Interactive comment on “Comparison of the optical properties of pure and transported anthropogenic dusts measured by ground-based Lidar” by Zhijuan Zhang et al.

Zhijuan Zhang et al.

zhangzj2010@lzu.edu.cn

Received and published: 9 February 2018

1. The ‘anthropogenic dust’ is defined in a confusing way. The definition of the anthropogenic dust in the literatures (Tegen and Fung, 1995; Huang et al., 2015) is clear, that is the dust produced by human activities on disturbed soils. I cannot understand why the authors proposed a new definition for it (Lines 94-95). It seems that the anthropogenic dust in the manuscript means the dust (taking no account of its source) mixed with pollutants. Why not simplify it to “polluted dust”?

Sorry for my confusing definition of ‘anthropogenic dust’ in this manuscript. Actually in this manuscript one of the dusts I focused is transported anthropogenic dust. It is a kind
of dust that originates from dust source regions and mixes with anthropogenic polluted aerosols during transportation. We used this word ‘anthropogenic dust’ is mainly to strengthen the human influence and then to study the different optical properties of dust from natural source and influenced by human activities. So owing to the word ‘anthropogenic dust’ is not properly used, now we change it to ‘polluted dust’ after serious consideration.

2. Can the subtype of dust aerosols be identified using the surface weather record and boundary layer height? I doubt. Firstly, the PBL height derived from the Lidar may be in low accuracy during the dusty days owing to the impact of the dust layer. Secondly, the PBL height shown in Figs.3 and 5 doesn’t have a diurnal variation, why? Thirdly, according to figure.6, the authors claimed that the dust aerosols detected at SACOL originate from the Mongolia (Lines 292-293). Noting that the air parcels passed through Mongolia at an altitude of much more than 4500m, thus the dust is unlikely to originate from the Mongolia. Fourthly, still according to figure.6, the authors concluded that the dust is mixed with anthropogenic pollution when passing through Baotou and Yulin city. Again, the air parcels passed through Baotou and Yulin at an altitude of more than 4500m, the dust is unlikely to be mixed with anthropogenic pollution. Moreover, the dust may enter the atmosphere when the air parcels were in contact with the surface (starting at 00:00 UTC, 31 Mar 2010 in Fig.4, and 00:00 UTC, 30 Jul 2010 in Fig.6) or even prior to the start date of the back-trajectory simulations, doesn’t it? The results will be more reliable if both the pathway and the altitude of the air parcels were considered. When was the first dust case detected? On 19 October 2009 (see line 253) or 31 March 2010 (see line 743)?

The detection method used in this manuscript refers to the literature of Huang et al. (2015). Pure dust and transported anthropogenic dust can be distinguished by using a combination of ground-based L2S-SM-II dual-band polarization lidar data, surface weather station records and PBL heights. Firstly, we agree with you that the PBL height derived from lidar is in low accuracy during the dusty days. The height of dust
when in the dust storm is usually below the PBL and the occasion is rare that above the PBL it is small transported dust particles and below PBL it is dusty days. If there is dust storm, we didn’t calculate the PBL and we regarded all the detected dust as pure dust. Secondly, the BLH, derived from soundings conducted three or four times daily in summer, tends to peak in the early afternoon, and the diurnal amplitude of PBL is higher in the northern and western subregions of China than other subregions. During a diurnal cycle, the BLH is typically shallow (a few hundred meters) at night due to the strong near-surface stability, and the PBL can be well developed and reach several kilometers in the afternoon (Guo J. et al., 2016). Guo S. et al. (2014) found a lack of diurnal variation, but a cycle of 4–7 days in the aerosol properties, indicating a reduced PBL diurnal trend during polluted periods. But the PBL height shown in Figs.3 and 5 doesn’t have a diurnal variation. That’s because deriving PBL using lidar is better in daytime. Daytime observations were used from CALIPSO to ensure that residual layers were not picked out in nighttime data (Liu et al., 2015). Another two cases were picked out as shown in figure 3 and 5. Third, we agree with you that the pathway and altitude should both be considered. Now we are finding appropriate cases. Last, first dust case detected is 31 March 2010. We have corrected it in the manuscript.

3. According to the manuscript, there were two types of pure dust: a) dust layer within the PBL and recorded by the weather stations; b) dust layer above the PBL and not recorded by the weather stations. It seems that the later one is more likely to be “pure dust”, is there any different between their optical properties?

Yes, they are different between their optical properties. As the results of this manuscript show, the linear volume depolarization ratio of polluted that is smaller than that of pure dust which means the polluted dust is more spherical. The color ratio of polluted dust from dusty days is smaller than that of pure dust which means the polluted dust is smaller in size.

4. With regard to Figs. 1 and 2, the discussions in the main text did not match the plots. Actually, the Fig.2 rather than Fig.1 shows the structure of the Lidar. The Fig. 1
was not discussed in the main text.

Thank you for your kind reminding. As you said, in this manuscript Fig.2 shows the structure of the Lidar. The Fig.1 was not discussed in the main text and now we add this part in the manuscript.

5. Color ratio is an indicator for particle size. A large value represents big particle and a small value represents small particle. Generally speaking, anthropogenic aerosols are mainly composed of fine mode particles, why it has a large color ratio (see line 219)?

Sorry for the confusion that caused by my poor expression. The transported anthropogenic dust in this manuscript is actually polluted dust. It is a mixture of pure dust from remote dust source regions and anthropogenic polluted aerosols. So it is larger than the dust from remote dust source regions that did not mix with polluted aerosols. There are two kinds of pure dust in this manuscript, one is form remote dust source regions and one is from dusty days. Compared with the pure dust from remote dust source regions, the color ratio of polluted dust (anthropogenic aerosols, as you mentioned in the above question) is larger.

Specific comments

1. Check the order of the subtitle of Fig 9. The right panel should be the results of pure dust.

Thank you for your kind reminding. We have corrected in the corresponding position.

2. Mistake in lines 309-310: ‘From the results above we can see the depolarization of pure dust is larger than that of anthropogenic dust which means the pure dust is more sphere.’ ‘the pure dust is more sphere’ should be ‘the anthropogenic dust is more sphere’

Sorry for the mistake that we have made. We have corrected it in the manuscript.

3. Mistake in lines 426-427: ‘The mean value of pure dust is larger than that of an-
thropogenic dust, which means that the pure dust is more a spherical’ ‘the pure dust is more a spherical’ should be ‘the anthropogenic dust’.

Sorry for the mistake that we have made. We have corrected it in the manuscript.

4. Lines 103-104: remove ‘mixed with the anthropogenic dust’.

Sorry for the mistake that we have made. We have corrected it in the manuscript.

5. Lines 143-147: there is no essential difference between ‘the environment of the mountain top is almost natural, and is rarely affected by human activity’ and ‘building at the top of the mountain, the influence of houses and human activity is escaped’, delete the later one.

Sorry for the mistake that we have made. We have corrected it in the manuscript.

6. Line 359, change ‘found’ to ‘used’.

Sorry for the mistake that we have made. We have corrected it in the manuscript.

7. Line 474-477, duplicate sentence. Remove ‘Results showed that the backscattering depolarization ratio was smaller for all particle sizes in polluted dust.

Sorry for the mistake that we have made. We have corrected it in the manuscript.