., 2006; Lin et al., 2006; Walker et al., 2006; Hu et al., 2008; Meng et al., 2011; Shen et al., 2011; Schaap et al., 2011; Makkonen et al., 2012; Behera et al., 2013; Gong et al., 2013; Meng et al., 2014; Li et al., 2014). For example, the NH\textsubscript{3} at the NCP rural site was higher than those found at Shangdianzi regional background station in the NCP (Meng et al., 2011), Lin’an regional background station in the Yangtze...
River Delta (YRD) in Eastern China (Meng et al., 2014) and the rural site in Beijing (Shen et al., 2011). The relatively high concentrations of NH$_3$ observed in this study were attributed to agricultural activities involving fertiliser use, vegetation, and livestock, as well as human activity in the surrounding region.

According to an inventory study (Zheng et al., 2010), the total agricultural NH$_3$–N emission in 2004 in the NCP was 3071 kt yr$^{-1}$, accounting for 27% of the total emissions in China with the 1620 kt yr$^{-1}$ of NH$_3$–N emissions caused by fertiliser applications, which is the largest emission source accounting for more than half of the total agricultural emissions. Our results are expected to be used in improving NH$_3$ emission inventory and making future emission control policies.

The observed concentration of SO$_2$ at the NCP rural site was markedly lower than those reported for the same period in 2006–2007 (Lin et al., 2009). Because of a series of emission reduction measures implemented in recent years, SO$_2$ levels have decreased markedly in the NCP (Lin et al., 2011). The average concentration of NO$_x$ was higher than those at Shangdianzi (Meng et al., 2011) and Lin’an (Meng et al., 2014) regional background stations in the NCP and YRD region of China, which might be due to emission form agricultural activities and motor vehicle sources (Liu et al., 2013; Lei and Wuebbles, 2013) in the NCP, but was lower than those at urban sites in India (Behera et al., 2010) and Egypt (Hassan et al., 2013).

The average concentrations of NH$_4^+$, SO$_4^{2-}$, and NO$_3^-$ in PM$_{2.5}$ were 19.8 ± 33.2, 20.5 ± 13.6 and 11.3 ± 9.1 µg m$^{-3}$, respectively, at the NCP rural site during 15 June–11 August 2013. The average concentration of NH$_4^+$ in PM$_{2.5}$ was higher than those observed at the rural or urban sites in the NCP (Meng et al., 2011), YRD (Meng et al., 2014), Beijing (Shen et al., 2011), Guangzhou (Hu et al., 2008), and Hong Kong (Yao et al., 2006) in China, and comparable to that at urban site in India (Behera et al., 2010). The average concentration of SO$_4^{2-}$ in PM$_{2.5}$ was higher than those at rural sites in the NCP (Meng et al., 2011) and YRD (Meng et al., 2014) in China, but was lower than that observed at rural sites in Guangzhou (Hu et al., 2008) in China, as well as urban sites in India (Behera et al., 2010) and Egypt (Hassan et al., 2013). The average concentration of NO$_3^-$ in PM$_{2.5}$ was higher than those observed at the rural sites in the YRD and Guangzhou (Hu et al., 2008) in China, and lower than those at urban sites in India (Behera et al., 2010) and Pakistan (Biswa et al., 2008). The elevated NH$_3$ and NH$_4^+$ in PM$_{2.5}$ concentrations at the NCP rural site demonstrate severe ammonia and fine particulate ammonium pollution in this area.
3.2 Ambient ammonia

3.2.1 Temporal variation of NH$_3$

The time series of hourly averages of NH$_3$ and other trace gases together with meteorological parameters during 15 May–25 September 2013 are shown in Fig. 2. NH$_3$ concentrations varied considerably during the observation period, ranging from 0.12 to 862.9 ppb. The NH$_3$ concentration increased rapidly on the seventh day after the urea application on 20 July, peaking during the 27–30 July period. The highest hourly value of NH$_3$ (862.9 ppb) was observed at 04:00 local time on 29 July 2013, with the second highest concentration observed at 06:00 on the same day. The extremely high NH$_3$ concentrations were probably caused by intensified soil emissions after rainfall on 26 July, which enhanced the soil moisture. Precipitation and the resulting soil water dynamics are known to strongly affect urea hydrolysis and subsequent NH$_3$ emissions (Reynold and Wolf, 1987; Aranibar et al., 2004). The general increase in NH$_3$ emissions was observed when soils with high moisture content began to dry because of increased diffusion (Burch et al., 1989). In addition, high temperatures promote NH$_3$ volatilisation from urea and ammonium dibasic phosphate applied to crops.

