Heterogeneous uptake of ammonia and dimethylamine into sulfuric and oxalic acid particles

Meike Sauerwein¹ and Chak Keung Chan¹,²,³

¹Division of Environment, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
²Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
³School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong

Correspondence to: Chak Keung Chan (Chak.K.Chan@cityu.edu.hk)

Abstract. Heterogeneous uptake is one of the major mechanisms governing the amounts of short-chain alkyl-amines and ammonia (NH₃) in atmospheric particles. Molar ratios of aminium to ammonium ions detected in ambient aerosols often exceed typical gas phase ratios. The present study investigated the simultaneous uptake of dimethylamine (DMA) and NH₃ into sulfuric and oxalic acid particles at gaseous DMA/NH₃ molar ratios of 0.1 and 0.5 at 10%, 50%, and 70% relative humidity (RH). Single gas uptake and co-uptake were conducted under identical conditions and compared. Results show that the particulate dimethyl-aminium/ammonium molar ratios (DMAH/NH₄⁺) changed substantially during the uptake process, which was severely influenced by the extent of neutralization and the particle phase state. In general, DMA uptake and NH₃ uptake into concentrated H₂SO₄ droplets were initially similarly efficient, yielding DMAH/NH₄⁺ that were similar to DMA/NH₃ ratios. As the co-uptake continued the DMAH/NH₄⁺ gradually dropped due to a preferential uptake of NH₃ into partially neutralized acidic droplets. At 50% RH, once the sulfate droplets were neutralized, the stronger base DMA displaced some of the ammonium absorbed earlier, leading to DMAH/NH₄⁺ ratios up to four times higher than the corresponding gas phase ratios. However, at 10% RH, crystallization of partially neutralized sulfate particles prevented further DMA uptake, while NH₃ uptake continued and displaced DMAH⁺, forming almost pure ammonium sulfate. Displacement of DMAH⁺ by NH₃ has also been observed in neutralized, solid oxalate particles. The results can explain why DMAH/NH₄⁺ ratios in ambient liquid aerosols can be larger than DMA/NH₃ despite of an excess of NH₃ in the gas phase. The uptake of DMA to aerosols consisting of crystalline ammonium salts, however, is unlikely, even at comparable DMA and NH₃ gas phase concentrations.

1. Introduction

NH₃ and short-chain alkyl-amines (R₃N) gases are frequently detected in the atmosphere. Total emissions of NH₃ largely dominate those of R₃N (Schade and Crutzen, 1995). The characteristic ambient mixing ratios of NH₃ and R₃N are in the order of several parts per billion by volume and parts per trillion, respectively (Ge et al., 2011; You et al., 2014; Zheng et al., 2015). Many of the emission sources of R₃N such as agricultural and industrial activities also release NH₃ (Behera et al., 2013). Hence, elevated R₃N gas concentrations are likely accompanied by enhanced concentrations of NH₃ (Schade and Crutzen, 1995; Zheng et al., 2015). Despite the two to three orders of magnitude difference in gas phase concentration, particle phase aminium-to-ammonium (R₃NH/NH₄⁺) molar ratios of up to 0.2 have been detected. For instance, average R₃NH/NH₄⁺ molar ratios of 0.0045–0.17 were measured in PM₁.₈ in urban and rural continental air masses over urban and rural sites in Ontario, Canada (VandenBoer et al., 2011), 0.02 in PM₁₀ in an urban area of Arizona, USA (Youn et al., 2015) and 0.23 in particles with a vacuum aerodynamic diameter of 50-800 nm in California, USA (Sorooshian et al., 2008).

Large R₃NH/NH₄⁺ ratios in particles below 20 nm have been correlated to enhanced particle formation (VandenBoer et al., 2011; Youn et al., 2015). Laboratory studies (Almeida et al., 2013; Jen et al., 2014), field measurements (Mäkelä et al., 2001; Kulmala et al., 2013), as well as computational methods (Kurtén et al., 2008; Olenius et al., 2013) have indicated that clusters
of sulfuric acid (H₂SO₄) and DMA are more stable than clusters formed from NH₃-H₂SO₄ nucleation, and thus R₃N may contribute more to new particle formation than NH₃ does. Furthermore, R₃N are able to replace NH₄⁺ from ammonium-sulfuric acid clusters (Bzdek et al., 2010a; Bzdek et al., 2010b) and ammonium nitrate nanoparticles (Lloyd et al., 2009), despite the presence of NH₃ in the gas phase (Lloyd et al., 2009). If not directly participating in the formation of particles, R₃N can also efficiently partition into clusters and small particles (Kürten et al., 2016) to promote particle growth.

However, R₃N are not only detected in the nucleation mode (Mäkelä et al., 2001; Smith et al., 2008), but also in aerosols exceeding 100 nm in diameter. In fact, mass loadings of alkylaminium ions (R₃NH⁺) are the highest in particles with a diameter of 140-560 nm, both in urban and rural, as well as in marine aerosols (Müller et al., 2009; VandenBoer et al., 2011; Youn et al., 2015). These aminium ions were observed to be internally mixed with sulfate, nitrate or organic acids (Sorooshian et al., 2008; Müller et al., 2009; Pratt et al., 2009; Smith et al., 2010; VandenBoer et al., 2011; Healy et al., 2015; Youn et al., 2015), suggesting that heterogeneous reactions forming aminium salts are an important sink for atmospheric R₃N (You et al., 2014; Tao et al., 2016). On the other hand, enhanced NH₄⁺ concentrations in particles of the accumulation mode typically dominate R₃NH⁺ concentrations, leading to low observed R₃NH/NH₄ molar ratios. A second peak of R₃NH/NH₄ in the coarse mode has been reported (VandenBoer et al., 2011; Youn et al., 2015), although the causes of these higher ratios in larger particles are not resolved to date.

Chemical characteristics of R₃N and their salts can deviate significantly from those of NH₃ and its salts. For instance, due to the electron donor effect of the alkyl groups, the nitrogen atom of R₃N molecules is more nucleophilic towards hydronium ions, making them stronger bases than NH₃ (Breitmaier and Jung, 2005). Furthermore, short-chain methyl- and ethyl- aminium nitrates, chlorides, and sulfates possess higher osmotic coefficients than their ammonium counterparts (Bonner, 1981; Macaskill and Bates, 1986; Chu et al., 2015; Sauerwein et al., 2015; Rovelli et al., 2016), which increases the aerosol hygroscopicity and liquid water content. Besides, secondary and tertiary aminium sulfates remain in liquid state even at RH below 3% (Chan and Chan, 2013) and they effectively lower the deliquescence RH of the particles when mixed with ammonium sulfate (Qiu and Zhang, 2012). Particles with a large R₃NH/NH₄ ratio are consequently less acidic and could absorb more water than ammonium sulfate ((NH₄)₂SO₄) can, even at low RH.

