Response to comments by editor and anonymous reviewers
We appreciate the editor and anonymous reviewers’ comments and helpful suggestions. We have revised the manuscript according to their comments and suggestions. We hope the revised manuscript can meet the quality requirements of Atmospheric Chemistry and Physics.

Response to Reviewer #2’s comments
Anonymous Reviewer #2
Received and published: 31 May 2017
This manuscript presents a comprehensive ambient measurement dataset, including various trace gases and particulate species, for over four months at a rural site in the North China Plain (NCP). Ammonia (NH3) is the focus of this study for its role in the formation of secondary inorganic aerosols, which accounts for a major fraction of PM2.5 in NCP. The hourly resolution, higher than many of the previous ambient ammonia measurements, enables detailed studies on individual pollution events and the diurnal variations. However, I hope the authors can take better advantage of this dataset, and go deeper into Atmospheric Chemistry and Atmospheric Physics, as indicated by the journal name. For example, this work aims to understand the impact of ammonia on secondary ammonium aerosols (page 1, line 20), facilitate developing future ammonia emission control policies (page 1, line 32), and examine the sources of ammonia and ammonium and their chemical conversion mechanism (page 3, line 8). These are all important issues, but I am not convinced that this article has advanced our current knowledge and understanding about these issues after reading it.
Answer: We thank your comments and suggestions. We have made additional data analysis and revised the manuscript according to the comments and suggestions by both reviewers. To gain more insight into the role of ammonia in the formation of secondary inorganic aerosol, simulations were made using the thermodynamic equilibrium model ISORROPIA II. The measurements were used as input of model to simulate the variations of the components in gas, liquid and solid phases, which are useful in the investigation of the gas-aerosol equilibrium characteristics.

Major comments
1. It takes a significant part of this manuscript to explain the observed concentrations. However, many of the explanations are qualitative and even speculative. Further quantitative evidences are needed. To name a few:
Page 8, lines 5-6, “the monthly concentration of SO2, NOx, and CO in July and August decreased because of rapid photochemical reduction, additional removal by rainfall, and excellent vertical mixing.” What are the evidences of photochemistry, wet scavenging, and vertical mixing?
Answer: We have added the analysis of some related meteorological conditions and show figures with measurements of rainfall and the NO2 photolysis frequency (jNO2) during June-August 2013 as supplementary materials. Changes are made to text as follows:
“The monthly concentrations of SO2, NOx, and CO in July and August decreased compared to those in June. In addition to less influences from biomass burning, meteorological conditions were also in favor
of lowering the concentrations of these gases. Figure S2 shows the monthly average diurnal variations of \(\text{NO}_2 \) and the time-series of hourly rainfall during June-August 2013. As can be seen, the average \(\text{NO}_2 \) increased from June to August, indicating better conditions for photochemical reduction in July and August. There was also a slight increase in rainfall from June to August, which may promote removal of the pollutants."

![Figure S2](image)

Figure S2. Monthly average diurnal variations of the \(\text{NO}_2 \) photolysis frequency (\(\text{NO}_2 \)) (a) and hourly rainfall (b) observed at Gucheng during June-August 2013.

Page 8, lines 8-9, the ozone was highest in June because of “photochemical production, intense burning of biomass, and transport of regional pollution”. What are the evidences of more photochemistry, biomass burning, and regional transport in June? Shouldn't July have larger photochemical rates?

Answer: After careful consideration we think the statement should be revised. The sentence is changed to "For the secondary pollutant \(\text{O}_3 \), the highest concentration was observed in June. This is consistent with previous results from Gucheng (Lin et al., 2009) and should be related with the annual maximum of background \(\text{O}_3 \) in the NCP, which occurs in June (Lin et al., 2008; Ding et al., 2008)."

Page 8, lines 26-27, the downward mixing of the residual layer containing higher ammonia concentration could lead to an increase of ammonia in the morning. This would require a very large pool of ammonia in the residual layer. Why did it not happen in other months?