The monthly concentration of NH$_3$ depends on its source and meteorological conditions. The monthly average values of NH$_3$ were 28.4, 73.9, 26.4, and 13.5 ppb in June, July, August, and September 2013, respectively. In summer, high temperature promotes the emission of NH$_3$ from natural and fertilised soils, as well as vegetation. The concentration of NH$_3$ in July was approximately five times higher than that in September, which was influenced by higher temperature and increased emission rates of local agricultural NH$_3$ sources in July.

SO$_2$ and NO$_x$ are the main precursors of sulfate and nitrate aerosols, and O$_3$ play an important role in atmospheric chemistry because they act as sources of OH radicals through photolysis. The maximum hourly average concentrations of SO$_2$ and NO$_x$ were 86.8 ppb at 00:00 on 21 May and 67.7 ppb at 10:00 on 17 September, respectively. O$_3$ monthly levels were high in June (44.3 ppb) and July (43.7 ppb), with a maximum hourly average value of 149.9 ppb at 15:00 on 25 July 2013.

In contrast to NH$_3$, the highest monthly levels of SO$_2$ (7.0 ppb) and CO (885 ppb) were observed in June, which could be due to the open burning of agricultural waste (straw, cornstalk, and other crops) after harvest in the surrounding area. Previous studies have shown that the burning of crop residues is a crucial source of trace gases in the NCP during summer (Meng et al., 2009; Lin et al., 2011). The obvious impact of biomass burning was observed during 16–19 June 2013 period. As CO is mainly...
emitted from anthropogenic sources such as the burning of biomass, the elevated CO concentrations (2529 ppb at 22:00 on 16 and 2488 ppb at 22:00 on 17 June) were observed. During this pollution episode, the average concentrations of NH$_3$, SO$_2$, NO$_x$, O$_3$ and CO were 42.6, 7.69, 18.8, 44.0 and 1092 ppb, respectively, which were about 1.2-1.5 times than the average values for the whole study period.

The monthly concentrations of SO$_2$, NO$_x$, and CO in July and August decreased because of rapid photochemical reduction, additional removal by rainfall, and excellent vertical mixing. For the secondary pollutant O$_3$, the highest monthly value was observed in June 2013, which was subject to strong influences from photochemical production, intense burning of biomass, and transport of regional pollution.

3.2.2 Diurnal variations of NH$_3$

The average diurnal variations of NH$_3$ during June to September 2013 are shown in Fig. 3. As indicated in Fig. 3a, NH$_3$ concentration maxima and minima were observed during 08:00–13:00 and 19:00–23:00, respectively. As for July, NH$_3$ concentrations showed a considerably more pronounced diurnal pattern with a maximum of 59.5 ppb at 08:00. The concentration of NH$_3$ gradually increased during 00:00–03:00, remained relatively constant during 04:00–06:00, and then rapidly increased from 06:00 (beginning just after sunrise). After peaking at approximately 08:00, a decrease was observed until it reached the minimum of 29.8 ppb at 19:00.

The morning peak could be resulted from emissions from fertilised soils and plant stomata, evaporation of dew, and human sources, as well as mixing down of ammonia from the residual layer (Bash et al., 2010; Ellis et al., 2011). Figure 4b reveals that the relative humidity (90%-89%) and temperature (21.5-22.1°C) remained relatively constant before 06:00, but increased later in the morning. The increasing temperature can heat the earth’s surface sufficiently to promote emissions from evaporation of morning dew and the soil and plant stomata, which may increase NH$_3$ concentrations in the morning. When the emission was occurring into a shallow nocturnal boundary layer, NH$_3$ increase would be more prominent (Bash et al. 2010). In addition, the morning rise may also be due to the break up of the nocturnal boundary layer. When the vertical mixing begins, the downward mixing of the residual layer containing relatively higher NH$_3$ concentrations could lead to an increase of NH$_3$ in surface (Ellis et al., 2011).

NH$_3$ concentrations began to decrease in the afternoon as the daytime mixed layer further developed with the high wind speed. The decreasing of NH$_3$ level from midnight to early morning might be
related to the relatively small amount of night time emissions under low temperature and the enhanced participation of NH$_3$ in particulate formation. Another simultaneous flux measurements and modeling studies are necessary for more robust explanation to the observed diurnal variations of NH$_3$.

From Fig. 3a, it can be seen that the higher the NH$_3$ maximum is, the earlier it appears such as in July. One reason for this might be the increased emissions of local agricultural NH$_3$ sources in July compared with those in June, August, and September; the resulting NH$_3$ peak in July occurred earlier than it did in the other months, particularly in September. Another possible cause for the earlier peak in August than in June involves meteorological factors such as the higher temperature, RH, and the lower wind speed in August. For instance, the air temperature increased from 07:00 reaching maximum value (30.9°C) at 15:00 in August, which was about of 3.3°C higher than that in June, meanwhile the highest wind speed (2.73 m s$^{-1}$) at 13:00 in June was about of 1.0 m s$^{-1}$ higher than that in August.