Particulate R₃NH⁺ concentrations in ambient aerosols are positively correlated with particle acidity, liquid water content, and RH (Sorooshian et al., 2008; Rehbein et al., 2011; VandenBoer et al., 2011; Youn et al., 2015). Numerous laboratory uptake experiments of R₃N into H₂SO₄ (Wang et al., 2010), ammonium nitrate, sulfate and bisulfate aerosols have confirmed such correlations (Lloyd et al., 2009; Bzdek et al., 2010b; Qiu et al., 2011; Chan and Chan, 2012, 2013). However, the conditions in those experiments would also promote heterogeneous uptake of NH₃ (Swartz et al., 1999). Although there are many studies on the uptake of either NH₃ (Huntzicker et al., 1980; McMurry et al., 1983; Daumer et al., 1992; Swartz et al., 1999; Hanson and Kosciuch, 2003; Liggio et al., 2011) or R₃N (Bzdek et al., 2010a; Bzdek et al., 2010b; Wang et al., 2010; Bzdek et al., 2011; Qiu et al., 2011; Chan and Chan, 2012) into acidic particles, none has been on the simultaneous uptake of NH₃ and R₃N to date.

Barsanti et al. (2009) were the first to model the relative importance of R₃N (using DMA as a model compound) and NH₃ in gas-particle partitioning. They showed that even when NH₃ gas phase concentrations exceeded those of R₃N by an order of magnitude, aminium R₃NH⁺ ions can still dominate NH₄⁺ in aqueous acetic acid particles, due to their stronger basicity. Yet, owing to the lack of chemical and physical parameters available, the study relied strongly on estimations of group contributions.
The present study is the first to investigate the simultaneous uptake of R$_3$N and NH$_3$ by acidic particles with analysis of particle phase composition. We explored the temporal changes in R$_3$NH/NH$_4$ molar ratios during the uptake of DMA and NH$_3$ into H$_2$SO$_4$ and oxalic acid (H$_2$C$_2$O$_4$) particles at different DMA/NH$_3$ gas ratios (0.1 and 0.5) and RH (10% and 50% RH). We used supermicron particles because they enabled a longer observation period and phase state identification, and sufficient mass concentrations for studying the temporal changes in particle composition during the uptake until equilibrium was reached. The results also reveal the influence of the extent of neutralization and the change in phase state on the uptake behavior of both gases. DMA was chosen as the model R$_3$N due to its atmospheric abundance (Müller et al., 2009; Rehbein et al., 2011; Hu et al., 2015; Youn et al., 2015) and unique characteristics, such as forming a non-crystallizing DMAS droplet even at low RH (Chan and Chan, 2013) and its higher hygroscopicity than that of (NH$_3$)$_2$SO$_4$.

2. Methods

Supermicron particles deposited on a hydrophobic substrate were placed in a temperature- and humidity-controlled flow-cell coupled to a Raman microscope setup (Yeung et al., 2009). DMA and NH$_3$ at low ppm levels were generated by directing a humidified N$_2$ carrier flow through permeation tubes holders containing tubes filled with pure liquefied NH$_3$ and DMA at controlled temperatures. The two gases were mixed and introduced to four cells in parallel. Post reaction samples were analyzed by ion chromatography (IC). R$_3$N and NH$_3$ gas molecules and aminium ions in solution tend to adsorb on surfaces (Dawson et al., 2014; Hansen et al., 2013; Robacker and Bartelt, 1996). To ensure accuracy of the gas ratio, the system was conditioned for several hours to minimize wall losses either one or both gases prior to the uptake experiment (see supplemental information for detailed descriptions). A schematic of the experimental setup is shown in the supplemental information Fig. S1.

2.1 Generation and detection of NH$_3$ and DMA gases

A humidified N$_2$ carrier flow was directed into two electronic mass flow controllers (MKS Instruments Inc., GE50A) at 1000 ± 10 cm3 min$^{-1}$ and subsequently introduced into glass permeation tube holders (Fig. S1). The tube holders consisted of a water coated coil and a chamber containing the permeation tubes of either NH$_3$ or DMA (VICI Metronics, Dynacal), as well as a thermocouple to regulate the temperature to 293.3±0.2 K. Permeation rates were determined gravimetrically to calculate the mixing ratio of each gas.

Combination of the DMA flow (0.15 or 0.9-1.0 ppm) and the NH$_3$ flow (1.8-1.9 ppm) resulted in DMA/NH$_3$ ratios of 0.07±0.01 and 0.46±0.04 at 10% RH, as well as 0.07±0.01 and 0.49±0.02 at 50% RH for experiments with H$_2$SO$_4$ (Table 2), and 0.49±0.02 at 10% and 0.52±0.01 at 70% RH for experiments with H$_2$C$_2$O$_4$. We denote these experimental conditions for uptake into H$_2$SO$_4$ by 0.1, 0.5, 0.1, 0.5, and for uptake into H$_2$C$_2$O$_4$ by ox0.5, ox0.5, and ox0.5. For co-uptake gas flows from both permeation devices were mixed and split equally into four custom-made PTFE flow cells. Single gas flows were generated by bypassing one of the permeation tubes. The cells were maintained at 296.3±1.0 K and RH of 10%±2% and 50%±3%. The system including the PTFE cells was equilibrated with the NH$_3$ and/or DMA gas for about 12 h before the start of each experiment. The stability of the generated gas concentrations arriving at the PTFE cells was confirmed by ion-molecule reaction mass spectrometry (IMR-MS, AirSense, V&F Analyse-und Messtechnik GmbH).

2.2 Particle generation

The stock solutions of 30 wt% H$_2$SO$_4$ or highly concentrated H$_2$C$_2$O$_4$ were prepared from ultrapure water (18.2 MΩ) and concentrated H$_2$SO$_4$ (97 wt%, Acros Organics, titrated against standardized NaOH) or H$_2$C$_2$O$_4$ powder (99%, Aldrich). For each experiment, a few mL of the solution were drawn into a piezoelectric particle generator (MicroFab Tech., Inc.).
Approximately 2000±100 droplets of 60 µm in diameter were deposited on a hydrophobic film (FEP membranes, YSI Inc.) The sample was then inserted into a clean flow cell connected to humidified high purity N₂ (~1000 cm³/min) to equilibrate to either 10 or 50% RH for 45 min. The sample films were subsequently transferred into the PTFE reaction cells. RH conditioning and transfer of films took place inside a glove bag (GLOVEBAG, Glas Col®) to avoid exposure of the samples to room air and humidity.

2.3 Particle analysis

For each condition, the experiment was repeated in different time intervals to complete one time series. The samples were removed from the cell and submerged in ~12 mL of ultrapure water for extraction and subsequent chemical analysis. Both cation and anion contents were measured by IC (Metrohm, 881 compact IC Pro) as described by Sauerwein et al. (2015).

