The influence of particle composition upon
the evolution of urban ultrafine diesel
particles on the neighbourhood scale

Irina Nikolova¹, Xiaoming Cai¹, Mohammed Salim Alam¹,
Soheil Zeraati-Rezaei², Jian Zhong¹, A. Rob MacKenzie¹,³*
and Roy M. Harrison¹,⁴

¹School of Geography, Earth and Environmental Sciences
University of Birmingham, Edgbaston, Birmingham B15 2TT
United Kingdom

²Department of Mechanical Engineering
University of Birmingham, Edgbaston, Birmingham B15 2TT

United Kingdom

3Birmingham Institute of Forest Research (BIFoR)

University of Birmingham, Edgbaston, Birmingham B15 2TT

United Kingdom

4Also at: Department of Environmental Sciences / Center of Excellence in Environmental Studies, King Abdulaziz University, PO

Box 80203, Jeddah, 21589, Saudi Arabia

*Corresponding author: a.r.mackenzie@bham.ac.uk
ABSTRACT

A recent study demonstrated that diesel particles in urban air undergo evaporative shrinkage when advected to a cleaner atmosphere (Harrison et al., 2016). We explore, in a structured and systematic way, the sensitivity of nucleation-mode diesel particles to changes in particle composition and saturation vapour pressure. We use a multi-component aerosol microphysics model based on surrogate molecule (C_{16}-C_{32} n-alkane) volatilities. For standard atmospheric conditions (298 K, 1013.25hPa), and over timescales (ca. 100 s) relevant for dispersion on the neighbourhood scale (up to 1 km), the choice of a particular vapour pressure dataset changes the range of compounds that are appreciably volatile by 2-6 carbon numbers. The nucleation-mode peak diameter, after 100 s of model runtime, is sensitive to the vapour pressure parameterisations for particles with compositions centred on surrogate molecules between C_{22}H_{46} and C_{24}H_{50}. The vapour pressures of components in this range are therefore critical for the modelling of nucleation-mode aerosol dynamics on the neighbourhood scale and need to be better constrained.

Laboratory studies have shown this carbon number fraction to derive predominantly from engine lubricating oil. The accuracy of vapour pressure data for other (more and less volatile) components from laboratory experiments, is less critical. The influence of a core of involatile material is also considered.

The new findings of this study may also be used to identify the Semi-Volatile Organic Compound (SVOC) compositions that play dominating roles in the evaporative shrinkage of the nucleation mode observed in field measurements (e.g. Dall’Osto et al., 2011). As well as reconciling model and observations, identifying the most significant vapour pressure regime for nucleation-mode dynamics offers a way to improve the computing efficiency of urban aerosol models by adopting simplified schemes for those less important components: e.g., an equilibrium scheme for low-carbon-number components and a linear scheme for high-carbon-number components.
1. INTRODUCTION

Ultrafine particles (UFP, with particle diameter $D_p < 100$ nm) have been increasingly a focus of urban air research over the last two decades. The main source of UFP in outdoor urban air is typically road traffic (Kumar et al., 2014). Harrison et al. (2011) reported that on a busy highway in central London, UK, 71.9% of particles by number were traffic-generated; of which 27.4% are found in the semi-volatile exhaust nucleation mode, 38% are in the exhaust solid mode and the remaining 6.5% are from brake dust and resuspension (Harrison et al., 2011). The proximity of the UFP traffic source to the public, and the large number of UFP emitted by traffic, have prompted health-related research that has accrued evidence pointing to the toxicity and potentially harmful effects of UFP on human health (Atkinson et al., 2010). Experimental and modelling studies have advanced our understanding of the behaviour of urban air UFP, e.g. the relevant aerosol dynamics important to the evolution of the UFP in space and time (Allen et al., 2007; Biswas et al., 2007; Dall'Osto et al., 2011; Nikolova et al., 2011; Karnezi et al, 2014).

Nonetheless, key information regarding the size-resolved composition of the UFP is missing, which limits our ability to determine the impact of gas-transfer processes on UFP evolution. Progress has been made in identifying the composition of traffic-generated particles (including the ultrafine fraction) by resolving the so-called ‘unresolved complex mixture’ (largely uncharacterised organics in traditional gas chromatography) via two-dimensional gas chromatography (GC×GC; Chan et al., 2013). Alam et al. (2016) show that emitted ultrafine diesel particles consist of a substantial amount of organic material from both unburnt diesel fuel and engine lubricating oil. They attribute the low molecular weight Semi-Volatile Organic Compounds (SVOCs, having carbon number < 18) predominantly to the unburnt diesel fuel, whereas heavier SVOCs (carbon number > 18) are attributed predominantly to the engine lubricating oil. A typical GC×GC separation is shown in the chromatogram (Figure 1) for diesel engine exhaust emissions in the particulate-phase Aitken mode ($56 < D_p < 100$ nm). Compounds
are separated by volatility along the x-axis (first separation dimension) and by polarity in the y-axis (second dimension). Peak identification is based on retention indices and mass spectral data from the National Institute of Standards and Technology (NIST) library. The majority of chromatography peaks (identified as aliphatic alkanes, lower black polygons) are present between C_{18} to C_{26}, corresponding to the compounds identified in the engine lubricating oil and particulate phase engine emissions (Alam et al. 2017). Bar charts above the chromatogram show the volatility distribution of total alkanes (red) and total identified compounds (black), indicating that, although many hundreds of individual chemical compounds are detected, the majority of the SVOCs emissions consist of alkanes. Both the alkane composition and the total composition distributions show a broad peak centred at C_{25}.