Answer: Indeed, the interpretation about the morning peak is mainly based on the opinions in cited references, which are mostly speculations. We think more investigations are necessary to be able to
clearly and quantitatively explain the morning peak phenomenon. We have revised the 2nd and 3rd paragraphs in section 3.2.2 as follows:

“The morning peak of NH₃ was also observed elsewhere and could be resulted from emissions from fertilized soils and plant stomata, evaporation of dew, and human sources, as well as mixing down of ammonia from the residual layer (Trebs et al., 2004; Norman et al., 2009; Bash et al., 2010; Ellis et al., 2011). Figure 3b reveals that the relative humidity (90%-89%) and temperature (21.5-22.1°C) remained relatively constant before 06:00, but increased later in the morning. The increasing temperature can heat the earth’s surface and vegetation leaves and reduce the RH, potentially leading to evaporation of NH₃ from soil and plants and volatilization of ammonium aerosol (Trebs et al., 2004; Norman et al., 2009; Ellis et al., 2011), which may increase NH₃ concentrations in the morning. When the emission was occurring into a shallow boundary layer, NH₃ increase would be more prominent. In addition, the morning rise might also be due to the breakup of the nocturnal boundary layer. During the sampling period, the majority of peaks of ammonia over 50 ppb occurred at night, which were attribute to local emissions, such as from agricultural activity, into a shallow nocturnal boundary layer. It was supposed by Ellis et al. (2011) that the downward mixing of air containing higher NH₃ from the residual layer could lead to an increase of surface NH₃ after the breakup of the nocturnal boundary layer.”
Figure 3. Diurnal variation (a) NH$_3$ and (b) meteorological parameters during the sampling period.

Norman, M., Spirig, C., Wolff, V., Trebs, I., Flechard, C., Wisthaler, A., Schnitzhofer, R., Hansel, A.,

Page 9, line 5, the author explains the earlier ammonia morning peak in July by increased emissions. Further evidence?

Answer: We have no direct evidence of emissions. However, the Gucheng site is an experiment station for agrometeorological studies. Corn is the main crop in the station area and nearly all the agricultural areas in the surrounding. According to the climate in the NCP, corn is planted around the middle of June and grows rapidly in July. Therefore, July is the key period for the application of nitrogen fertilizers like urea. For example, during the last ten days of July 2013, 225-300 kg of urea were applied per hectare of station area (Meng et al., 2015), causing huge NH3 spikes during the end of July (Fig. 2). In addition, the highest nighttime temperature in July (Fig. 3b) could promote the soil emission of NH3 and the relatively lower wind speed (Fig. 3b) and lowest PBLH (Fig. S3) in July was in favor of the accumulation of NH3 in surface air. We have revised the 4th and 5th paragraphs in section 3.2.2 as follows:

"From Fig. 3a, it can be seen that in July the NH3 level was the highest and peaked earliest. One reason for this might be the increased emissions of local agricultural NH3 sources in July compared with those in June, August, and September. On the average, the level NH3 in July had a maximum nighttime increase (20.0 ppb from 20:00 to 06:00), which is much larger than those in June (5.2 ppb), August (9.9 ppb) and September (1.8 ppb). The early morning increase of NH3 in July started from a much higher level than in other months, resulting in a very NH3 peak in July.

There is no direct evidence of increased agricultural NH3 emission in July. However, the Gucheng site is an experiment station for agrometeorological studies. Corn is the main crop in the station area and nearly all the agricultural areas in the surrounding. According to the climate in the NCP, corn is planted around the middle of June and grows rapidly in July. Therefore, July is the key period for the application of nitrogen fertilizers like urea. As mentioned above, the urea application in the station on 20 July 2013 and a precipitation process afterwards caused huge NH3 spikes during the end of July (Fig. 2b). In addition, the highest nighttime temperature in July (Fig. 3b) could promote the soil emission of NH3, and the relatively lower wind speed (Fig. 3b) and lowest PBLH (Fig. S3) in July was in favor of the accumulation of NH3 in surface air.