IC yields total values for DMA and NH₃ species, and hence the distribution between molecules and ions in the samples could not be determined. In the following we use DMAH to represent \(n\text{NH}_2(\text{CH}_3)_2^+ + n\text{NH}(\text{CH}_3)_2 \) and NH₄ to represent \(n\text{NH}_4^+ + n\text{NH}_3 \) in the particles, where \(n \) denotes the molar amounts of each compound. The same is true for the distribution between acidic species. Hereafter the molar amount of the total sulfate is indicated by \(\text{SO}_4 = n\text{H}_2\text{SO}_4 + n\text{HSO}_4^- + n\text{SO}_4^{2-} \), and the total oxalate is indicated by \(\text{C}_2\text{O}_4^- \). Molar ratios in the particle phase are accordingly denoted by DMAH/NH₄, DMAH/SO₄, and NH₄/SO₄, while gaseous molar ratios are denoted by DMA/NH₃.

DMAH concentrations of the first measurement points for particles in the 0.1 to 10% and 0.1 to 50% conditions lay at the lower end of the IC calibration range. A conservative estimation of up to 15% uncertainty for these values would decrease the DMAH/NH₄ ratio by 0.02, which has negligible impacts on the observed trends and values. Uncertainties as shown in the figures were calculated based on errors resulting from IC measurements. Additional uncertainties of particle phase DMAH and NH₄ resulting from independent parameters such as the variations in total particle count, and uncertainties in generation and determination of gas concentrations also led to some fluctuations beyond the quantified errors.

After 35-38 hours, samples showed no significant changes in particle composition and were thus considered to be in equilibrium. Equilibrated samples were divided into two groups, with one directly undergoing IC analysis and the other placed in clean cells under an N₂ atmosphere for > 5 hours prior to IC analysis to further investigate their compositional stability in an amine- and ammonia- free environment.

Furthermore, uptake experiments at 0.5 to 10% and of NH₃ at 10% RH were repeated with particles of 60-200 µm in size in flow cells equipped with a quartz window to track alterations in chemical composition and concurrent morphological changes with a Raman microscope (Renishaw RM series) as described by Yeung et al. (2009) and Chu et al. (2015). A 20 mW Argon ion laser (514.5 nm) was deployed for sample excitation and a 1800 g mm⁻¹ grating was selected to obtain spectra in the range of 200 to 4000 cm⁻¹ with a resolution of 1.4 cm⁻¹.

3. Results and discussion

Uptake of NH₃, DMA and their mixtures into H₂SO₄ particles were conducted at 10% and 50% RH. Single component uptake served as the base case for comparison. Additional experiments with H₂C₂O₄ at 10 and 70% RH were conducted at a gas ratio of 0.5 only and are discussed in Sect. 3.3. A summary of all the experimental conditions is given in Table 1.
The uptake of alkaline gases into acidic droplets involves a series of inter-related processes including gas phase diffusion, immediate reaction of gas molecules colliding with the aerosol surface (Eq. 1a and b) or adsorption and dissolution (Eq. 2a and b), followed by further liquid phase diffusion and proton transfer in the bulk particle (Eq. 3a and b) (Swartz et al., 1999; Kulmala and Wagner, 2001; Davidovits et al., 2006; Pöschl et al., 2007; Kolb et al., 2010).

\[
\begin{align*}
\text{NH}_3(g) + H_2O^{(\text{surface})} & \rightleftharpoons NH_4^+(sf) + H_2O \\
\text{NH}(\text{CH}_3)_2(g) + H_3O^{(\text{surface})} & \rightleftharpoons \text{NH}(\text{CH}_3)_2H^+(sf) + H_2O \\
\text{NH}_3(g) + H_2O & \rightleftharpoons \text{NH}_3(aq) + H_2O \\
\text{NH}(\text{CH}_3)_2(g) + H_2O & \rightleftharpoons \text{NH}(\text{CH}_3)_2(aq) + H_2O \\
\text{NH}_3(aq) + H_3O^+ & \rightleftharpoons \text{NH}_4^+(aq) + H_2O \\
\text{NH}(\text{CH}_3)_2(aq) + H_3O^+ & \rightleftharpoons \text{NH}(\text{CH}_3)_2H^+(aq) + H_2O
\end{align*}
\]

The above equations and related reaction steps indicate a strong acidity dependence, thus with increasing neutralization, the extent of DMA and NH₃ uptake may change. Here, the extent of (stoichiometric) neutralization of the particles is defined as the number of moles of alkaline species over moles of acidic species, \(X = (\text{DMAH+NH}_3)/\text{SO}_4\) or \(X = (\text{DMAH+NH}_3)/\text{C}_2\text{O}_4\) and is hereafter referred to as the neutralization ratio. In the course of the uptake experiments, the neutralization ratio ranged from highly acidic \((X = 0)\) to neutral \((X = 2)\). However, not all equilibrated particles were completely neutralized, as will be further discussed in Sect. 3.4.

3.1 Single gas uptake

At 50% RH, the uptake of NH₃ fully neutralized the H₂SO₄ droplets within 2 hours, forming aqueous \(((\text{NH}_3)_2\text{SO}_4)\) droplets (Fig. 1, grey diamonds). At 10% RH, NH₃ uptake (Fig. 1, open diamonds) was similar to that at 50% RH initially, until \(X\) exceeded 1.1, where crystallization significantly retarded the subsequent uptake. The continued increase in particulate NH₃ even after crystallization indicates that crystalline acidic particles were still susceptible to uptake, but imposed bulk diffusion limitations that retarded the uptake. Neutralization was not complete within the measured period of 15 hours.

Uptake of DMA at the mixing ratio of 0.15 ppm (Fig. 1, triangles) was significantly slower than that at 1 ppm (Fig. 1, squares). Like the initial uptake of NH₃, DMA uptake did not differ significantly between 10% and 50% RH, until approaching equilibrium at DMAH/SO₄ ratios of 1.5±0.1 at 10% RH, and 1.7±0.1 (DMA₀.15ppm) and 1.9±0.1 (DMA₁ppm) at 50% RH (Table 1, \(X_{\text{equl}}\)). There was no indication of phase change in these particles even at 10% RH. This is consistent with earlier studies, where secondary and tertiary methyl and ethyl-aminium sulfates were described as hygroscopic, non-crystallizing salts at RH ≤ 10% (Qiu and Zhang, 2012; Chan and Chan, 2013; Chu et al., 2015). Furthermore, these studies showed that upon drying of synthesized DMAS droplets (DMAH/SO₄ ratios = 2) with amine-free air, DMA evaporated from the particles, leading to a final DMAH/SO₄ ratio of 1.5 at < 3% RH (Chan and Chan, 2013; Chu et al., 2015). In our experiment, the same equilibrium DMAH/SO₄ ratio of 1.5 was established at 10% RH, despite a continuous supply of DMA gas.

3.2 DMA-NH₃ co-uptake

Figure 2 depicts the temporal profiles of DMAH/SO₄, NH₃/SO₄ and \(X\) at the different gas ratios and RH. At 10% RH particles solidified during the experiment (Fig. 2a and b, indicated by crosshatched areas) and needed 2 to > 18 hours (for 0.5 and 0.10%, respectively) to completely neutralize sulfate. Upon reaching neutralization, NH₃ had almost completely displaced the
DMAH absorbed earlier from the solid particles. The phase transition and DMAH displacement at 10% RH will be further discussed in Sect. 3.2.3 and 3.2.4.