Most primary organic particle emissions are semi-volatile in nature and thus they are likely to evaporate with atmospheric dilution and moving away from the source (Robinson et al., 2007). This has been observed by Dall’Osto et al. (2011; see also Figure 1- S in Supplementary Information) as part of the REPARTEE campaign (Harrison et al., 2012). Dall’Osto et al. (2011) reported a remarkable decrease in the measured nucleation-mode peak particle diameter ($D_{pg,nuc}$) between a street canyon ($D_{pg,nuc} = 23$ nm) and the downwind neighbourhood ($D_{pg,nuc} = 8-9$ nm) ca. 650 m distant in central London (UK). Nucleation formation of new particles in the atmosphere was ruled out as a possible reason for the observed behaviour. Instead, the decrease in particle diameter was attributed to the effect of evaporation and substantial mass loss from the particle surface (hereafter referred to as REPARTEE-like aerosol dynamics). Alam et al. (2016) present the composition of diesel UFP particles measured on a laboratory test-rig (cf. Figure 2-S in Supplementary Information), however the range of variability of the particle composition in emissions is still unknown. It is also not known how the organic material is distributed onto the nucleation and Aitken modes of the UFP distribution in the atmosphere.
Numerical experiments can test the plausibility of possible missing components of the system, and can advise on which experimental studies will be most likely to resolve the existing knowledge gaps. Nikolova et al. (2016) describe a modelling framework that can produce nucleation-mode dynamics consistent with observations. However, missing in that study is the identification of critical thermodynamic parameters and size-resolved composition that could determine or point to a REPARTEE-like aerosol dynamics.

In the present study, we develop a method to search the particle composition space — i.e. the volatility parameter space — to identify a group of surrogate n-alkanes in the C\textsubscript{16}H\textsubscript{34}-C\textsubscript{32}H\textsubscript{66} range that could explain a decrease in the nucleation-mode particle diameter to 10 nm or below as seen in the measurements in London (Dall'Osto et al., 2011). We provide a more robust approach to identify crucial parameters responsible for the UFP behaviour in the atmosphere on the neighbourhood scale including the identification of parameter sets that are incompatible with the observed behaviour in urban air of nucleation mode UFP. We describe a new way to simulate and evaluate the role of the SVOCs composition on the atmospheric behaviour of the size-resolved urban UFP and examine more complex sets of composition involving a non-volatile core. We also assess the critical role of saturation vapour pressure on the size-resolved aerosol dynamics.

In this study we use Lagrangian box-model simulations of the evolution of urban ultrafine diesel particles on the neighbourhood scale (up to 1 km). Key results will be presented and discussed in the main text; more details are provided in the Supplementary Information. The Methodology section describes the modelling approach. The Results section presents the model output. In the Discussion and Conclusions sections, the key findings are summarised with suggestions for further work.

2. METHODOLOGY
We adopt a ‘surrogate molecule’ approach to UFP composition, based on the chemical speciation shown in analyses such as Figure 1. The composition of UFP is simulated as comprising n-alkanes from $\text{C}_{16}\text{H}_{34}$ to $\text{C}_{32}\text{H}_{66}$, which are the most abundant compounds in Figure 1. Previously (Nikolova et al., 2016), we initialised the n-alkane abundance in gas and particle phases using roadside and urban background observations in Birmingham, U.K. (Harrad et al., 2003). In what follows, we retain this roadside gas-phase initialisation (see below), but choose a more general method for initialising the particle composition, in order to test the sensitivity of the results to the initialisation in a systematic way. By adopting a surrogate molecule approach, we are effectively anchoring the model volatility basis set in physico-chemical data, as discussed further below.

The SVOC mass fractions in a particle are represented by a truncated Gaussian distribution that is centred for each model run at a given n-alkane in the range from $\text{C}_{16}\text{H}_{34}$ to $\text{C}_{32}\text{H}_{66}$ with a standard deviation, σ, varying from 1 to 5. Below we call the surrogate n-alkane on which the composition distribution is centred, the modal composition. Example compositions are shown in Figure 2 for a Gaussian distribution centred at $\text{C}_{24}\text{H}_{50}$. A narrower mass distribution, with $\sigma = 1$, focuses predominantly (ca. 40%) on the component, j ($\text{C}_{24}\text{H}_{50}$), at which the distribution is centred, with a smaller (ca. 24%) contribution from the adjacent compounds $\text{C}_{23}\text{H}_{48}$ and $\text{C}_{25}\text{H}_{52}$, and a minor contribution (ca. 5%) from $\text{C}_{22}\text{H}_{46}$ and $\text{C}_{26}\text{H}_{54}$. The contribution of the remaining compounds from the tail of the distribution is very low and less than 1%. However, a wider mass distribution (e.g. $\sigma = 5$) approximates a flat distribution and includes a contribution from the majority or all of the compounds in the n-alkane range $\text{C}_{16}\text{H}_{34}$-$\text{C}_{32}\text{H}_{66}$. Monotonically decreasing distributions occur for distributions centred at either end of the $\text{C}_{16}\text{H}_{34}$-$\text{C}_{32}\text{H}_{66}$ range. Overall, if one excludes the compounds with less than 1% contribution, modal compositions centred at carbon number, j, with $\sigma = 1, 2, 3, 4, \& 5$, contain surrogate compounds +/- 2, 4, 7, 9, and 11 carbon numbers of j (formally, to remain in the 16-32 carbon number range, $[\text{max}(16, j-2):\text{min}(32, j+2)], [\text{max}(16, j-4):\text{min}(32, j+4)], [\text{max}(16, j-7):\text{min}(32, j+7)], [\text{max}(16, j-9):\text{min}(32, j+9)]$, & $[\text{max}(16, j-11):\text{min}(32, j+11)]$.}
We use a Gaussian distribution to represent the composition of the particles because it provides a structured and systematic way to evaluate the organic-aerosol phase partitioning and the amount of organic matter in the UFP. This is important for the behaviour and evolution of the UFP at various timescales relevant for the urban atmosphere. Although there is no reason to discount other functional forms for the composition distribution (e.g., skew Gaussian, log-normal, Pareto, linear, etc), the Gaussian distributions chosen represent a simple two-parameter approach to explore the volatility/composition space available.