In summary, ambient NH3 at Gucheng showed interesting diurnal cycles, which look significantly different in different summer months. We believe the interplay of some processes, such as emissions from agricultural sources, meteorological conditions (temperature, relativity humidity, wind speed, and BHL height, etc.) as well as chemical conversion are important in the determination of levels and
diurnal patterns of NH$_3$ at the site. Whether or not these processes are all important in the morning variation of NH$_3$? How important are they? And what makes the difference in the peaking time and concentration of NH$_3$ in different months? These are questions to be answered in the future."

Figure S3. The monthly planetary boundary layer heights at 14:00 during 2013 at Gucheng.

2. A high observed concentration can always be explained by more emission, less mixing, or less removal. I think a publication in ACP should go beyond reporting the concentrations of these short-lived species, as the concentrations are highly variable. This study used the ratio between ammonium and NH$_x$ to infer the gas-particle conversion of ammonia. However the ammonium and ammonia may be from different sources, where ammonium is formed in the city with NOx and SO$_2$, and ammonia is emitted locally. In other words, what if NH$_x$ and NH$_3$ are decoupled? **Answer:** We have made simulations using the ISORROPIA II model and analyzed the model results together measurements. We think we have gained more insight than before but also acknowledge that there are limitations in our observation, modeling and data analysis. Some open issues remain to be addressed in future studies.

The ratios NHR (NH$_4^+$/NH$_x$), SOR (SO$_2^{0.5}$/SO$_2$+SO$_4$) and NOR (NO$_x$/NO$_3$+NO$_x$) were calculated as measures of chemical conversion of NH$_3$, SO$_2$ and NO$_x$. You are right that NH$_x$ and NH$_3$ may be decoupled. Sources of NH$_3$, SO$_2$ and NO$_x$ may be dislocated. The lifetimes of these gases are different and hence the dispersion areas. Fine aerosol particles may travel much longer than the precursor gases. In the real situation we always observe gases and aerosols originating both from cities and from rural areas, emitted by different sources, and chemically produced. Wherever we measure, we measure is a mixture impacted by different sources from locations and processes. In this sense, we should not attribute our results only to local impacts or local situation. When our observation at a site
covers a longer period, our results should be applicable to areas in varying size.

At page 10, line 13, it is summarized that “This observation emphasizes the important role of NH3 in the formation of secondary SO4, NO3 and NH4 aerosols, which should be further explored...”. The title of this manuscript is about the role of ammonia on secondary inorganic aerosols, but what exactly is this role? It is not satisfying to only know it is important and needs further exploration.

Answer: We have deleted this sentence. New results from model simulation and data analysis are added and discussed in the revised manuscript. In particular, we have added two new sections:

3.4 Results from thermodynamic equilibrium simulation

We have used the thermodynamic equilibrium model ISORROPIA II to investigate gas-aerosol partitioning characteristics. NO3⁻, SO₄²⁻ and NH₄⁺. The model outputs include equilibrium NO3⁻, SO₄²⁻, NH₄⁺, H⁺ₐr, HNO₃, NH₃, AWC, etc. As shown in Fig. 5, the modelled NO3⁻, SO₄²⁻, NH₃ show excellent correlations with the corresponding measurements, but modelled NH₄⁺ is much worse correlated with the measured one. Modelled NO3⁻, SO₄²⁻, and NH₃ values agree well with the measurements, while the modelled NH₄⁺ largely underestimate the measurements. Considering the unbalance between observed NH₄⁺ and the sum of observed SO₄²⁻+NO₃⁻+Cl⁻, we can confirm that other acids in aerosol particles are important in the conversion of NH₃ to NH₄⁺. These other acids may be oxalic acid and other dicarboxylic acids. Although we did not measure organic acids in aerosol, the presence of oxalic acid and other low molecular weight dicarboxylic acids in aerosols is often reported (e.g., Hsieh et al., 2007; Kawamura et al., 2010, 2013; Sauerwein and Chan, 2017). There is no doubt about the presence of significant amount of dicarboxylic acids over the North China Plain particularly during summer (Kawamura et al., 2013). Therefore, it is highly possible that neutralizing dicarboxylic acids in aerosol particles contributed significantly to the conversion of ammonia to ammonium.