At 50% RH SO$_4^{2-}$ was completely neutralized (Fig. 2c and d) within 1-2 hours. Neutralization in droplets was followed by a partial displacement of NH$_4^+$ by DMA, reaching a final equilibrium composition enriched in DMAH (Sect. 3.2.2). The results show that the DMAH/NH$_4^+$ ratios varied substantially during uptake before stable compositions were reached. In the following, we will discuss the dependence of gas uptake on the phase state and neutralization ratio of the particles.

3.2.1 Uptake into liquid acidic droplets

Figure 3 displays the changes in the DMAH/NH$_4^+$ ratios as a function of time for the four co-uptake experiments. For the first measurement point under each condition, the DMAH/NH$_4^+$ ratio (Table 2, $t_{initial}$) was close to the gas phase DMAH/NH$_3^+$ ratio (indicated by grey bands in Fig. 3), implying that initially both gases partitioned equally effectively into highly concentrated H$_2$SO$_4$. For instance, in panels a and b the DMAH/NH$_4^+$ ratios in the acidic droplets were 0.07±0.01 and 0.43±0.04, comparable to gaseous DMAH/NH$_3^+$ ratios of 0.07 and 0.46, respectively. Starting from the second measured values, a clear decrease in DMAH/NH$_4^+$ ratios can be observed. Figure 4 compares the uptake of DMA and NH$_3$ in single and mixed gas experiments. The initial uptake trends of single gas and co-uptake do not deviate noticeably, indicating that DMA and NH$_3$ uptake took place independent of each other. Consequently, earlier reported uptake coefficients from single gas uptake NH$_3$ and DMA into sulfuric acid may be used for co-uptake analysis.

Swartz et al. (1999) measured the heterogeneous uptake of NH$_3$ into a chain of 70 wt% and 40 wt% H$_2$SO$_4$ droplets (equilibrated at 10% and 50% RH, respectively), and obtained gas phase diffusion-corrected uptake coefficients (γ_{NH_3}) of 0.8 and 1.0, respectively. The highly effective uptake into concentrated H$_2$SO$_4$ at pH < 0 was attributed to surface reactions, i.e., NH$_3$ molecules reacting with interfacial hydronium ions (H$_3$O$^+$) without prior solvation (Swartz et al., 1999). As H$_2$SO$_4$ droplets in the present study have a solution pH ≤ -0.9 (Wexler and Clegg, 2002) at both 50% RH (43 wt% H$_2$SO$_4$) and 10% RH (64 wt% H$_2$SO$_4$), protonation without prior dissolution may take place for NH$_3$ in the first few minutes of uptake when pH is very low.

Wang et al. (2010) reported an uptake coefficient (γ_{DMA}) of about 0.03 for DMA uptake into concentrated H$_2$SO$_4$ of ≥ 62 wt% (≤ 10% RH) at 283 K. The coefficient is noticeably smaller than that of close to unity reported for NH$_3$ uptake into H$_2$SO$_4$ of similar acidity (Swartz et al., 1999). In the current study, NH$_3$ uptake into fresh H$_2$SO$_4$ droplets was not overwhelmingly dominant. However, as the uptake continued, the DMAH/NH$_4^+$ ratios decreased by 30-40% for all experimental conditions within the first 1-2 hours (Fig. 3 a-d), which indicates a preferential uptake of NH$_3$. Since the gas concentrations of both NH$_3$ and DMA were constant, it is likely that the decreasing particle acidity and increasing neutralization ratio caused this change.

To date no systematic study on the relevance of surface protonation has been conducted for DMA uptake. However the gas phase basicity of NH$_3$ and its derivatives (such as R$_3$N) have been shown to correlate well with the differential heats of chemisorption on acidic (zeolite) surfaces (Parrillo et al., 1993). Since DMA possesses a slightly higher gas phase basicity than NH$_3$ (Brauman et al., 1971; Parrillo et al., 1993), DMA gas molecules might, similar to NH$_3$, have a high affinity to interfacial H$_3$O$^+$. Surface protonation on fresh H$_2$SO$_4$ particles may thus be important for the initial uptake of both NH$_3$ and DMA, which could explain why the initial particle phase ratio is equal to the gas phase ratio.
Swartz et al. (1999) reported a threshold pH ≤ 0 for surface protonation to occur and a drop in γ_{NH3} by one order of magnitude when the pH was increased to above zero. Hanson and Kosciuch (2003) observed a similar drop in γ_{NH3} during the uptake of NH3 into H2SO4, when the solution approached ammonium bisulfate (NH4HSO4) composition. Using the E-AIM model (Wexler and Clegg, 2002, www.aim.env.uea.ac.uk/aim) we estimated that H3O+ decreased by about 40% as the neutralization ratio increased from X = 0 (H2SO4 droplets) to 0.5. Once the particles were half neutralized (X = 1, bisulfate stoichiometry), the solution pH were estimated to exceed zero. Hence if we assume a similar threshold as reported by Swartz et al. (1999), surface protonation (Eq. 1a and b) may no longer be relevant when particles approached bisulfate composition.

Despite the increase in pH when neutralization ratios exceeded unity (X = 1), there were sufficient amounts of H3O+ to support the uptake of both gases. Hence, the presence of NH3 gas molecules at 14 times higher concentration than DMA had little effect on the uptake of DMA into acidic particles. The same can be said for DMA, which seemed not to have influenced NH3 partitioning into acidic droplets. This finding clearly differentiates the group of hydrophilic R2N from more hydrophobic organics such as hexadecane, hexadecanol (Daumer et al., 1992) or typical atmospheric organic vapor (Liggio et al., 2011), which form an organic film that limits the access of NH3 to the inorganic core.

The independent uptake of DMA and NH3 at 10% RH prevailed until the particles underwent phase change (Fig. 4a and c, dotted lines). Once particles effloresced, a preferential uptake of NH3 was observed, which resulted in a significant drop in DMAH/NH4 (Fig. 3a and b), as discussed in Sect. 3.2.3. At 50% RH the co-uptake of DMA and NH3 was independent from each other until the particles reached complete neutralization (X = 2.0) (Fig. 4b and d, solid lines). Once neutralized, only DMA uptake continued (Fig. 4b) with concurrent displacement of NH4 (Fig. 4d) as discussed next.

3.2.2 Displacement of NH4 from neutralized droplets

When approaching full neutralization, where both gases started to compete for limited available H3O+ ions, the DMAH/NH4 ratios in droplets of the 0.150% and 0.550% experiments started to increase (Fig. 3c and d, solid line). In solution DMA (pK_a = 10.64; Hall, 1957) is a stronger base than NH3 (pK_a = 9.21), consequently it has a higher affinity for H3O+ than NH3 does.