2.1 Box Model

The model used in this study is the UFP version (Nikolova et al., 2016) of CiTTy-Street (Pugh et al., 2012); that is, a box-model configuration that accounts for the multicomponent nature of the urban ultrafine particles. The CiTTy-Street-UFP model is used with 15 discrete size bins, with an initial diameter range between 5.8-578 nm in a uniform log-scale. The model can operate in two modes with respect to the aerosol dynamics: Eulerian (fixed particle-diameter grid) or Lagrangian (moving particle-diameter grid). The Eulerian mode is selected when the UFP size distribution is evaluated in the presence of emissions and exchange of particles between boxes (Nikolova et al., 2016). The Lagrangian mode can be selected when the UFP size distribution is evaluated for an isolated air parcel, i.e., when no emissions or transport between boxes are present. In this study, the Lagrangian mode is selected in a zero-dimensional configuration with no emissions or transport in/out of the box. The UFP dynamics (only condensation/evaporation) are simulated such that particles are allowed to grow/shrink to their exact size without any redistribution onto fixed bins in a grid with bin bounds left open in a fully moving diameter scheme (see, for example, Jacobson et al., 1997). The condensation/evaporation process accounts for Raoult’s Law, the Kelvin effect, and a mass accommodation coefficient $\alpha = 1$ (Julin et al., 2014) for all
components. The model results are evaluated at 1, 10 and 100 s. The timescale of 100 s is based on estimate of the travel time on the neighbourhood scale (i.e., horizontal travel distances \(<< 1 \text{ km}\)).

2.2 Modal Composition and Initial Size-Resolved UFP distribution

The initial size-resolved UFP distribution is based on the measurements of Dall’Osto et al. (2011) and reproduced in Figure 1-S in the Supplementary Information. This ultrafine size distribution represents the typical street canyon bimodal size distribution found next to a traffic site, e.g. next to Marylebone Road in London (UK). The distribution has a well-defined nucleation mode with a peak number concentration at \(D_{p,nuc} \sim 23-24 \text{ nm}\). The Aitken mode appears as a shoulder attached to the nucleation mode with a peak number concentration found at \(D_{p,aim} \) between 50-60 nm.

The initial UFP size-resolved composition is represented by modal compositions in the range \(C_{16}H_{34}-C_{32}H_{66}\), as detailed above, and a standard deviation \(\sigma\) from 1 to 5. A non-volatile core is included in the ultrafine particles. While studies broadly agree on the existence of a non-volatile core in the Aitken mode (Biswas et al., 2007; Wehner et al., 2004; Ronkko et al., 2013), it is unclear if nucleation-mode particles contain some non-volatile material or if they are entirely composed of (semi-)volatile SVOC. We have tested the sensitivity to the existence of non-volatile material in the nucleation mode particles by initialising with 1%, 5% or 10% by mass non-volatile material for each modal composition (see Supplementary Information for details of the initialisation); results are discussed later in this paper. Simulations are performed by considering the initialised Aitken mode predominantly non-volatile and coated only with 10% volatile material. This is based on the observations during the REPARTEE campaign (Harrison et al., 2012) that show a fairly stable Aitken mode between the street canyon and the neighbourhood.

The initial size-resolved modal compositions, composition standard deviations and non-volatile core in the nucleation and Aitken modes are detailed in Tables 1-S, 2-S, 3-S and 4-S in the Supplementary Information. We also provide information on the input parameters of the log-normal UFP size distribution for Nucleation and Aitken modes.
2.3 Saturation Vapour Pressures and Gas-Phase Concentrations

The driving force for condensation/evaporation is the difference between the partial pressure of each representative SVOC and its saturation vapour pressure (hereafter vapour pressure) over the ideal solution in the nucleation mode condensed phase. Figure 3 shows vapour pressures above pure, flat, supercooled liquids for n-alkanes in the range C_{16}-C_{32}, following Chickos and Lipkind (2008), Compernolle et al. (2011), the Epi Suite calculator (US EPA, 2017), and the UmanSysProp tool (Topping et al., 2016). The UmanSysProp tool provides vapour pressure data based on the work of Nannoolal et al. (2008) and Myrdal and Yalkowsky (1997) with the boiling points of Joback and Reid (1987), Stein and Brown (1994), and Nannoolal et al. (2004). There is a very substantial range of estimated vapour pressures for the same compounds in Figure 3, especially for the high molecular weight n-alkanes. The reported data agrees within an order of magnitude between C_{16} and C_{19}, but discrepancies of much more than an order of magnitude are evident for the high molecular weight compounds. An enormous difference in the vapour pressure for C_{32} (from 2.66x10^{-5} Pa in Epi Suite down to 3.20x10^{-15} Pa in A-a) is clearly seen in Figure 3. Epi Suite (U.S. Environmental Protection Agency) provides the highest vapour pressures for all selected species in comparison with the rest of the data. Nannoolal et al. (2008) and Myrdal-Yalkowsky (1997) data, both using the boiling point of Joback and Reid (1987), provide similar results and present the lowest vapour pressures among the selected n-alkanes. For the purpose of our sensitivity study, three representative datasets are nominated as an input, namely Myrdal-Yalkowsky (1997) with the boiling point of Nannoolal et al. (2004, called B-c in Figure 3 and hereafter), Compernolle et al. (2011, called Co) and Nannoolal et al. (2008) with the boiling point of Joback and Reid (1987, called A-a). Hereafter we use the legend abbreviations in Figure 3 when referring to these selected vapour pressures, which are towards the upper, mid- and lower end of the reported data. The vapour pressure from the EPI Suite calculator has been omitted from the analysis below because it has been considered in our previous study (Nikolova...
et al., 2016). The gas-phase concentration in the box is initialised with measured gas-phase concentrations in the \(\text{C}_{16}\text{H}_{34} - \text{C}_{32}\text{H}_{66} \) range from a traffic site (Harrad et al., 2003) and reported in Table 6-S in the Supplementary Information. All model simulations are run at 298 K; the effects of temperature on vapour pressure differences as a function of carbon number are discussed in the Supplementary Information.

We have performed a total of \(17 \times 5 \times 3 \times 3 = 765 \) model runs to explore the sensitivity of particle dynamics on the neighbourhood scale.

The Supplementary Information contains information regarding the initial size distribution, modal composition in the nucleation and Aitken modes, and gas-phase concentrations. Accumulation-mode aerosol (particles diameter \(D_p > 100 \text{ nm} \)) is not considered in this study. Accumulation-mode particles have much smaller number concentrations than the nucleation and Aitken modes in polluted urban areas, and are influenced by aging and transport over larger scales.

3. RESULTS

3.1 Effect of composition on Nucleation-Mode Peak Diameter

We consider first model runs in which the vapour pressure data follows Compernolle et al. (2011) and nucleation mode particles initialised with 1\% non-volatile material. The nucleation mode peak diameter \(D_{nuc} \) is evaluated at 1 s and 100 s of model run-time in runs with varying modal composition and composition standard deviations. Figure 4 shows \(D_{nuc} \) (y-axis) at 1s simulation time, for each model run, plotted with respect to the modal composition and composition standard deviations.
deviation, σ.