The simulated HNO₃ concentrations was 0.9±1.1 μg m⁻³, showing a maximum value of 7.41 μg m⁻³ at 11:00 on 19 June 2013. The average diurnal variations of HNO₃ and H⁺ₐr are shown in Fig. S4. The fine particles were moderately acidic in summer, with an average pH values of 3.5. The pH values of aerosol water, estimated based on the simulated results using equation (4), are mostly in the range of 2.5-4.5, with an average of 3.5. On average, pH is over 3.5 during nighttime and below 3.5 during daytime (Fig. 6). Under the medium acidic conditions and high NH₃ concentrations, organic acid like diacids are able to reaction with ammonia to for ammonium. Because we used ISORROPIA-II for inorganic aerosol composition and no organic acids measurements are available, we cannot analyze in detail the role of organic acids though the model performed quite well (Fig. S5).
Figure 5. Observed and modelled concentrations of NH$_3$, NH$_4^+$, SO$_4^{2-}$ and NO$_3^-$ in summer 2013.

Figure 6. Calculated diurnal variation of pH value of aerosol water.

Figure S5 Correlation of modelled NH$_3$ with modelled SO$_4^{2-}$, SO$_4^{2-}+NO_3^-$ and SO$_4^{2-}+NO_3^-+Cl^-$.
3.6 A case study of a pollution period

On several days during the study period, very high NH₃ and inorganic PM₂.₅ concentrations were observed. Here make a case study of a pollution period during 7-11 August 2013. Data of gases, major aerosol ions and some key meteorological parameters are presented in Fig. 9. Some other measure and calculated parameters during this period are given in Fig. S6. As shown in Figs. 9 and S6, there was a sharp increase of NOx during the night and early morning of 10 August, followed by that of NH₃ (peak value 64 ppb at 03:00). In the meantime, a large peak of AWC occurred and gaseous HNO₃ decreased to nearly zero (Fig. S6), suggesting rapid uptake of wet aerosol. This event caused the first largest peak of [SO₄²⁻]+[NO₃⁻]+[NH₄⁺]. After this event NH₃ rose again and reached a even higher peak (76.3) shortly before noon of 10 August. This peak of NH₃ coincided with a valley of NOx, but the HNO₃ level increased and pH value decreased was observed in parallel. A few hours later SO₂ showed a large peak and the second largest peak of [SO₄²⁻]+[NO₃⁻]+[NH₄⁺] occurred. These data show that high NH₃ concentration was accompanied by the large increase in concentrations of SO₄²⁻, NO₃⁻ and NH₄⁺, confirming that NH₃ play an important role in PM mass formation and that gas-particle conversion occurred when NH₃ was available, though SO₄²⁻ partitions to the aerosol phase regard less of NH₃ level (Gong et al., 2013). The secondary ions concentrations had similar temporal distributions with slow accumulation and relatively rapid clearing under favourable meteorological conditions. There were good correlation between NH₃ with NH₄⁺, SO₄²⁻ and NO₃⁻ (R=0.33, 0.27 and 0.49, respectively, with P < 0.01). However, there was also situation when high NH₃ did not associate with high [SO₄²⁻]+[NO₃⁻]+[NH₄⁺], as indicated by the data around noon of 8 August (Fig. 9). During this case, AWC was extremely low and RH was around 40%. These conditions do not favor heterogeneous reactions.

