Supplement of

Characterization and source apportionment of organic aerosol at 260 m on a meteorological tower in Beijing, China

Wei Zhou¹,², Qingqing Wang¹, Xiujuan Zhao³, Weiqi Xu¹,², Chen Chen¹, Wei Du¹,², Jian Zhao¹,², Francesco Canonaco⁴, André S. H. Prévôt⁴, Pingqing Fu¹, Zifa Wang¹, Douglas R. Worsnop⁵ and Yele Sun¹,²,⁶

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
²University of Chinese Academy of Sciences, Beijing 100049, China
³Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
⁴Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
⁵Aerodyne Research, Inc., Billerica, MA, USA
⁶Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Correspondence to: Yele Sun (sunyele@mail.iap.ac.cn)
Figure S1: Mass spectra of five organic aerosol (OA) components resolved at the ground by HR-AMS using positive matrix factorization (PMF): (a) fossil fuel-related OA (FFOA), (b) cooking OA (COA), (c) biomass-burning OA (BBOA), (d) low-oxidized oxygenated OA (LO-OOA), and (e) oxygenated OA (OOA).
Figure S2: (a) Values of Q/Q_{exp}, (b) explained variation (EV) for each factor and total unexplained variation (UEV) for different model runs, (c) the mass concentration of each factor. Note that a means the a-value which ranging from 0 to 0.5. The 4-factor solution of PMF result was also shown here.
(c) BBOA

Fraction of OA signal

m/z (amu)

Mass Conc. (µg m⁻³)

Date & Time

a=0

a=0.1

a=0.2

a=0.3

a=0.4

a=0.5

(LO-OOA)

PMF

m/z (amu)

Mass Conc. (µg m⁻³)

Date & Time

a=0

a=0.1

a=0.2

a=0.3

a=0.4

a=0.5
Figure S3: Mass spectra (left panel) and time series (right panel) of five organic aerosol (OA) components resolved at 260 m by ACSM using multi-linear engine 2 (ME-2): (a) fossil fuel-related OA (FFOA), (b) cooking OA (COA), (c) biomass-burning OA (BBOA), (d) low-oxidized oxygenated OA (LO-OOA), and (e) oxygenated OA (OOA). The 4-factor solution of PMF result was also shown here.
Figure S4: Diurnal variations of (a) fossil fuel-related organic aerosol (FFOA), (b) cooking organic aerosol (COA), (c) biomass-burning OA (BBOA), (d) low-oxidized oxygenated organic aerosol (LO-OOA), and (e) oxygenated organic aerosol (OOA) for different model runs, with the variations of their external tracers on the right axis.
Figure S5: Wind rose plots during the four different periods (a-d), i.e., NHP, APEC, HP1, and HP2.
Figure S6: The correlation between oxygenated organic aerosol (OOA) and sulfate during the four different periods (a-d), i.e., NHP, APEC, HP1, and HP2. The points were color-coded by RH. The regression equations between the two species are also shown.