Figure 4 maps out the effect of nucleation-mode composition at this very early stage in the model simulation. For example, at $\sigma = 1$ and initial mass distribution centred at $C_{20}H_{42}$ (purple solid line with a square marker), the $D_{pg,nuc}$ decreased from 23 nm (initial diameter at $t = 0$ s) to 12 nm in one second due to evaporation of volatile material from the particles. At $\sigma = 2$, $D_{pg,nuc} = 15$ nm, a somewhat larger diameter than for $\sigma = 1$, due to the inclusion of material of lesser volatility in the particle composition and, hence, a decrease in evaporation overall. For modal compositions between $C_{16}H_{34}$ and $C_{20}H_{44}$, an increase in σ leads to a pronounced deceleration in overall evaporation and, hence, a much larger nucleation mode peak diameter at 1 s simulation time. The opposite effect occurs for modal compositions of $C_{22}H_{46}$ and above, i.e. increasing σ for a given modal composition decreases $D_{pg,nuc}$ at 1 s. This is due to the addition of quickly evaporating lower molecular weight n-alkanes.

For a modal composition of $C_{21}H_{44}$, increasing σ makes almost no difference to the model outcome at 1 s; below, we call the modal composition that shows insensitivity to σ for a given model output time, the threshold modal composition. The model output time of 1 s corresponds to the evaporation timescale of $C_{21}H_{44}$ under the current model setting, in analogy to the e-folding time for an exponentially decaying process. That is, at this time, a significant proportion (e.g. $1-e^{-1} \approx 63\%$ for one e-folding time, and $1-e^{-2} \approx 86\%$ for two e-folding times) of the initial mass has been evaporated. Furthermore, the timescales are much shorter for those lower-carbon-number compositions (e.g. $C_{20}H_{42}$, $C_{19}H_{40}$, …) and much longer for those higher-carbon-number compositions (e.g. $C_{22}H_{46}$, $C_{23}H_{48}$, …).

To continue the previous example of the modal composition of $C_{20}H_{42}$, the case with $\sigma = 2$ includes not only less volatile materials (i.e. higher-carbon-number SVOCs), but also an equal
amount of more volatile materials (i.e. lower-carbon-number SVOCs), as indicated by Figure 2. One might suppose that inclusion of the more volatile material would balance the effect of including less volatile materials. However, following our argument above, most of the lower-carbon-number compounds including C_{20}H_{42} will have evaporated before the given time of 1 s due to their having much shorter evaporation timescales than C_{21}H_{44}. Thus any material repartitioned from C_{20}H_{42} to the lower-carbon-number compounds, in changing the model settings from to σ = 1 to σ = 2, will not alter the total amount of evaporation and thus the shrinkage rate.

To take a second example: for C_{22}H_{46}, any material reallocated from C_{22}H_{46} to the higher-carbon-number compounds (due to changing the model setting from σ = 1 to σ = 2) will contribute negligibly to the shrinkage simply because the evaporation timescales for those higher-carbon-number components are much longer than 1 s, whilst the materials repartitioned from C_{22}H_{46} to the lower-carbon compounds will contribute significantly to evaporation in the first second of model run-time, causing the decreasing trend of the curve shown in Figure 4.

One implication of this finding is that, if a timescale of 1 s is of interest, the aerosol dynamics of the system is dominated by the threshold modal composition of C_{21}H_{44}. Those lower-carbon-number compositions evaporate in less than 1 s and are approximately in equilibrium with their respective gas concentrations in the environment. The higher-carbon-number compositions evaporate slowly and at this time of 1 s, only a small or a negligible proportion has been evaporated. A few compositions with highest carbon numbers (e.g. C_{31}H_{64}, C_{32}H_{66}) have evaporated almost nothing. Therefore these compositions are effectively involatile for these conditions.

Nucleation-mode particles have an initial non-volatile mass of 2.9 ng m\(^{-3}\). Modal compositions from C_{16}H_{34} to C_{19}H_{40} and σ = 1 will lose all their volatile mass in 1 s (Table 1). The initial D_{pg,nuc}...
decreases from 23 nm to 9 nm and no volatile material is present, i.e. particles are composed of non-volatile core only. Little or no change is simulated in terms of mass and diameter for modal composition $C_{32}H_{66}$.

At 100 s, the evaporation of existing mass from the surface of the particles is evident also for higher molecular weight components (Table 1). The $D_{pg,nuc}$ at 100 s is plotted in Figure 5. The diameter has further decreased with a more pronounced drop for all σ and modal compositions up to $C_{25}H_{52}$. $C_{25}H_{52}$ is, therefore, the threshold modal composition at this model output time.

The horizontal line drawn at 10 nm on Figure 5 corresponds to evaporation approximating REPARTEE-like behaviour. At $\sigma = 1$, modal compositions in the range $C_{16}H_{34}$-$C_{23}H_{48}$ — and vapour pressures and gas-phase partial pressures as detailed in the methodology — could plausibly explain a particle diameter decrease from 23 nm to ~9 nm. Such a narrow range of surrogate molecular compounds is incompatible with experimental observations such as Figure 1.

At $\sigma = 2$ and $\sigma = 3$, modal compositions from $C_{16}H_{34}$ up to $C_{22}H_{46}$ and $C_{25}H_{54}$, respectively, can plausibly approximate REPARTEE-like behaviour. At $\sigma = 4$ and $\sigma = 5$ modal compositions from $C_{16}H_{34}$ up to $C_{19}H_{40}$ and $C_{17}H_{36}$, respectively, plausibly simulate REPARTEE-like behaviour.