During 7-11 August 2013, the relationships of the observed NH₄⁺ versus those of SO₄²⁻, the sum of SO₄²⁻ and NO₃⁻ and the sum of SO₄²⁻, NO₃⁻ and Cl⁻ are presented in Fig. 10. It is known that (NH₄)₂SO₄ is preferentially formed and the least volatile, NH₄NO₃ is relatively volatile, while NH₄Cl is the most volatile. NH₄⁺ is thought to be first associated with SO₄²⁻, afterwards, the excess of NH₄⁺ is with nitrate and chloride (Meng et al., 2015). It is noted that the correlation of NH₄⁺ with the sum of SO₄²⁻ and NO₃⁻ (R=0.91, slope=1.23, with P < 0.01) was better than that of NH₄⁺ with SO₄²⁻ (R=0.80, slope=1.65, with P < 0.01), suggesting that both SO₄²⁻ and NO₃⁻ were associated with NH₄⁺. As shown in Fig.10, sulfate and nitrate were almost completely neutralized with most of the data above the 1:1 line. A few scattered
data below the 1:1 line may be caused by uncertainties in measurements. Little different was found between the regression slopes of NH$_3^+$ with the sum of SO$_4^{2-}$ and NO$_3^-$ and the sum of SO$_4^{2-}$, NO$_3^-$ and Cl$^-$ due to the very low amount of NH$_4$Cl. In this study, the level of NH$_3$ was high enough to neutralize both SO$_4^{2-}$ and NO$_3^-$, and likely to be form (NH$_4$)$_2$SO$_4$ and NH$_4$NO$_3$. In addition to these substances, it is likely that NH$_3$ also reacted with oxalic acid and other dicarboxylic acid to form ammonium oxalate and other organic ammonium aerosols, as discussed above."

Figure 9. Hourly concentrations of precursor gas and ionic species measured in the pollution episode (a) temporal variations and (b) correlations of [NH$_3^+$] versus [SO$_4^{2-}$], [SO$_4^{2-}$]+[NO$_3^-$] and [SO$_4^{2-}$]+[NO$_3^-$]+[Cl$^-$] during 7 – 11 August 2013.
Figure 10. Correlations between $[\text{NH}_4^+]$ and $[\text{SO}_4^{2-}]$ (left), $[\text{NH}_4^+]$ and $[\text{SO}_4^{2-}]+[\text{NO}_3^-]$ (middle) and $[\text{NH}_4^+]$ and $[\text{SO}_4^{2-}]+[\text{NO}_3^-]+[\text{Cl}^-]$ (right) during 7-11 August 2013.

Figure S6. Time series of predicted fine particle pH, predicted particle water mass, predicted H_{aq}^+ and measured NH_3 and measured inorganic ions during 7-11 August 2013

Specific comments

Page 1, line 29: please define “transport of air mass from the North China Plain region”, as the site itself is in the middle of NCP.

Answer: Yes, the site is located in the middle of NCP. The concentrations of pollutant levels at Gucheng site are not only driven by local sources but also affected by long range transport. We have changed the title of Section 3.5 to "Long rang transport and local source of ammonia and ammonium" and revised the text as follows:

"Dependence of the concentrations of NH$_3$ on wind direction at Gucheng is studied to get insight into the distribution of local emission sources around the monitoring site. As shown in Fig. 11, during
the sampling period, the prevailing surface winds at Gucheng were northeasterly and southwesterly. High NH$_3$ originated from the southwest sector of the measurement site, which may be due to a local unidentified agricultural or industrial source or transport from the Xushui township, which is approximately 15 km away from Gucheng. Lower NH$_3$ concentrations were observed under winds from other sectors. Since NH$_3$ is either readily converted to NH$_4^+$ or subjected to dry deposition, high concentrations are found only close to the surface and near the emission sources. Previous studies have reported an inverse relationship between ground-level concentrations of trace gases, such as ammonia, and wind speed (Robarge et al., 2002; Lin et al., 2011). Thus, NH$_3$ concentrations might be generally lower at higher wind speeds because of turbulent diffusion.

Figure 11. The average NH$_3$, NH$_4^+$ concentrations and meteorological data rises in different wind sectors during summer 2013.”

Page 3, line 22: how large is the “surrounding area” that impacts the measurements of this site?

Answer: The site is situated in the middle of a large agricultural region with many villages. The information of Gucheng site in details can be found in Lin et al. (2009). According to the maps from Lin et al. (2009) shown below, the Gucheng site is surrounded by farms, dense villages/towns, and the transportation network in the NCP. The accurate size of the surrounding area that really impacts the measurements at Gucheng is not easy to define and varies with meteorological condition, particularly
wind speed. One can do footprint analysis by setting criteria, but this is out of the scope of this paper.