Thus, while the fraction of DMA species gradually increased, some of the NH4 dissociated (Eq. 3a, reverse reaction) and NH3 was released back to the gas phase (Eq. 2a, reverse reaction).

Similar displacement of NH4 by alkyl-amines has been reported for aqueous particles of ammonium bisulfate, chloride, oxalate and sulfate at 50 and 75% RH (Chan and Chan, 2012, 2013) and nitrate at 20% RH (Lloyd et al., 2009). Lloyd et al. (2009) observed the displacement of NH3 by trimethylamine (TMA) from water-coated NH4NO3 nanoparticles despite an excess of NH3 gas (nTMA/g/nNH3(g) = 0.1), although they did not report the percentage of NH4 displaced. Their gas phase conditions were comparable to our experiment at 0.150%. In our experiment DMA was able to displace about 9% of the initially absorbed NH3 (Table 2, χ_{NH3}). The equilibrium DMAH/NH4 ratio in the 0.150% experiment was 0.18±0.02 (Table 2, t_{equil}), which indicates an enhancement of DMA by a factor of 2-3 in the particle phase compared to the gas phase. Particles in the 0.550% experiment equilibrated at a DMAH/NH4 ratio of 1.77±0.13, hence 3-4 times higher than the gas ratio, with 50% of the initially absorbed NH4 displaced (Table 2). Yet it should be noted that equilibrated particles at 0.550% possessed a neutralization ratio of only X = 1.8±0.1, hence the particle was incompletely neutralized (see Sect. 3.4) despite the presence of 1.9 ppm NH3 and 0.9 ppm DMA in the surrounding gas phase.

The experimental equilibrium DMA/NH3 and DMAH/NH4 ratios (Table 2, t_{equil}) were compared with calculations using the E-AIM Model (Model II, 296 ± 1 K, no solid formation; Wexler and Clegg, 2002). Measured equilibrium DMAH/SO4, NH3/SO4 were used as input parameters. The E-AIM predicted DMA/NH3 gas ratios that would equilibrate over particles in
our experiments are 0.14 and 0.01, and hence below the experimental DMA/NH₃ gas ratios of 0.49 and 0.07. These results imply that E-AIM would predict DMAH/NH₄ even larger than our reserved ratios. They are also consistent with earlier simulations by Barsanti et al., (2009), who reported that DMAH/NH₄ in submicron acetic acid droplets can be significantly larger than their gas phase ratio, even if gas concentrations of NH₃ dominated DMA by one to three order of magnitudes.

Our measurements are experimental evidence that DMA preferentially partitions into neutralized liquid sulfate particles over NH₃, due to its stronger basicity. DMA then partially displaces NH₃ from neutralized aqueous particles even when the NH₃ gas concentration is one order of magnitude greater than the DMA gas concentration.

3.2.3 Phase transition and uptake into solid acidic particles

NH₃ (single gas) uptake into H₂SO₄ at 10% RH decelerated noticeably when the NH₄/SO₄ ratio exceeded 1.1 (Fig. 5, filled triangles). A comparable retardation occurred in the co-uptake experiments 0.1₀⁻⁰ and 0.5₁₀⁻⁰, but at NH₄/SO₄ ratios of about 1.5 (Fig. 5a and b, open triangles). We used Raman microscopy (Chu et al., 2015) to further investigate the retardation of the reactions and possible changes in the physical state for the single uptake of NH₃ (Fig. 6) and the co-uptake experiment 0.5₁₀⁻⁰ (Fig. 7). Note that each sample was composed of several hundreds of closely deposited droplets deposited on a substrate. The droplets were not expected to reach the same cation-to-sulfate stoichiometry, nor exhibit phase transitions at the exact same time. For the acquisition of in-situ Raman signals, we selected individual particles just before and right after phase transition to represent the phase change process.

During the single gas uptake of NH₃ into H₂SO₄ droplets at 10% RH, crystallization occurred within the first 60 min. As shown in Fig. 6, during efflorescence of acidic droplets (Fig. 6, spectra 2 and 3) the HSO₄⁻ characteristic bands at 590 cm⁻¹ and 1035 cm⁻¹ (Dawson et al., 1986; Lund Myhre et al., 2003) transformed to doublets at 579/609 cm⁻¹ and 1013/1043 cm⁻¹ of solid particles (Fig. 6, spectra 2 and 3), suggesting the formation of crystalline NH₄H₂SO₄. As uptake continued, a gradual shift towards (NH₄)₂SO₄ was indicated by an increase in the SO₄²⁻ stretching mode 975 cm⁻¹ and a decrease in the HSO₄⁻ band at 579 cm⁻¹ (Fig. 6, spectrum 4). The retarded diffusion of NH₃ from the surface to the interior of the crystals is likely to have limited the uptake, explaining why the spectra did not fully resemble (NH₄)₂SO₄ (Fig. 6, spectrum 5) within the measured period.

Efflorescence was also observed for the co-uptake of NH₃ and DMA at 10% RH. Under 0.5₁₀⁻⁰ conditions, most particles experienced the first morphological change after ~40–60 min of uptake, forming fairly spherical solids with long lined patterns (Fig. 7, yellow rectangular). Raman spectral analysis of particles that had only just transitioned from liquid to solid phase state (Fig. 7, spectrum 3) showed an emerging SO₄²⁻ band at 984 cm⁻¹. Meanwhile the HSO₄⁻ frequencies near 590 cm⁻¹ and 1030 cm⁻¹ in the droplet (Fig. 7, spectrum 2) shifted towards 597 cm⁻¹ and 1043 cm⁻¹ in the solid particle (Fig. 7, spectrum 3) but both remained single broad peaks, without signs of scissoring as observed for bisulfate from NH₃ single gas uptake (Fig. 6, spectra 3 and 4). The observed features more closely resemble the spectral characteristics of letovicite (NH₄)₂H(SO₄)₂ (Colberg et al., 2004) than those of NH₄H₂SO₄ or (NH₄)₂SO₄.

During NH₃-DMA co-uptake the absorbed DMAH seems to have suppressed the precipitation of NH₄H₂SO₄ in particles with a composition of 1.1 < NH₄/SO₄ < 1.5, so that the phase change started only at a NH₄/SO₄ around 1.5 (Fig. 5a and b). It can be seen from the 0.1₁₀⁻⁰ experiment (Fig. 5a) that this suppression of NH₄H₂SO₄ precipitation even occurred at DMAH/NH₃ as low as 0.05 at the time of phase change (Table 2, lₚ). R₆NH/NH₃ ratios in ambient samples near emission sites can be up to 0.23 (Sorooshian et al. 2008). Since DMAH is the most frequently detected amonium ion in aerosols (Müller et al., 2009; Rehbein et al., 2011; Hu et al., 2015; Youn et al., 2015), DMAH/NH₃ ratios in aerosols can possibly reach ≥ 0.05 and thus DMA can
affect the crystallization behavior of NH₄–H–SO₄–salts in atmospheric particles. Furthermore, by retaining the particles of a composition of 1.1 < NH₃/SO₄ < 1.5 at 10% RH in liquid phase, the presence of DMA species accelerated the uptake of NH₃ compared to single gas NH₃ uptake where crystallization retarded the uptake into particles with NH₃/SO₄ > 1.1.