3.2 Effect of Vapour Pressure on the Nucleation-Mode Peak Diameter

We compare the simulated nucleation-mode peak diameter, $D_{pg,nuc}$, at 100 s using the vapour pressure parameterisations B-c, Co and A-a (cf. Figure 3). The nucleation mode particles are initialised with 1% non-volatile material in these simulations. $D_{pg,nuc}$ at 100 s using vapour pressure parameterisations A-a and B-c (see Supplementary Information), shows the same general behaviour as for vapour pressure parameterisation Co, but with a marked change in threshold modal composition. In order of decreasing vapour pressure (Figure 3), the threshold modal composition value changes from $C_{27}H_{56}$ for the B-c parameterisation (Figure 4-S in the
Supplementary Information), to $C_{25}H_{52}$ for Co (Figure 5), to $C_{22}H_{46}$ for A-a (Figure 5-S in the
Supplementary Information). We restrict ourselves to integer values of threshold modal composition to maintain a straightforward connection back to the homologous chemical series in Figure 1, although there is nothing in principle to prevent us from attributing real number values to the threshold modal composition.

There is no composition with $\sigma = 4$ and $\sigma = 5$, at the lower volatility A-a vapour pressure parameterisation, that produces REPARTEE-like behaviour; i.e., decrease of the nucleation-mode peak diameter from 23 nm to 10 nm or below. At $\sigma = 5$, the nucleation-mode particles can lose a maximum of ~9 nm of their initial diameter for modal composition $C_{16}H_{34}$ (please refer to Figure 5-S in the Supplementary Information). Little or no change in mode diameter is simulated for modal compositions between $C_{24}H_{50}$ and $C_{32}H_{66}$ and $\sigma = 1$, indicating that these combinations of composition and vapour pressure parameterisation are essentially involatile for the 100 s simulation time. Modal compositions $C_{29}H_{52}$ ($\sigma = 1$), $C_{19}H_{40}$ ($\sigma = 2$) and $C_{17}H_{36}$ ($\sigma = 3$) can produce REPARTEE-like aerosol dynamics.

Vapour pressure parameterisation B-c has the highest vapour pressure for all compounds in comparison with Co and A-a. Hence, particles in the nucleation mode are subject to a more pronounced evaporation, even for modal compositions $C_{29}H_{52}$ to $C_{32}H_{66}$. Nonetheless, only modal compositions $C_{23}H_{52}$ ($\sigma = 1$), $C_{24}H_{50}$ ($\sigma = 2$), $C_{23}H_{48}$ ($\sigma = 3$), $C_{21}H_{44}$ ($\sigma = 4$) and $C_{20}H_{42}$ ($\sigma = 5$) are able to produce the REPARTEE-like behaviour. Table 2 provides details on the modal compositions and composition standard deviations that approximate the REPARTEE-like aerosol dynamics for B-c, Co and A-a vapour pressure parameterisations.

The difference in 100-s $D_{p,\text{eq}}$ between the highest vapour pressure (B-c) and the lowest vapour pressure (A-a) for all values of σ, is shown in Figure 6. The largest differences (10-14 nm)
between the D_{pg,nuc} occur for modal compositions between C_{22}H_{46} and C_{24}H_{50} and σ = 1, 2, 3. For model run-time of 100 s, the variability of the UFP shrinkage due to the uncertainty of vapour pressure data is highest for the compositions between C_{22}H_{46} and C_{24}H_{50}. From Figure 3, we see that the uncertainty of vapour pressure data increases monotonically with carbon number and is highest for C_{32}H_{66}. However this high level of uncertainty for high-carbon compositions does not exert a significant impact on the model results. We thus conclude that the accuracy of vapour pressure values for very high or very low carbon compositions are not important for neighbourhood-scale aerosol dynamics.

3.3 Effect of Non-Volatile Core on the Nucleation Mode Peak Particle Diameter

To consider how the fraction of involatile core interacts with the SVOCs composition and the vapour pressure parameterisations, we define a ‘100-s effective involatile core’: the nucleation mode peak diameter at 100 s of evaporation. Figure 7 shows results for three non-volatile fractions (initial 1%, 5% and 10% based on mass) and vapour pressures A-a, B-c and Co (cf. Figure 3), for a modal composition of C_{16}H_{34}. Results for the remaining modal compositions are not plotted here because using modal composition C_{16}H_{34} and an evaporation time of 100 s gives the maximum reduction of the nucleation-mode peak diameter for all σ in our model runs. However, we show the results for modal compositions C_{24}H_{50} and C_{32}H_{66} for completeness in the Supplementary Information (Figure 7-S).

Because the mass-size distribution is held constant for each model initialisation (see Supplementary Information), an increase of the non-volatile material in the nucleation mode leads to a decrease in the total amount of n-alkane SVOC available for evaporation, and hence leads to an increase in the nucleation mode ‘dry’ (i.e. involatile core only) diameter from ~9 nm to ~12 nm. For the lowest volatility parameterisation (A-a), only the lightest surrogate compounds near C_{16}H_{34} are sufficiently volatile over the timescale of the model run to drive
evaporation of nucleation mode particles. As σ increases, an increasing number of lower volatility
components are added into the particle composition, causing the 100-s effective involatile core to
increase.

Considering REPARTEE-like behaviour, i.e., shrinkage of the nucleation mode diameter to ca. 10
nm, initial involatile core fractions of 5% or greater do not reproduce the observed behaviour.

4. DISCUSSION AND CONCLUSIONS

The purpose of this study was to evaluate the importance of particle composition and saturation
vapour pressure on the evolution of urban ultrafine diesel particles on the neighbourhood scale
($<< 1$ km) by means of numerical simulations. We present the effect of evaporation on the size-
resolved ultrafine particles and looked at the evolution of the nucleation-mode peak diameter
$D_{pg,nuc}$ depending on particle SVOC composition, vapour pressure, and fraction of involatile core
in the particles. We have used laboratory measurements of the size-resolved composition of the
ultrafine particles as an additional strong constraint on the plausibility of model parameter sets.

We identified a group of surrogate n-alkane compounds in the range $C_{16}H_{34}-C_{32}H_{66}$ that could
explain REPARTEE-like aerosol dynamics measured in London (Dall'Osto et al., 2011): i.e., a
final nucleation-mode peak diameter at 10 nm or below when particles were subject to
evaporation in a timescale of 100 s. Table 2 highlighted the set of parameters in terms of vapour
pressure and modal compositions that produce such REPARTEE-like behaviour.