Section 2.2: what's the response time of the Los Gatos instrument? What is the concentration and accuracy of the calibration gas?

Answer: We have added information revised the related text as follows:

"Ambient NH$_3$ was measured using an ammonia analyzer (DLT-100, Los Gatos Research, USA), which utilize a unique laser absorption technology called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). The analyzer has a precision of 0.2 ppb at 100 sec average and a maximum drift of 0.2 ppb over 24 hrs. The response time of the analyzer is less than 2 s (with optional external N920 vacuum pump). During the campaign, NH$_3$ data were recorded as 100-s average. In principle, the NH$_3$ analyzer does not need external calibration, because the measured fractional absorption of light at an ammonia resonant wavelength is an absolute measurement of the ammonia density in the cell (Manual of Economical Ammonia Analyzer - Benchtop Model 908-0016, Los Gatos Research). However, we confirmed the good performance of the NH$_3$ analyzer using a reference gas mixture NH$_3$/N$_2$ (Scotsgas, USA) traceable to US National Institute for Standards and Technology (NIST). The reference gas of NH$_3$ (25.92 ppm with an accuracy of ±2%) was diluted to different concentrations using zero air and supplied to the analyzer and a sequence with 5 points of different NH$_3$ concentrations (including zero) were repeated for several times to check the performance of the analyzer. As shown in Fig. S1, the analyzer followed rapidly to changes of the NH$_3$ concentration,
produced stable response under stabilized NH₃ concentrations, and repeated accurately (within the uncertainty) the supplied NH₃ concentrations. The NH₃ analyzer contains an internal inlet aerosol filter, which was cleaned before our campaign. Nevertheless, some very fine particles can deposit on the mirrors of the ICOS cell, leading to gradual decline in reflectivity. However, slight mirror contamination does not cause errors in NH₃ measurements because the mirror reflectivity is continually monitored and the measurement is compensated using the mirror ringdown time. Interferences to NH₃ measurements can be from the sample inlets, for example, due to water condensation or adsorption/desorption effects (e.g., Schwab, 2008; Norman et al., 2009). Such interferences were not quantified but reduced as possibly as we could. PTFE tubing (4.8 mm ID), which is one of the well suited materials for NH₃ measurement (Norman et al., 2009), was used to induced ambient air. The length of the tubing was kept as short as possible (about 5 m) to limit the residue time to less than 3 s. The aerosol filter at the inlet was changed every two weeks. Water condensation was avoided. Nevertheless, we cannot exclude the influence from the adsorption and desorption, which can also occur on dry surfaces. However, this influence should be small at our site, where the NH₃ concentration is very high, and cause mainly a lag in the recorded NH₃ concentration."

Figure S1 Confirmation of the performance of NH3 analyzer using diluted standard gas (mixture NH3/N2). (a) Instrument response to changed NH3 concentration and stability; (b) repeated multipoint calibrations.

Page 6, line 3: please define “human activity” as it seems a very broad concept.
Answer: We have changed "human activity" to "human excrement and waste disposal".

Page 6, line 5: there is no “Zhung et al., 2010” in the reference list.
Answer: This was one of the typos. We have corrected it to “Zhang et al., 2010”.

Page 6, line 8-9: please clarify how can these results “be used in improving NH3 emission inventory and making future emission control policies”.
Answer: We have revised our expression as follows:

"In recent year a few publications about China's national and regional emission inventories of NH3 (e.g., Zhou et al., 2015; Xu et al., 2015, 2016; Kang et al., 2016). However, these inventories are based on bottom-up studies, subject to substantial uncertainties in spatial and temporal variations of NH3 emissions. Ground based observations of NH3 have been sparse. Our measurements, together with others, can be used for validating and constraining models that use bottom-up inventories, and hence help to reveal potential bias in NH3 emission inventory.”