Ambient NH$_3$ concentrations in an area of intensive crop production correlate positively with the air temperature. The maximum monthly value of NH$_3$ concentrations was consistent with the highest ambient temperature in July 2013. Predictably, the highest average diurnal amplitude of NH$_3$ (30.4 ppb) was observed in July, with the lowest average diurnal amplitude of NH$_3$ (8.4 ppb) observed in September 2013.

3.3 Ambient ammonium aerosol

Secondary inorganic aerosols form from gas-phase precursors, which are mostly from anthropogenic activities such as industrial, agricultural, and motor vehicle emissions. Therefore, the major precursors (NH$_3$, SO$_2$ and NO$_x$) are responsible for the formation of particulate ammonium, sulphate, and nitrate.

The hourly NH$_4^+$ concentrations during 15 June–11 August 2013 ranged from 1.07 to 340.6 μg m$^{-3}$, with an average concentration of 19.8 ± 33.2 μg m$^{-3}$. Similar to NH$_3$, the concentration of NH$_4^+$ also increased sharply after urea fertilisation, with the highest value (360.6 μg m$^{-3}$) observed at 09:00 on 28 July 2013. The highest monthly level of NH$_4^+$ appeared in July and lowest level appeared in June 2013.

The highest hourly SO$_2^{2-}$ concentration (116.9 μg m$^{-3}$) was observed at 10:00 on 9 July and the second highest value was 111.4 μg m$^{-3}$ at 18:00 on 6 August, 2013. Despite the lower concentrations of SO$_2$, higher SO$_2^{2-}$ concentrations in summer were attributed to the higher temperature, O$_3$ concentration and solar radiation, which increase the photochemical activities, the atmospheric oxidation and markedly faster conversion of SO$_2$ to SO$_2^{2-}$. The average concentration of NO$_3^-$ in PM$_{2.5}$ was 11.3 ± 9.1 μg m$^{-3}$, with the highest value of 109.3 μg m$^{-3}$ observed at 15:00 on 22 June, 2013. Since NH$_2$NO$_3$ is
volatile and tends to dissociate and remain in the gas phase in summer, the higher NO3− level detected may be due to abundant NH\textsubscript{3} to neutralize H\textsubscript{2}SO\textsubscript{4} and HNO\textsubscript{3}.

Several pollution episodes of precursor gases, SO\textsubscript{2}2−, NO\textsubscript{2}− and NH\textsubscript{4}+ in PM\textsubscript{2.5} were observed during the study period. As shown in Fig. 4, the peak values of NH\textsubscript{3}, SO\textsubscript{2} and NO\textsubscript{3} (76.3 ppb at 09:00, 14.9 ppb at 14:00 on and 42.2 ppb at 00:00 on 10 August, respectively) were observed, which were accompanied by the large increase in concentrations of SO\textsubscript{2}2−, NO\textsubscript{3}− and NH\textsubscript{4}+ during 7-11 August 2013. Due to the atmospheric conditions favoring the accumulation of pollutants, the concentrations of NH\textsubscript{4}+, SO\textsubscript{2}2− and NO\textsubscript{3}− (24.8, 35.9 and 15.7 µg m−3, respectively) at 13:00 on 10 August were detected and higher compared with the average concentrations during 7-11 August 2013 by around 127%, 81% and 83%, respectively. These secondary ions concentrations had similar temporal distributions with slow accumulation and relatively rapid clearing under favourable meteorological conditions. There were good correlation between NH\textsubscript{3} with NH\textsubscript{4}+, SO\textsubscript{2}2− and NO\textsubscript{3}− (R=0.33, 0.27 and 0.49, respectively, with P < 0.01). This observation emphasizes the important role of NH\textsubscript{3} in the formation of secondary SO\textsubscript{2}2−, NO\textsubscript{3}− and NH\textsubscript{4}+ aerosols, which should be further explored to solve the current air pollution problems in NCP and other regions of the world.

During 7-11 August 2013, the relationships of the observed NH\textsubscript{4}+ versus those of SO\textsubscript{2}2−, the sum of SO\textsubscript{2}2− and NO\textsubscript{3}− and the sum of SO\textsubscript{2}2−, NO\textsubscript{3}− and Cl− are also analyzed. It is known that (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} is preferentially formed and the least volatile, NH\textsubscript{4}NO\textsubscript{3} is relatively volatile, while NH\textsubscript{4}Cl is the most volatile. NH\textsubscript{4}+ is thought to be first associated with SO\textsubscript{2}2−, afterwards, the excess of NH\textsubscript{4}+ is with nitrate and chloride (Meng et al., 2015). It is noted that the correlation of NH\textsubscript{4}+ with the sum of SO\textsubscript{2}2− and NO\textsubscript{3}− (R=0.91, with P < 0.01) was better than that of NH\textsubscript{4}+ with SO\textsubscript{2}2− (R=0.80, with P < 0.01), suggesting that both SO\textsubscript{2}2− and NO\textsubscript{3}− were associated with NH\textsubscript{4}+. Little different was found between the regression slopes of NH\textsubscript{4}+ with the sum of SO\textsubscript{2}2− and NO\textsubscript{3}− and the sum of SO\textsubscript{2}2−, NO\textsubscript{3}− and Cl− due to the very low amount of NH\textsubscript{4}Cl. In this study, NH\textsubscript{4}+ was enough to neutralize both SO\textsubscript{2}2− and NO\textsubscript{3}−, and likely to be in the form of (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}, NH\textsubscript{4}HSO\textsubscript{4}, and NH\textsubscript{4}NO\textsubscript{3}.