Table 2 presents the sets of model parameters consistent with diameter reduction due to
evaporation. The question remains, however, to what extent these results are realistic and relevant
for the real-world atmosphere. Standard deviation $\sigma = 1$ for all vapour pressures narrows
significantly the contribution from the n-alkanes ($\max(16, j-2):\min(32, j+2)$) for modal
composition j), present in the initial composition of the nucleation mode particles. At $\sigma = 2$, the main contributing compounds involved in particle composition are the modal composition j and the surrogate molecules $[\text{max}(16, j-4):\text{min}(32, j+4)]$. This means that for the given vapour pressure parameterisation, A-a, and modal composition $C_{19}H_{40}$, the compounds found in the particles would be between $C_{15}H_{32}$ and $C_{23}H_{48}$. However, $C_{20}H_{34}$ is the lower limit of surrogate compounds in the model, so the Gaussian distribution of composition is truncated at the low-carbon-number end in this case. At $\sigma = 3$, the contributing compounds found in the particles are the surrogate molecules in the range $[\text{max}(16, j-7):\text{min}(32, j+7)]$. For a modal composition $C_{17}H_{36}$ and A-a vapour pressure, the range of participating compounds is $C_{16}H_{34}-C_{24}H_{50}$, similar to the case of $\sigma = 2$. At $\sigma = 4$ and 5, the majority of the surrogate molecules in our range of n-alkanes participate in the composition of particles, thus providing a reasonable range over the contribution from diesel fuel and engine lubricating oil. The range at $\sigma = 3$ could be considered as a transition range, while examples at $\sigma = 2$ would have compositions that are rather more limited than available measurements in the Aitken mode (e.g. Figure 1), with a focus on the contribution from the engine lubricating oil. Overall, narrow compositions would imply a strong gradient of SVOCs across the nucleation and Aitken modes whereas broad compositions imply that SVOCs are more or less evenly distributed across the ultrafine size range.

Table 3 shows an additionally constrained range of modal compositions consistent with what we know from field and laboratory measurements combined. The lowest vapour pressure parameterisations (A-a and the very similar B-a, see Figure 3) are less likely, at any modal composition standard deviation (σ), to represent the laboratory and field observations together. The results reported in Alam et al. (2016) and in Figure 1 show that diesel ultrafine particle emissions are composed of a wealth of SVOCs that are mainly identified as straight and branched alkanes in the range $C_{11}-C_{33}$, cycloalkanes ($C_{11}-C_{25}$), PAHs, various cyclic aromatics, alkyl benzenes and decalins. They report emitted particulate size fractionated concentrations of n-
alkanes (cf. Figure 2-S in Supplementary Information) and point out that particles in the 5-100nm
diameter range consist mainly of high molecular weight SVOCs (>C_{24}H_{50}) associated with engine
lubricating oil.

Vapour pressure parameterisations used in this study and plotted in Figure 3, are one of the
crucial input parameters in assessing the rate at which condensation/evaporation can occur,
though they are poorly constrained. We introduced a new concept of threshold modal
composition, i.e. modal composition that is not sensitive to σ for a given model output time. In an
order of decreasing vapour pressure (Figure 3) and timescale of 100 s, the threshold modal
composition value changes from C_{27}H_{56} for the B-c parameterisation (Figure 4-S, Supplementary
Information), to C_{25}H_{52} for Co (Figure 5), to C_{22}H_{46} for A-a (Figure 5-S, Supplementary
Information). Overall, the largest differences (~14 nm) in the 100-s ΔD_{p,nuc} occur between the
highest (B-c) and the lowest (A-a) vapour pressure parameterisations for modal compositions
between C_{22}H_{46} and C_{24}H_{50} and composition standard deviation from 1 to 3. The vapour pressures
of components in this range are therefore critical for the modelling of nucleation-mode aerosol
dynamics on the neighbourhood scale. For components with volatility less than that for the C_{22}H_{46}
surrogate compound used here, all available vapour pressure parameterisations render these
compounds volatile over the 100-s timescale. These components will equilibrate with the gas
phase on these short timescales. Components with volatility greater than that of the C_{24}H_{50}
surrogate are effectively involatile over this timescale for all vapour pressure parameterisations,
and so will remain condensed and out-of-equilibrium with the gas phase on these timescales.

The other variable which will influence evaporation rate is the concentration of vapour
surrounding the particles. In this work, measured roadside vapour concentrations reported by
Harrad et al. (2003) are used (see also Nikolova et al., 2016). These represent an upper estimate
of gas-phase partial pressures away from roadside. Mixing of cleaner urban background air into
the simulated air parcel would lower partial pressures and increase evaporation rates.

The 100-s effective involatile core (the nucleation mode peak diameter at 100 s of evaporation) increased from ~9 nm to ~12 nm. This was attributed to the decrease in the total amount of n-alkane surrogate compounds present for evaporation. As composition standard deviation σ increased, an increasing number of lower volatility components added into the particle composition caused the 100-s effective involatile core to further increase. Considering REPARTEE-like behaviour, i.e., shrinkage of the nucleation mode diameter to ca. 10 nm, an initial involatile core of 5% by mass or greater was not capable of reproducing the observed behaviour in the atmosphere. Because the higher molecular weight (lower volatility) surrogate molecules in the model are essentially involatile over the modelling timescale, the nucleation mode dynamics due to SVOC is confounded with that due to the size of any involatile core present in the particles.

Results (Figure 7) suggest that urban nucleation mode particles should be predominantly volatile in order to produce REPARTEE-like behaviour. In these numerical experiments, the nature of the non-volatile core need not be specified. This core could be composed of one or more low vapour pressure compounds, not affected by condensation/evaporation on the timescale of the model and measurements. On the other hand, as discussed in Nikolova et al. (2016), a non-volatile core could be composed mainly of carbon and possibly some contribution from metal oxides and sulphates. This difference in composition could be relevant to effects on human health. Li et al. (2010) show that diesel truck emissions during idle induce a high level of oxidative stress in human aortic endothelial cells, due to the type of metals and trace metals found in the exhaust, while Xia et al. (2015) argue that traffic-related UFP act to promote airway inflammation due to the rich content of organic species. The relative importance of these particles in affecting human health merits further investigations.
Laboratory exhaust diesel ultrafine particulate measurements are highly dependent on the sampling methods. Measurements of the ultrafine particle composition from a diesel-fuelled engine are still at an early stage and therefore more efforts should be put into developing sampling protocols that target the composition of the nucleation and Aitken modes particles in a realistic manner. There are no robust UFP chemical composition measurements at street scale and therefore such measurements devoted to address in detail the composition of the traffic emitted UFP in the atmosphere are urgently needed. Saturation vapour pressure is another source of large uncertainties; our study lays out a strategy to determine which vapour pressures are most significant in a given modelling scenario.

