Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
06 Feb 2018
Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).
Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic
Pourya Shahpoury1,2, Zoran Kitanovski1,3, and Gerhard Lammel1,4 1Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
2Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
3Department for Food Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
4Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
Abstract. Nitrated and oxygenated polycyclic aromatic hydrocarbons (N/OPAHs) are emitted in combustion processes and formed in polluted air. Their precipitation cycling has hardly been studied. Fresh snow samples at urban and rural sites in central Europe, as well as surface snow from a remote site in Svalbard were analysed for 17 NPAHs, 9 OPAHs, and 11 nitrated mono-aromatic hydrocarbons (NMAHs), of which most N/OPAHs as well as nitrocatechols, nitrosalicylic acids, and 4-nitroguaiacol are studied for the first time in precipitation. In order to better understand the scavenging mechanisms, the particulate mass fractions (θ) at 273 K were predicted using a multiphase gas-particle partitioning model based on polyparameter linear free energy relationships. ∑NPAH concentrations were 1.2–17.6 and 8.8–19.1 ng L−1 at urban and rural sites, whereas ∑OPAHs were 0.3–1.1 and 0.5–2.4 μg L−1 at these sites, respectively. Acenaphthoquinone and 9,10-anthraquinone were predominant in snow dissolved and particulate phase, respectively. NPAHs were only found in the particulate phase with 9-nitroanthracene being predominant followed by 2-nitrofluoranthene. Among NMAHs, 4-nitrophenol showed the highest abundance in both phases. The levels found for nitrophenols were in the same range or lower than those reported in the 1980s and 1990s. The lowest levels of ∑OPAHs and ∑NMAHs were found at the remote site (9.2 and 390.5 ng L−1, respectively). N/OPAHs preferentially partitioned in snow particulate phase in accordance with predicted θ, whereas NMAHs were predominant in the dissolved phase, regardless of θ. It is concluded that the phase distribution of non-polar N/OPAHs in snow is determined by their gas-particle partitioning prior to snow scavenging, whereas that for polar particulate phase substances, i.e. NMAHs, is determined by an interplay between gas-particle partitioning in the aerosol, particle mass size distribution, and dissolution during in- or below-cloud scavenging.

Citation: Shahpoury, P., Kitanovski, Z., and Lammel, G.: Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic, Atmos. Chem. Phys. Discuss.,, in review, 2018.
Pourya Shahpoury et al.
Pourya Shahpoury et al.
Pourya Shahpoury et al.


Total article views: 168 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
127 36 5 168 7 0 4

Views and downloads (calculated since 06 Feb 2018)

Cumulative views and downloads (calculated since 06 Feb 2018)

Viewed (geographical distribution)

Total article views: 159 (including HTML, PDF, and XML)

Thereof 158 with geography defined and 1 with unknown origin.

Country # Views %
  • 1



Latest update: 22 Feb 2018
Publications Copernicus