The analysis of water-soluble ions in PM\textsubscript{2.5} at NCP rural site also indicated that biomass burning was a crucial source of aerosol species. This attribution is supported by the concentrations of K+ in PM\textsubscript{2.5}, an excellent indicator for biomass burning emission. The monthly concentrations of K+ in PM\textsubscript{2.5} were 2.17, 1.62 and 0.98 µg m−3 in June, July and August, respectively, with the highest concentration in June 2013. During the period of 16–19 June, 2013, elevated concentrations of K+ (33.28 µg m−3 at
08:00 on 16 June), NH$_4^+$ (33.28 µg m$^{-3}$), SO$_4^{2-}$ (24.53 µg m$^{-3}$), and NO$_3^-$ (29.79 µg m$^{-3}$) were observed, which is consistent with the increase of CO, SO$_2$, NO$_x$ and NH$_3$ at the same time.

3.4 Relationship between ammonia and ammonium aerosol

The gas-to-particle conversion between NH$_3$ and NH$_4^+$ has been reported to be strongly affected by temperature, RH, radiation conditions, the concentration of primary acid gas, and other factors. In this study, NH$_4^+$ concentrations correlated significantly and positively with NH$_3$ concentrations (R = 0.78, n=915, P < 0.01), suggesting that NH$_3$ played a important precursor role in NH$_4^+$ in PM$_{2.5}$ formation.

The ratio of NH$_3$ to NH$_4^+$ (NH$_4^+$/NH$_3$) has been used to identify the source of NH$_4^+$ and the relative contribution of NH$_3$ to NH$_4^+$ deposition (Walker et al., 2004). A value higher than 0.5 signifies that NH$_4^+$ is mainly from local NH$_3$ sources and that the dry deposition of NH$_3$ dominates the NH$_4^+$ deposition. Robarge et al. (2002) reported that more than 70% of NH$_4^+$ was in the form of NH$_3$ at an agricultural site in the South-eastern United States, and concluded that given a larger deposition velocity of ammonia compared with that of ammonium, a considerable fraction of NH$_4^+$ could be deposited locally rather than be transported out of the region.

According to hourly average concentrations, the ratio of NH$_3$/NH$_4^+$ varied from 0.22 to 0.97, with a mean ratio of 0.69±0.14, suggesting that NH$_4^+$ was mainly influenced by local sources in summer 2013. It can also be inferred that NH$_3$ dry deposition could dominate NH$_4^+$ deposition, while NH$_4^+$ was contributed to by both long-range transport and local formation.

3.4.1 Gas- to-particle conversion ratio of NH$_3$

Sulphate and nitrate oxidation ratios (SOR and NOR) are defined in literature to investigate SO$_4^{2-}$ and NO$_3^-$ formation and gas-particle transformation (Zhang et al., 2011). The average values of SOR and NOR were estimated to be 64% and 24% during the observation period at Gucheng, with SOR and NOR being higher than previous measurements (Zhou et al., 2009; Du et al., 2011; Zhang et al., 2011). Yao et al. (2002) pointed out an SOR lower than 10% under conditions of primary source emissions and higher than 10% when sulphate was mainly produced through the secondary transformation of SO$_2$ oxidation. The value of SOR reached to 70% in August 2013, indicating that the secondary transformation was very significant during summer at Gucheng.

To gain further insights into the transformation of NH$_3$ to NH$_4^+$, the conversion ratio of ammonium (NHR) was investigated. NHR is a measure of the extent of transformation from NH$_3$ to NH$_4^+$ in areas with major local NH$_3$ sources. In this study, the average hourly values of NHR ranged from 3% to 77%,
with an average of 30% during summer 2013. The average NHR level in this study was higher than that observed at an urban site in Beijing (Meng et al., 2017), indicating that high NH$_3$ concentrations resulting from agricultural activities had a marked influence on the formation of ammonium. After applying fertilizer such as urea, NH$_3$ volatilization achieved the peak values, especially after the rainfall, which was in favour of the formation of NH$_4^+$. To specifically explore the behaviour and chemical transformation, we analyzed in detail the episode during which the highest hourly NH$_3$ and NH$_4^+$ were observed.