ACKNOWLEDGEMENTS

This work is part of the FASTER project, ERC-2012-AdG, Proposal No. 320821 sponsored by the European Research Council (ERC).
REFERENCES

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop,

TABLE LEGENDS

Table 1. Total mass M (ng m$^{-3}$) of nucleation mode peak particles at 1 s and 100 s of simulation for modal compositions C$_{16}$H$_{34}$-C$_{32}$H$_{66}$ and composition standard deviations, sigma. For comparison, the initial mass of the non-volatile material in the nucleation mode peak particles is 2.9 ng m$^{-3}$.

Table 2. Modal composition ranges and composition standard deviations, sigma, producing model results that approximate REPARTEE-like behaviour (see main text), for different vapour pressure parameterisations. Initial involatile core in the nucleation mode is set to 1%.

Table 3. Modal composition range and composition standard deviations, sigma, producing more realistic results that approximate REPARTEE-like behaviour. Vapour pressure parameterisation follows Myrdal and Yalkowski (1997; B-c in Figure 3), Compernolle et al. (2011; Co in Figure 3), and Nannoolal 2008; A-a in Figure 3). Column ‘cn’ indicates the carbon number of compounds n in the modal composition with a contribution bigger than 1%.

FIGURE LEGENDS

Figure 1. A GC×GC chromatogram (contour plot) indicating homologous series of compounds identified in diesel engine exhaust emissions. Emissions from a light-duty diesel engine operating at 1800 revolutions per minute and 1.4 bar brake mean effective pressure. Compounds identified in the contour plot are indicated by the coloured polygons – Lower black polygons are n- + i-alkanes; red polygons are monocyclic alkanes; green polygons are bicyclic alkanes; pink polygons are aldehydes + ketones;
and upper black polygons are monocyclic aromatics. Each peak in the contour plot represents a compound present in the emissions; warmer colours (e.g. red) are more intense peaks while colder colours (blue) are smaller peaks. Contour plot were produced by GC Image v2.5. Bar charts above show the volatility distribution of total alkanes (red) and total identified species (black), indicating that the majority of the emissions consist of alkanes. For details of the compound attribution method, see Alam et al. (2017).

Figure 2. An example of nucleation mode UFP compositions, represented as mass fractions for surrogate compounds C\(_n\)H\(_{2n+2}\), \(n = [16:32]\), and described by a Gaussian distribution centred on C\(_{24}\)H\(_{50}\) with standard deviation, \(\sigma\), from 1 to 5.

Figure 3. Vapour pressure data for selected n-alkanes C\(_n\)H\(_{2n+2}\) where \(n = [16:32]\) at 298K.

Abbreviations in the legend point to the source as follows: A and B refer to the vapour pressure data from Nannoolal et al. (2008) and Myrdal and Yalkowsky (1997), respectively; -a, -b and -c refer to the boiling point of Joback and Reid (1987), Stein and Brown (1994) and Nannoolal et al. (2004), respectively; ES refers to Epi Suite calculator (U.S. Environmental Protection Agency); Co to Compernolle et al. (2011); Ch to Chickos and Lipkind (2008).

Figure 4. Nucleation mode peak diameter Dp [nm] at 1 s of simulation depending on the modal composition and the composition standard deviation. The initial nucleation mode peak diameter is at 23nm (not shown on the figure). Vapour pressure data follows Compernolle et al. (2011).
Figure 5. Nucleation mode peak diameter D_p [nm] at 100 s of simulation depending on the modal composition and the composition standard deviation. The initial nucleation mode peak diameter is at 23nm (not shown on the figure). Vapour pressure data follows Compernolle et al. (2011).

Figure 6. $D_{pg,nuc}$ difference between the nucleation mode peak diameter (nm) when using B-c vapour pressure and the nucleation mode peak diameter when using A-a vapour pressure for modal compositions $C_{n16}H_{(2n+2)}$ where $n = [16:32]$.

Figure 7. Nucleation mode peak diameter D_p [nm] at 100 s: the ‘100-s effective involatile core’ for the nucleation mode. Results are shown at 1%, 5% and 10% initial non-volatile material in the nucleation mode particles, modal composition $C_{16}H_{34}$ and for various composition standard deviations.
Table 1. Total mass M (ng m$^{-3}$) of nucleation mode peak particles at 1 s and 100 s of simulation for modal compositions $C_{16}H_{34}$-$C_{32}H_{66}$ and composition standard deviations, sigma. For comparison, the initial mass of the non-volatile material in the nucleation mode peak particles is 2.9 ng m$^{-3}$.

<table>
<thead>
<tr>
<th></th>
<th>C${2}H{6}$</th>
<th>C${3}H{8}$</th>
<th>C${4}H{10}$</th>
<th>C${5}H{12}$</th>
<th>C${16}H{34}$</th>
<th>C${17}H{36}$</th>
<th>C${18}H{38}$</th>
<th>C${19}H{40}$</th>
<th>C${20}H{42}$</th>
<th>C${21}H{44}$</th>
<th>C${22}H{46}$</th>
<th>C${23}H{48}$</th>
<th>C${24}H{50}$</th>
<th>C${25}H{52}$</th>
<th>C${26}H{54}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>3.7</td>
<td>5.4</td>
<td>8.4</td>
<td>12.9</td>
<td>18.5</td>
<td>24.9</td>
<td>31.6</td>
<td>38.1</td>
<td>43.5</td>
<td>46.8</td>
<td>49.3</td>
<td>51.0</td>
<td>52.1</td>
<td>53.3</td>
<td>53.4</td>
</tr>
<tr>
<td>4</td>
<td>8.0</td>
<td>10.6</td>
<td>13.7</td>
<td>17.6</td>
<td>21.8</td>
<td>26.4</td>
<td>31.0</td>
<td>35.4</td>
<td>39.7</td>
<td>43.7</td>
<td>46.2</td>
<td>49.8</td>
<td>52.0</td>
<td>54.2</td>
<td>55.4</td>
</tr>
<tr>
<td>5</td>
<td>12.8</td>
<td>15.3</td>
<td>18.1</td>
<td>21.1</td>
<td>24.4</td>
<td>27.7</td>
<td>31.2</td>
<td>34.4</td>
<td>37.6</td>
<td>40.2</td>
<td>43.0</td>
<td>45.4</td>
<td>47.0</td>
<td>48.4</td>
<td>50.4</td>
</tr>
</tbody>
</table>