After the NH₄–DMAH–mixed particles crystallized, the uptake of NH₃ continued at a slower pace (Figure 5a and b), while DMA was no longer absorbed and the DMAH/NH₃ ratio continued to decrease (Fig. 3a). In earlier reports of single gas RₓN uptake (where RₓN might be methylamine, DMA, TMA or triethylamine), RₓN (in the absence of NH₃) were observed to effectively adsorb onto NH₄HSO₄ surfaces in a coated flow reactor (Qiu et al., 2011). In the presence of NH₃ in our experiments, however, DMA was not taken up by acidic crystalline particles. Liu et al. (2012) reported steric effects to influence the uptake effectiveness of primary, secondary and tertiary methyl-amines into solid citric and humic acid measured in a Knudsen cell reactor, where smaller RₓN molecules are more effectively absorbed than larger ones. A similar effect of steric hindrance may have caused the preferential uptake of the smaller NH₃ molecules over DMA in our experiments. Besides steric reasons, the release of more lattice enthalpy during the formation of (NH₄)ₓH(SO₄)₂ and (NH₄)₂SO₄ may have made the uptake of NH₃ also thermodynamically favorable.

DMA/NH₃ ratios at the time of neutralization (t_neutral) reached 0.032±0.001 for the 0.10% condition and 0.19±0.01 for the 0.50% condition (Table 2), showing a slight enrichment of NH₃ in the particle over the gas phase.

3.2.4 Displacement of DMAH from solid neutralized particles

After reaching full neutralization, both Raman spectral analysis and IC results of solid particles indicated a gradual reduction of DMAH and increase of NH₃ in the particle phase, which is also reflected in decreasing DMAH/NH₃ ratios in Fig. 3a and b. At 10–20 minutes after the phase transition, DMAH–NH₄–mixed particles experienced a second morphological change to a polycrystalline structure (Fig. 7, grey rectangular, spectrum 4). Raman spectra of these particles showed a vanishing HSO₄⁻ band at 1043 cm⁻¹ and a significant increase in the SO₄²⁻ band at 980 cm⁻¹, which indicates the (full) crystallization of sulfate (Lee et al., 2008). We suspect that the observed morphological changes are related to the formation of a (NH₄)₂SO₄ shell structure due to DMAH displacement by NH₃. DMAH was subsequently slowly displaced from the particle core, which eventually led to the formation of crystalline (NH₄)₂SO₄ with only traces of DMAH left inside the particles, as revealed by IC analysis. It is interesting to note, that the DMAH/NH₃ ratios of equilibrated particles for 0.510% and 0.110% were both 0.02 (Table 2). Even if the NH₃ gas concentration is only twice of that of DMA, NH₃ can almost completely displace DMAH from the solid particle.

Since different gas mixtures resulted in similar particle composition, calculations by E-AIM based on these equilibrated particle compositions yielded similar gas phase DMA/NH₃ ratios for the 0.110% and 0.510% experiments of 0.57 and 0.32, with an uncertainty of up to 40% due to strong temperature sensitivity. The modelled results are qualitatively in agreement with the experimental results, confirming that despite considerable amounts of DMA in the gas phase, the equilibrated solid sulfate particle would predominantly contain NH₄.

Overall it can be concluded that, for DMA-NH₃ co-uptake, NH₃ is favorably absorbed into acidic liquid particles, except for very concentrated H₂SO₄, where DMA and NH₃ seem to partition similarly effectively. Unless the particles either crystallize or are close to full neutralization, DMA and NH₃ in general do not influence each other’s uptake and act as if they were the only gas present. For uptake into neutralized particles, DMA is favorably absorbed into liquid neutral particles due to its stronger basicity leading to partial NH₄ displacement depending on gas phase NH₃ concentration. NH₃ is favorably taken up
into solid neutral particles and can almost completely displace DMAH due to the thermodynamically favorable formation of (NH₄)₂SO₄ crystals and steric reasons.

3.3 Uptake into oxalic acid particles

We performed additional experiments with H₂C₂O₄ to further elucidate the influence of phase state on the co-uptake process. H₂C₂O₄ is a model organic acid frequently detected in ambient aerosols (Kawamura and Ikushima, 1993; Deesari et al., 2000; Yao et al., 2003; Yu et al., 2005; Müller et al., 2009). Efflorescence of aqueous supermicron H₂C₂O₄ particles occurs at 51.8%-56.7% RH, forming anhydrous solids (Peng et al., 2001). We chose to examine the co-uptake of DMA and NH₃ into initially solid and initially liquid particles at 10% and 70% RH, respectively.

Figure 8 compares the co-uptake into H₂C₂O₄ and H₂SO₄ particles at DMA/NH₃ = 0.5. Within the first hour of uptake into solid H₂C₂O₄ particles at 10% RH (Fig. 8a, inverted triangles), the neutralization ratio increased to X = 0.3. In the subsequent 15 hours, further major increase was not observed, suggesting that the gas uptake into anhydrous H₂C₂O₄ particles was incomplete and may have been limited to adsorption on the surface and outer layers of the particles. DMAH/NH₄ ratio (Figure 8b) stayed roughly constant.

The uptake at 70% RH was monitored under the microscope for subsequent phase changes (Fig. S2). Within 15 minutes of uptake, liquid particles transformed into round, irregularly patterned solids, suggesting that the uptake of even small amounts of gas caused a phase change in these H₂C₂O₄ particles. The formation of ammonium salts via the uptake of NH₃ has earlier been shown to decrease the hygroscopicity of H₂C₂O₄ particles and change their phase state (Peng and Chan, 2001; Ma et al., 2013). We found that prior to phase change, a ring of small satellites formed around the droplets. This observation can be most plausibly explained by the pinning effect caused by the fast evaporation of the solvent from a droplet deposited on a substrate (Deegan et al., 1997). Similar halo formation has been described for other atmospheric particles (Hamacher-Barth et al., 2016) but we believe that this effect does not have a significant impact on the general uptake observations here. The co-uptake trends into solidified H₂C₂O₄ particles of the ox0.57% experiments were comparable to those of 0.5₁₀% and 0.5₅₀% into H₂SO₄ (Fig. 8a), indicating that the solids formed during phase change (dashed line) did not retard the uptake and that diffusion inside the particle bulk was not a limiting factor of the uptake. In fact, the particles were almost completely neutralized within the first hour of reaction. Similar observations have been reported by Li et al. (2015), who investigated NH₃ uptake into submicron organic particles produced from oxidation of isoprene, a precursor gas of H₂C₂O₄ (Ervens et al., 2014). Li et al. (2015) showed that even at RH down to <5%, NH₃ uptake was not restricted by diffusion. Unlike the co-uptake into partially neutralized H₂SO₄ particles at 10% RH, where DMA uptake discontinued once the particles formed solids, uptake of DMA into solid, partially neutralized H₂C₂O₄ particles remained effective.