Figure 5 illustrates the time series of the concentrations of air pollutants related to NH$_4^+$ formation and meteorological data on 27 to 31 July, 2013. NH$_3$ concentrations increased gradually from the afternoon of 27 July, and the obvious formation of NH$_4^+$ was also observed. In addition, during the night time (20:00 on 27-07:00 on 28 July), the average RH was 92% and the wind speed was 0.4 m s$^{-1}$, respectively, which may enhance the conversion of ammonia to ammonium via aqueous phase processes. As the rapid increase of solar radiation, the highest hourly value of NH$_4^+$ was observed at 09:00 on 28 July, and the corresponding NHR peaked (63%) at the same time.

NH$_3$ exhibited a maximum average concentration at 04:00 on 29 July, while NH$_4^+$ concentrations increased rapidly and remained high levels in the morning, with the NHR value rising to 53% at 09:00 on 29 July. Elevated NH$_3$ levels coincided with elevated NH$_4^+$, indicating that NH$_3$ was the main factor promoting NH$_4^+$ formation.

Furthermore, on 30 July, the higher NH$_4^+$ concentration and NHR occurred around noon after NH$_3$ decreased, which is consistent with increasing solar radiation and O$_3$ concentration. This suggests that strong solar radiation intensity accelerated the photochemical formation of sulphuric acid or nitric acid, which subsequently reacted with NH$_3$ to form NH$_4^+$. The increases in NHR coincided with those of NH$_3$ and O$_3$ concentrations and strong solar radiation intensity.

3.4.2 Diurnal patterns of NHR, SOR and NOR

Fig. 6 presents the diurnal patterns of NHR, SOR, NOR, gaseous precursors, and major water soluble ions, and meteorological factors. As a key species contributing to the oxidisation capacity of the atmosphere, O$_3$ can promote HNO$_3$ formation, affecting the conversion ratio of NH$_3$. O$_3$ exhibited low levels in the morning and enhanced levels in the late afternoon. The lower morning concentrations may be due to the depositional loss of O$_3$ under stable atmospheric conditions in early morning hours, and the higher levels in the afternoon could be due to the photochemical production of O$_3$. The NH$_4^+$
concentration started to increase at noon, reaching the maximum value (15.8 μg m\(^{-3}\)) at 18:00, with a diurnal difference of 3.6 μg m\(^{-3}\). This diurnal pattern may be due to a combination of high NH\(_3\) concentrations, the intense solar radiation at noon, and the high oxidisation capacity of the atmosphere in the afternoon. A clear diurnal cycle of NHR with a peak of 48% was observed at 19:00, which is consistent with the higher NH\(_4^+\) and SO\(_4^{2-}\) concentrations and RH.

The SO\(_2\) concentration showed a maximum at 09:00, with a secondary peak at 22:00. The concentration of SO\(_4^{2-}\) showed small peak at 13:00, 16:00, and 19:00, respectively, but no strong diurnal variation. SOR displayed a diurnal cycle with the highest value of 53% observed at 19:00 and the second highest level of 51% exhibited at 04:00. The maximum value of SO\(_4^{2-}\) coincide to O\(_3\) and SOR, which may due to the intense solar radiation and the high oxidization degree of the atmosphere.

As for the diurnal cycle of NO\(_x\), a peak was observed at 06:00 when the mixing layer was stable, and a broad valley was observed in the daytime, which was likely due to a higher mixing layer and stronger photochemical conversion. During the night, NO\(_x\) concentrations increased again, resulting in the second maximum at 23:00. NO\(_x\) concentrations did not show profound diurnal variations, but slightly higher values during the night time, probably because of the hydrolysis of dinitrogenpentoxide (N\(_2\)O\(_5\)) and the condensation of HNO\(_3\) under the relatively low temperature. NOR displayed a diurnal pattern with a maximum of 34% at 14:00, which was likely related to photochemical reactions under the conditions of high O\(_3\) concentrations and solar radiation.

3.5 The impact of air masses transport on the surface ammonia and ammonium

To identify the impact of long-range air transport on the surface air pollutants levels and secondary ions at Gucheng, the 72-h backward trajectories were calculated using the HYSPLIT 4.9 model.

As can be seen in Fig. 7, the Clusters 1, 2 and 3 represent relatively low and slow moving air parcels, with cluster 2 coming from northwest areas at the lowest transport height among the five clusters. The Cluster 4 and 5 represent air parcels mainly from the northwest.