1 s

<table>
<thead>
<tr>
<th></th>
<th>C${16}H{34}$</th>
<th>C${17}H{36}$</th>
<th>C${18}H{38}$</th>
<th>C${19}H{40}$</th>
<th>C${20}H{42}$</th>
<th>C${21}H{44}$</th>
<th>C${22}H{46}$</th>
<th>C${23}H{48}$</th>
<th>C${24}H{50}$</th>
<th>C${25}H{52}$</th>
<th>C${26}H{54}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.1</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
</tr>
<tr>
<td>4</td>
<td>6.1</td>
</tr>
<tr>
<td>5</td>
<td>6.1</td>
</tr>
</tbody>
</table>

100 s
Table 2. Modal composition ranges and composition standard deviations, sigma, producing model results that approximate REPARTEE-like behaviour (see main text), for different vapour pressure parameterisations. Initial involatile core in the nucleation mode is set to 1%.

<table>
<thead>
<tr>
<th>Vapour pressure (Sigma)</th>
<th>B-c</th>
<th>Co</th>
<th>A-a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\leq C_{20}H_{42}$</td>
<td>$\leq C_{20}H_{40}$</td>
<td>$\leq C_{20}H_{42}$</td>
</tr>
<tr>
<td>2</td>
<td>$\leq C_{20}H_{40}$</td>
<td>$\leq C_{20}H_{40}$</td>
<td>$\leq C_{20}H_{40}$</td>
</tr>
<tr>
<td>3</td>
<td>$\leq C_{20}H_{40}$</td>
<td>$\leq C_{20}H_{40}$</td>
<td>$\leq C_{20}H_{40}$</td>
</tr>
<tr>
<td>4</td>
<td>$\leq C_{20}H_{40}$</td>
<td>$\leq C_{20}H_{40}$</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>$\leq C_{20}H_{40}$</td>
<td>$\leq C_{20}H_{40}$</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3. Modal composition range and composition standard deviations, sigma, producing more realistic results that approximate REPARTEE-like behaviour. Vapour pressure parameterisation follows Myrdal and Yalkowski (1997; B-c in Figure 3), Compernolle et al. (2011; Co in Figure 3), and Nannoolal et al., 2008; A-a in Figure 3). Column 'cn' indicates the carbon number of compounds n in the modal composition with a contribution bigger than 1%.

<table>
<thead>
<tr>
<th>Sigma</th>
<th>Vapour pressure</th>
<th>B-c</th>
<th>Co</th>
<th>A-a</th>
<th>cn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>C_{21}H_{44}-C_{28}H_{59}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>C_{28}H_{45}-C_{32}H_{48}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td><= C_{32}H_{48}</td>
<td><= C_{38}H_{50}</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td><= C_{38}H_{52}</td>
<td><= C_{42}H_{56}</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
</tbody>
</table>
Figure 1. A GC×GC chromatogram (contour plot) indicating homologous series of compounds identified in diesel engine exhaust emissions. Emissions from a light-duty diesel engine operating at 1800 revolutions per minute and 1.4 bar brake mean effective pressure. Compounds identified in the contour plot are indicated by the coloured polygons – Lower black polygons are n- + i-alkanes; red polygons are monocyclic alkanes; green polygons are bicyclic alkanes; pink polygons are aldehydes + ketones; and upper black polygons are monocyclic aromatics. Each peak in the contour plot represents a compound present in the emissions; warmer colours (e.g. red) are more intense peaks while colder colours (blue) are smaller peaks. Contour plot were produced by GC Image v2.5. Bar charts above show the volatility distribution of total alkanes (red) and total identified species (black), indicating that the majority of the emissions consist of alkanes. For details of the compound attribution method, see Alam et al. (2017).
Figure 2. An example of nucleation mode UFP compositions, represented as mass fractions for surrogate compounds \(C_nH_{(2n+2)} \), \(n = [16:32] \), and described by a Gaussian distribution centred on \(C_{24}H_{50} \) with standard deviation, \(\sigma \), from 1 to 5.
Figure 3. Vapour pressure data for selected n-alkanes C_nH_{2n+2} where $n =\{16:32\}$ at 298K.

Abbreviations in the legend point to the source as follows: A and B refer to the vapour pressure data from Nannoolal et al. (2008) and Myrdal and Yalkowsky (1997), respectively; -a, -b and -c refer to the boiling point of Joback and Reid (1987), Stein and Brown (1994) and Nannoolal et al. (2004), respectively; ES refers to Epi Suite calculator (U.S. Environmental Protection Agency); Co to Compernolle et al. (2011); Ch to Chickos and Lipkind (2008).
Figure 4. Nucleation mode peak diameter D_p [nm] at 1 s of simulation depending on the modal composition and the composition standard deviation. The initial nucleation mode peak diameter is at 23nm (not shown on the figure). Vapour pressure data follows Compernolle et al. (2011).
Figure 5. Nucleation mode peak diameter D_p [nm] at 100 s of simulation depending on the modal composition and the composition standard deviation. The initial nucleation mode peak diameter is at 23nm (not shown on the figure). Vapour pressure data follows Compernolle et al. (2011).
Figure 6. $D_{pg,nuc}$ difference between the nucleation mode peak diameter (nm) when using B-c vapour pressure and the nucleation mode peak diameter when using A-a vapour pressure for modal compositions $C_{n}H_{(2n+2)}$ where $n = [16:32]$.
Figure 7. Nucleation mode peak diameter Dp [nm] at 100 s: the ‘100-s effective involatile core’ for the nucleation mode. Results are shown at 1%, 5% and 10% initial non-volatile material in the nucleation mode particles, modal composition C_{16}H_{34} and for various composition standard deviations.