Within two hours of uptake, the solid particles of ox0.57% experienced a morphological change and transformed into crystals (Fig. S2). Concurrently, the DMAH/NH₄ ratios dropped from 0.34 to <0.1 (Table 2, t eql), showing that NH₃ can displace DMAH from neutralized oxalate particles, which may trigger the transformation to a crystalline morphology. Final particle morphologies show a particle with a monoclinic or orthorhombic crystal structure, a shape typical of ammonium oxalate (Blake and Clegg, 2009), surrounded by small residuals of the satellite particles (Fig. S2).

3.4 Stability of reaction products and re-volatilization of NH₃ and DMA

As shown in Sect.3.1, single gas DMA uptake into H₂SO₄ equilibrated at incompletely neutralized droplets at both 10% and 50% RH with X eql between 1.5 and 1.9 (Table 1). Under amine-free atmosphere, the neutralization ratio of these equilibrated particles decreased to X₉₂ = 1.2±0.2 at 10% RH and X₉₂ = 1.7±0.2 at 50% RH, as a result of DMA evaporation (Table 1).
Similar degassing of methyl and ethyl-amines from synthesized salts has been reported in earlier studies (Chan and Chan, 2013; Chu et al., 2015; Lavi et al., 2015).

To summarize the influence of NH$_3$ in the volatilization of DMA from particles and the formation of partially neutralized equilibrated droplets, we compared co-uptake experiments 0.5$_{10\%}$ and 0.5$_{50\%}$ to single gas uptake DMA$_{1ppm10\%}$, DMA$_{1ppm50\%}$. Figure 9 illustrates the maximum neutralization, equilibrium and composition of particles exposed to RH-conditioned N$_2$ atmosphere for the four mentioned experiments. In co-uptake experiments, particles reached full neutralization (Fig. 9d and j). The total cation content in particles at 10% RH at the time of neutralization was $> 80\%$ NH$_4$ (Fig. 9d). When approaching equilibrium, DMAH was displaced by NH$_4$ and the NH$_4$ content increased to 98% (Fig. 9e). Although the cation composition had changed, no decrease in X beyond the margin of error was observed (Fig. 9d to e). When the particles were exposed to pure N$_2$ (Fig. 9f), the particle composition did not change due to the formation of a stable crystal. At 50% RH, DMA partially displaced NH$_4$ from neutralized particles, with an increase in DMAH/SO$_4$ from 0.7 at the point of maximum neutralization (Fig. 9j) to 1.3 at equilibrium (Fig. 9k). Accompanying the increase in DMAH was a decrease in the total neutralization ratio from X = 2 to about X = 1.8 (Fig. 9j to k), indicating that more NH$_4$ has degassed than was replaced by DMA. Hence while re-volatilization of DMA was responsible for the decrease in X for DMA$_{1ppm50\%}$, degassing of NH$_3$ could be responsible for the decrease in X in co-uptake experiments. Once exposed to N$_2$, even more NH$_4$ evaporated from DMAH-NH$_4$ mixed particles (Fig. 9k to l), which further increased the acidity of these particles. It should be noted, that the degassing of NH$_3$ was negligible for particles of the 0.1$_{50\%}$ condition (Fig. 2c). At the point of maximum neutralization they contained large amounts of NH$_4$ and a DMAH/NH$_4$ ratio below 0.1, which seems to have prevented re-volatilization. Under exposure to N$_2$, DMAH–NH$_4$– mixed particles that were originally in liquid phase state and contained large amounts of DMAH (Fig. 9 h, k) exhibited a decrease in X, reflecting that the equilibrium compositions of these droplets were sensitive to changes in DMA and NH$_3$ gas concentrations.

4. Summary and Conclusions

The co-uptake of DMA and NH$_3$ into H$_2$SO$_4$ and H$_2$C$_2$O$_4$ particles was investigated at different RH and DMA/NH$_3$ gas ratios. The stoichiometric neutralization ratio and physical state of the particles were the two major factors influencing DMA and NH$_3$ uptake.

In the uptake into fresh, very acidic H$_2$SO$_4$ droplets at 10% and 50% RH, both DMA and NH$_3$ partitioned effectively, leading to a DMAH/NH$_4$ ratio comparable to the DMA/NH$_3$ gas ratio. Subsequently, the DMAH/NH$_4$ ratio decreased as NH$_3$ uptake was faster. The uptake of DMA and that of NH$_3$ were independent of each other because of the availability of abundant acids, as long as the particles did not reach neutralization nor undergo phase change. This result may explain why the highest particulate R_3NH^+ mass concentrations are detected in acidic aerosols at low NH$_3$/SO$_4$ ratios (Youn et al., 2015).

In fully neutralized droplets at 50% RH, the limited availability of H$_3$O$^+$ ions for acid-base reactions led to a partial displacement of NH$_4$ by the stronger base DMA. This process yielded equilibrium particle compositions enriched in DMAH by up to four times the gas phase ratio. It also potentially explains DMA partitioning into the neutralized condensed phase despite excess NH$_3$ (Sorooshian et al., 2008; Lloyd et al., 2009; Rehbein et al., 2011; VandenBoer et al., 2011). When NH$_4$ is present in neutralized DMAH–rich sulfate droplets, DMA from the gas phase can displace NH$_4$ from droplets, and prompt additional NH$_3$ to evaporate to form non-neutralized particles. Hence, the presence of DMAH can prevent aqueous sulfate particles from full neutralization. In our experiments NH$_3$ re-volatilization happened at DMAH/NH$_4$ ratio of above 0.5, which is at the upper end of DMAH/NH$_4$ measured in atmospheric particles (Sorooshian et al., 2008; VandenBoer et al., 2011; Youn et al., 2015). At 10% RH, the phase changed from liquid to solid during uptake. This instantly inhibited further
DMA uptake, while NH$_3$ uptake continued. Once the particles were fully neutralized, NH$_3$ displaced DMAH from crystal structures and finally formed (NH$_4$)$_2$SO$_4$ with little residual DMAH, regardless of the DMA gas concentrations in the surrounding.

H$_2$C$_2$O$_4$ particles at 70% RH were initially liquid, but transformed into non-crystalline solids after absorbing small amounts of DMA and NH$_3$. Subsequent uptake was similar to that of liquid sulfate particles. The formation of solid, partially neutralized H$_2$C$_2$O$_4$ particles did not hinder DMA uptake. Fully neutralized oxalate particles then crystallized upon displacement of DMAH by NH$_3$, similar to the displacement of DMAH from crystalline sulfate particles. Anhydrous H$_2$C$_2$O$_4$ at 10% RH was rather inert and took up small amounts of DMA and NH$_3$, presumably by adsorption only.