The trajectories in Clusters 2 come from the local areas around Gucheng, and it was the most important cluster to the Gucheng site, contributing 56% of air masses. Based on the statistics, the number of trajectories in Cluster 1, 2 and 3 accounts to 88% of the all trajectories. As more than 80% air masses originated from or passing over the North China Plain region can influence the surface measurements at Gucheng, the observation results at Gucheng can well represent the regional changes of atmospheric components in the North China Plain region.
Since the emission sources of pollutants are unevenly distributed in the areas surrounding the Gucheng site, air masses from different directions containing different levels of pollutants. The corresponding mean concentrations of NH_3, SO_2, NO_x, NH_4^+, SO_4^{2-} and NO_3^- in PM$_{2.5}$ in different clusters of backward trajectories are also included in Table 2 in order to characterize the dependences of the pollutants concentrations on air masses.

Large differences in the concentrations of NH_3, SO_2, NO_x, NH_4^+, SO_4^{2-} and NO_3^- in PM$_{2.5}$ existed among the different clusters, with cluster 2 corresponding to the highest NH_3 (48.9 ppb) and second highest NO_x, NH_4^+ and SO_4^{2-} (14.4 ppb, 17.5 μg m$^{-3}$ and 22.1 μg m$^{-3}$, respectively). The cluster 1 corresponds to highest SO_2, NH_4^+, SO_4^{2-} and NO_3^- (7.9 ppb, 22.3 μg m$^{-3}$, 22.6 μg m$^{-3}$ and 17.7 μg m$^{-3}$, respectively), the second highest NH_3 level (32.8 ppb). The cluster 3 had the highest NO_3^- level (15.1 ppb), the second highest SO_2 and NO_3^- (4.8 ppb and 11.8 μg m$^{-3}$, respectively), and had the third highest concentration of NH_3, NH_4^+ and SO_4^{2-} levels (28.5 ppb, 14.6 μg m$^{-3}$, and 20.2 μg m$^{-3}$, respectively). Based on Table 2, the lowest NH_3, SO_2, NO_x, NH_4^+, SO_4^{2-} and NO_3^- levels were corresponding to clusters 5, which was expected to bring cleaner air masses into surface. As demonstrated by backward trajectory, more than half of the air masses during the sampling period from North China Plain region contributed to the atmospheric NH_3 variations, and both regional sources and long-distance transport from southeast played important roles in the observed ammonium aerosol at the rural site in the NCP.

4 Conclusions

Online measurements of NH_3, trace gases, and water-soluble ions in PM$_{2.5}$ were conducted during May–September 2013 at a rural site in the NCP, where a large amount of ammonia was emitted because of agricultural activities. The average concentrations of NH_3 and NH_4^+ in PM$_{2.5}$ were 36.2 ± 56.4 ppb during 15 May–25 September, 2013, and 18.9 ± 33.2 μg m$^{-3}$ during 15 June–11 August, 2013, respectively; these are considerably higher than those reported at other sites in China, Europe and North America. Extremely high NH_3 and NH_4^+ concentrations were observed, which was attributed to high soil moisture level due to rainfall on these days following the urea application. Elevated NH_3 levels coincided with elevated NH_4^+, indicating the contribution of atmospheric NH_3 to secondary inorganic aerosols during periods of agricultural activity. NH_3 contributed 69% to the total $\text{NH}_3+\text{NH}_4^+$ in summer, suggesting that NH_3 was influenced by local sources and that NH_3 dry deposition could contribute a large part of the NH_4 deposition.
The average conversion/oxidation ratio for NH$_4^+$ (NHR), SO$_4^{2-}$ (SOR), and NO$_3^-$ (NOR) were estimated to be 30%, 64%, and 24% in summer 2013, respectively. Results reveal that the concentrations of NH$_3$, NH$_4^+$, and NHR had clear diurnal variations during the observation period. The increased NH$_3$ concentrations mainly from fertilization, coincided with the prevailing meteorological conditions, including high relative humidity, degree of oxidisation, and low wind could promote the secondary transformation, resulting in higher hourly SOR, NOR and NHR. The back trajectory analysis indicates that the transport from the North China Plain region contributed for 56% of air mass with high NH$_3$ levels, meanwhile the long-distance transport from southeast accounted for 32% of air mass with high NH$_4^+$, SO$_4^{2-}$ and NO$_3^-$ at the rural site in the NCP. NH$_3$ is currently not included in China’s emission control policies of air pollution precursors, our findings highlight the important role of NH$_3$ in secondary inorganic aerosol formation and are expected to facilitate developing future NH$_3$ emission control policies for the North China Plain.

References

Meng, Z. Y., Lin, W. L., Zhang, R. J., Han, Z. W. and Jiang, X. F.: Summertime ambient ammonia and

Schaap, M., Otjes, R. P. and Weijers, E. P.: Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation, Atmos. Chem. Phys., 11,

Yao, X.H., Chak, K.C., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K.B., and Ye, B.M.: The water-soluble ionic composition of PM$_{2.5}$ in Shanghai and Beijing, China, Atmos. Environ. 36, 4223-4234, 2002.