Figure 2: I understand ammonia is shown in log scale because its concentration spanned three orders of magnitude. However I suggest add a sub plot with linear scale so that the variability is comparable at different concentration levels and the individual spikes from pollution episodes are clearer.
Answer: Thank you for your suggestion. We have redrawn Figure 2 as shown below:
Figure 2. Time series of hourly data of NH₃, other trace gases and meteorological parameters measured during the sampling period (a) and a blow-up of the period with extremely high NH₃ values during 27-31 July 2013.

Page 7, line 6: where the urea was applied and how large was the applied area?
Answer: We have added the required information and revised the text as follows:
"The Gucheng station has a farmland of 8.67 hectares. The observation period was in the time of the wheat harvest and corn seeding and growing. Corn was sown and fertilized with about 600 kg of fertilizer per hectare in late June. On 20 July corn was additionally fertilized with 225 to 300 kg of urea per hectare. After this fertilization, there was a raining period. The NH₃ concentration increased rapidly on the seventh day after the urea application on 20 July, peaking during the 27–30 July period (Fig. 2b)."

Page 7, line 29: what are these “trace gases”?
Answer: We have added "such as NOₓ and CO" at the end of "trace gases" to in our revised version.

Page 8, lines 14-15 and page 8, lines 30: these two sentences seem contradict each other.
Page 10, line 1: higher NO3 level than what?

Answer: We have deleted this sentence and changed the sentence before to "On the other hand, NH3 was more efficient in summer to react with SO2 to form (NH4)2SO4. The average concentration of NO3 in PM2.5 was 11.3±9.1 µg m⁻³. The highest value of 109.3 µg m⁻³ was observed at 14:00 on 22 June 2013 at the highest RH (93%) and AWC (910 µg m⁻³)".

Page 10, line 20-25: I suggest add a figure showing the slope and correlations. The SO4 should be normalized with its number of charge. What is the evidence for the existence of NH4H SO4?

Answer: We have added a figure to show the correlations as you suggested and revised the text accordingly.

"During 7-11 August 2013, the relationships of the observed NH4⁺ versus those of SO4²⁻, the sum of SO4²⁻ and NO3⁻ and the sum of SO4²⁻, NO3⁻ and Cl⁻ are presented in Fig. 10. It is known that (NH4)2SO4 is preferentially formed and the least volatile, NH4NO3 is relatively volatile, while NH4Cl is the most volatile. NH4⁺ is thought to be first associated with SO4²⁻, afterwards, the excess of NH4⁺ is with nitrate and chloride (Meng et al., 2015). It is noted that the correlation of NH4⁺ with the sum of SO4²⁻ and NO3⁻ (R=0.91, slope=1.23, with P < 0.01) was better than that of NH4⁺ with SO4²⁻ (R=0.80, slope=1.65, with P < 0.01), suggesting that both SO4²⁻ and NO3⁻ were associated with NH4⁺. As shown in Fig.10, sulfate and nitrate were almost completely neutralized with most of the data above the 1:1 line. A few scattered data below the 1:1 line may be caused by uncertainties in measurements. Little different was found between the regression slopes of NH4⁺ with the sum of SO4²⁻ and NO3⁻ and the sum of SO4²⁻, NO3⁻ and Cl⁻ due to the very low amount of NH4Cl. In this study, the level of NH3 was high enough to neutralize both SO4²⁻ and NO3⁻, and likely to be form (NH4)2SO4 and NH4NO3. In addition to these substances, it is likely that NH3 also reacted with oxalic acid and other dicarboxylic acid to form ammonium oxalate and other organic ammonium aerosols, as discussed above."

![Figure 10](image)

Figure 10. Correlations between [NH4⁺] and [SO4²⁻] (a), [NH4⁺] and [SO4²⁻]+[NO3⁻] (b) and [NH4⁺] and [SO4²⁻]+[NO3⁻]+[Cl⁻] (c) during 7-11 August 2013.

Page 11, line 17: again, it is better to have more evidences showing that NH3 dry deposition dominates NHx deposition.

Answer: This is a speculation. No evidence is available. We have deleted this paragraph.

Page 12, line 2: where is the reference Meng et al. 2017?

Answer: We have added the reference.