Zhang, T., Cao, J., Tie, X., Shen, Z., Liu, S., Ding, H., Han, Y., Wang, G., Ho, K., Qiang, J., and Li, W.: Water-soluble ions in atmospheric aerosols measured in Xi’an, China: Seasonal variations and
sources, Atmos. Res. 102, 110-119, 2011.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (2137716 and 41330422), the Environmental Protection Public Welfare Scientific Research Project, Ministry of Environmental Protection of the People's Republic of China (grant No. 201509001, 201509002-04 and 201309009), and the China Special Fund for Meteorological Research in the Public Interest (GYHY201206015). The authors would like to thank Professor Xiangde Xu and Yu Song for their helpful support and suggestions. The authors would like to thank Professor Yaqiang Wang for providing NH$_3$ emission data and the plotting helps of Chao He.
Table Captions

Table 1. The comparisons of the concentration of trace gases (ppb) and water-soluble ions in PM$_{2.5}$ (μg m$^{-3}$) at Gucheng with other researches.

Table 2. Occurrence frequency and mean values of NH$_3$, other trace gases and water-soluble ions in PM$_{2.5}$ for each type of air masses arriving at Gucheng during summer 2013.

Figure Captions

Figure 1. Sampling location in the North China Plain with emission distributions of NH$_3$ for the year 2012 from the multi-resolution emission inventory of China (http://meicmodel.org/index.html).

Figure 2. Time series of hourly data of NH$_3$, other trace gases and meteorological parameters measured during the sampling period.

Figure 3. Diurnal variation (a) NH$_3$ and (b) meteorological parameters during the sampling period.

Figure 4. Hourly concentrations of precursor gas and ionic species measured in the pollution episode during 7–11 August 2013.

Figure 5. Time series of the concentrations of air pollutants related to NH$_4^+$ formation and meteorological data on 27 to 31 July, 2013.

Figure 6. Diurnal variation of NHR, SOR, NOR, gaseous precursors, major water soluble ions, and meteorological factors in summer 2013.

Figure 7. 72-h backward trajectories for 100 m above ground level at Gucheng during sampling period 2013.
Table 1. The comparisons of the concentration of trace gases (ppb) and water-soluble ions in PM$_{2.5}$ (μg m$^{-3}$) at Gucheng with other researches.

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Period</th>
<th>NH$_3$</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>NH$_4^+$</th>
<th>SO$_4^{2-}$</th>
<th>NO$_3^-$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shangdianzi, China</td>
<td>Rural</td>
<td>Jun.2008-Dec.2009</td>
<td>10.4±8.1</td>
<td>5.9±4.6</td>
<td>12.0±6.8</td>
<td>7.0±3.76</td>
<td>15.0±15.7</td>
<td>11.6±11.4</td>
<td>Meng et al. 2014</td>
</tr>
<tr>
<td>Beijing, China</td>
<td>Rural</td>
<td>Aug.2006-Jul.2007</td>
<td>21.1±10.5</td>
<td>–</td>
<td>37.8±11.6</td>
<td>8.8±6.7</td>
<td>22.4±16.2</td>
<td>15.1±11.4</td>
<td>Shen et al. 2011</td>
</tr>
<tr>
<td>Lin’an, China</td>
<td>Rural</td>
<td>Sept.2009-Dec.2010</td>
<td>16.5±11.2</td>
<td>6.4±8.2</td>
<td>10.8±5.2</td>
<td>4.3±3.5</td>
<td>9.6±6.1</td>
<td>7.3±7.5</td>
<td>Meng et al. 2014</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>Urban</td>
<td>Autumn 2000</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>2.4</td>
<td>9</td>
<td>1</td>
<td>Yao et al. 2006</td>
</tr>
<tr>
<td>Taichung, Taiwan</td>
<td>Urban</td>
<td>Jan.-Dec. 2002</td>
<td>12.2±4.3</td>
<td>–</td>
<td>–</td>
<td>4.6±2.0</td>
<td>15.8±7.7</td>
<td>6.0±4.0</td>
<td>Lin et al. 2006</td>
</tr>
<tr>
<td>Colonelganj, India</td>
<td>Urban</td>
<td>Summer 2007</td>
<td>41.3±10.5</td>
<td>6.9±5.1</td>
<td>33.8±8.56</td>
<td>18.4±4.7</td>
<td>27.8±7.6</td>
<td>29.2±7.5</td>
<td>Behera et al. 2010</td>
</tr>
<tr>
<td>Singapore</td>
<td>Urban</td>
<td>Sep.-Nov. 2011</td>
<td>3.6</td>
<td>8.3</td>
<td>–</td>
<td>1.76</td>
<td>4.41</td>
<td>1.29</td>
<td>Behera et al. 2013</td>
</tr>
<tr>
<td>Oberhauenburg, Germany</td>
<td>Forest</td>
<td>Oct.2001-Apr.2003</td>
<td>0.69</td>
<td>2.24</td>
<td>–</td>
<td>1.55</td>
<td>3.07</td>
<td>2.22</td>
<td>Pless et al. 2005</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Rural</td>
<td>Aug. 2007 and 2008</td>
<td>12.9</td>
<td>0.5</td>
<td>–</td>
<td>2.4</td>
<td>3.1</td>
<td>5.9</td>
<td>Schaup et al. 2011</td>
</tr>
<tr>
<td>Helsinki, Finnish</td>
<td>Urban</td>
<td>Spring 2010</td>
<td>0.46±0.59</td>
<td>0.29±0.38</td>
<td>–</td>
<td>0.46±0.50</td>
<td>1.64±1.08</td>
<td>1.40±2.04</td>
<td>Makkonen et al. 2012</td>
</tr>
<tr>
<td>Cairo, Egypt</td>
<td>Suburban</td>
<td>Summer 2009</td>
<td>64.7</td>
<td>5.59</td>
<td>28.7</td>
<td>7.5</td>
<td>28</td>
<td>4.2</td>
<td>Hassan et al. 2013</td>
</tr>
<tr>
<td>Clinton, USA</td>
<td>Agricultural</td>
<td>Jan.1999-Dec.2000</td>
<td>8</td>
<td>1.5</td>
<td>–</td>
<td>1.76</td>
<td>4.22</td>
<td>2.05</td>
<td>Walker et al. 2006</td>
</tr>
<tr>
<td>Houston, USA</td>
<td>Urban</td>
<td>Aug. 2010</td>
<td>3.0±2.5</td>
<td>–</td>
<td>–</td>
<td>0.5±1.0</td>
<td>4.5±4.3</td>
<td>0.3±0.2</td>
<td>Gong et al. 2013</td>
</tr>
<tr>
<td>Wyomg, USA</td>
<td>Rural</td>
<td>Dec.2006-Dec.2011</td>
<td>0.24</td>
<td>–</td>
<td>–</td>
<td>0.26</td>
<td>0.48</td>
<td>0.32</td>
<td>Li et al. 2014</td>
</tr>
</tbody>
</table>
Table 2. Occurrence frequency and mean values of NH$_3$, other trace gases (ppb) and ionic species in PM$_{2.5}$ (µg m$^{-3}$) for each type of air masses arriving at Gucheng in summer 2013.

<table>
<thead>
<tr>
<th>Air mass</th>
<th>Ratio(%)</th>
<th>NH$_3$</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>NH$_4^+$</th>
<th>SO$_4^{2-}$</th>
<th>NO$_3^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters 1</td>
<td>15</td>
<td>32.8</td>
<td>7.9</td>
<td>14.0</td>
<td>22.3</td>
<td>22.6</td>
<td>17.7</td>
</tr>
<tr>
<td>Clusters 2</td>
<td>56</td>
<td>48.9</td>
<td>3.7</td>
<td>14.4</td>
<td>17.5</td>
<td>22.1</td>
<td>10.3</td>
</tr>
<tr>
<td>Clusters 3</td>
<td>17</td>
<td>28.5</td>
<td>4.8</td>
<td>15.1</td>
<td>14.6</td>
<td>20.2</td>
<td>11.8</td>
</tr>
<tr>
<td>Clusters 4</td>
<td>10</td>
<td>23.4</td>
<td>2.4</td>
<td>12.8</td>
<td>12.9</td>
<td>15.3</td>
<td>7.2</td>
</tr>
<tr>
<td>Clusters 5</td>
<td>3</td>
<td>16.3</td>
<td>0.6</td>
<td>9.4</td>
<td>7.5</td>
<td>8.1</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Figure 1. Sampling location in the North China Plain with emission distributions of NH$_3$ for the year 2012 from the multi-resolution emission inventory of China (http://meicmodel.org/index.html).
Figure 2. Time series of hourly data of NH$_3$, other trace gases and meteorological parameters measured during the sampling period.
Figure 3. Diurnal variation (a) NH$_3$ and (b) meteorological parameters during the sampling period.
Figure 4. Hourly concentrations of precursor gas and ionic species measured in the pollution episode during 7 – 11 August 2013.
Figure 5. Time series of the concentrations of air pollutants related to NH$_4^+$ formation and meteorological data on 27 to 31 July, 2013.
Figure 6. Diurnal variation of NHR, SOR, NOR, gaseous precursors, major water soluble ions, and meteorological factors in summer 2013.
Figure 7. 72-h backward trajectories for 100 m above ground level at Gucheng during sampling period 2013.