In solid neutralized particles, NH$_3$ uptake is sterically and thermodynamically favored to form (NH$_4$)$_2$SO$_4$ or ammonium oxalate crystals by displacing DMAH. Hence, once ambient aerosols are in solid state, they are unlikely to take up R$_3$N, even when R$_3$N and NH$_3$ gas concentrations are of the same magnitude.

The DMA and NH$_3$ gas concentrations and sulfate neutralization ratios used in the present study are high and are only likely in the vicinity of emission sources or in emission plumes (Sorooshian et al., 2008; Ge et al., 2011). Under such conditions, particle neutralization ratios are likely to be high (Sorooshian et al., 2008), and NH$_3$ and amines compete for particulate H$_3$O$^+$ ions, where DMA can displace NH$_4$ in liquid and NH$_3$ can displace DMAH in solid particles. Although laboratory experiments have shown that in the absence of NH$_3$, DMA could partially displace NH$_4$ from solid ammonium salts including (NH$_4$)$_2$SO$_4$ and NH$_4$NO$_3$ (Lloyd et al., 2009; Qiu and Zhang, 2012; Chan and Chan, 2012, 2013), this scenario is unlikely under atmospheric conditions with abundant NH$_3$.

In this study, we used DMA as a proxy for atmospherically relevant R$_3$N. As different R$_3$N and their sulfate and oxalate salts possess different hygroscopic and crystallization properties (Qiu and Zhang, 2012; Clegg et al., 2013; Chan and Chan, 2013; Chu et al., 2015; Sauerwein et al., 2015) which can all influence uptake behavior, the findings here obtained may not be generalizable to all short-chain aliphatic amine compounds. It should also be mentioned that particle size may affect the gas uptake kinetics, as well as the crystallization behavior of the particle. When applying the results of this study to submicron particles, one may expect a considerably faster uptake and thus changes in DMAH/NH$_4$ ratios in acidic particles. Yet the overall trends of displacement reactions based on phase state and neutralization ratio as well as crystallization inhibition by DMAH are considered applicable to particles of smaller size. Nevertheless, the observed results may be most relevant to aerosols larger than 1 µm, which were found in the atmosphere to have the highest R$_3$NH/NH$_4$ ratio (VandenBoer et al., 2011; Youn et al., 2015). To improve our understanding of the mechanisms governing the simultaneous exchange of NH$_3$ and R$_3$N between the gas and particle phases, particle size dependence should be investigated in the future.

Acknowledgements

This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (GRF grant no. 600112 and 16300214).

References

Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K.,
Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Ondala,
A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart,
S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,
Vehkamäki, H., and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the

Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the atmosphere: a review on emission

26, 148–149, 1981.

Breitmaier, E. and Jung, G.: Organische Chemie: Grundlagen, Stoffklassen, Reaktionen, Konzepte, Molekülstrukturen; 129

Bzdek, B. R., Ridge, D. P., and Johnston, M. V.: Amine exchange into ammonium bisulfate and ammonium nitrate nuclei,

Bzdek, B. R., Ridge, D. P., and Johnston, M. V.: Size-dependent reactions of ammonium bisulfate clusters with

Bzdek, B. R., Ridge, D. P., and Johnston, M. V.: Amine reactivity with charged sulfuric acid clusters, Atmos. Chem. Phys.,

Chu, Y., Sauerwein, M., and Chan, C. K.: Hygroscopic and phase transition properties of alkyl amineium sulfates at low

Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic Model of the System H+−NH4+−SO42−−NO3−−H2O at

Clegg, S. L., Qiu, C., and Zhang, R.: The deliquescence behaviour, solubilities, and densities of aqueous solutions of five

Daumer, B., Niessner, R., and Klockow, D.: Laboratory studies of the influence of thin organic films on the neutralization

Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D. R.: Mass accommodation and chemical reactions

Dawson, B. S. W., Irish, D. E., and Toogood, G. E.: Vibrational spectral studies of solutions at elevated temperatures and

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Particle composition</th>
<th>RH</th>
<th>[DMA] (ppm)</th>
<th>[NH₃]</th>
<th>Neutralization ratio (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃, 1.9ppm, 10%</td>
<td>H₂SO₄(aq)</td>
<td>10</td>
<td>1.94 ± 0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₃, 1.9ppm, 50%</td>
<td>H₂SO₄(aq)</td>
<td>50</td>
<td>1.93 ± 0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMA, 0.15ppm, 10%</td>
<td>H₂SO₄(aq)</td>
<td>10</td>
<td>0.16 ± 0.02</td>
<td>1.5 ± 0.1</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>DMA, 0.15ppm, 50%</td>
<td>H₂SO₄(aq)</td>
<td>50</td>
<td>0.16 ± 0.02</td>
<td>1.7 ± 0.1</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>DMA, 1ppm, 10%</td>
<td>H₂SO₄(aq)</td>
<td>10</td>
<td>1.00 ± 0.11</td>
<td>1.7 ± 0.1</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>DMA, 1ppm, 50%</td>
<td>H₂SO₄(aq)</td>
<td>50</td>
<td>1.00 ± 0.11</td>
<td>1.9 ± 0.1</td>
<td>1.9 ± 0.1</td>
</tr>
<tr>
<td>0.1, 10%</td>
<td>H₂SO₄(aq)</td>
<td>10</td>
<td>0.14 ± 0.01</td>
<td>1.89 ± 0.04</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>0.1, 50%</td>
<td>H₂SO₄(aq)</td>
<td>50</td>
<td>0.14 ± 0.01</td>
<td>1.89 ± 0.04</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>0.5, 10%</td>
<td>H₂SO₄(aq)</td>
<td>10</td>
<td>0.89 ± 0.03</td>
<td>1.93 ± 0.13</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>0.5, 50%</td>
<td>H₂SO₄(aq)</td>
<td>50</td>
<td>0.89 ± 0.04</td>
<td>1.83 ± 0.04</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>ox0.5, 10%</td>
<td>H₂C₂O₄(s)</td>
<td>10</td>
<td>0.89 ± 0.04</td>
<td>1.82 ± 0.03</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>ox0.5, 70%</td>
<td>H₂C₂O₄(aq)</td>
<td>70</td>
<td>0.96 ± 0.00</td>
<td>1.86 ± 0.01</td>
<td>1.9 ± 0.2</td>
</tr>
</tbody>
</table>

\(^a\) The neutralization ratio is defined as the number of moles of alkaline species over moles of acidic species, \(X = (\text{DMAH} + \text{NH}_4)/\text{SO}_4\) or \(X = (\text{DMAH} + \text{NH}_3)/C_2\text{O}_4\). \(^b\) For co-uptake experiments \(X_{\text{max neutral}}\) describes the maximum neutralization ratio of particles before reaching equilibrium.
Table 2: Comparison of DMA/NH$_3$ (gas) molar ratios at different RH and DMAH/NH$_4$ (particle) ratios at different times (t), as well as the displacement percentage (χ) for DMAH (10% RH) and NH$_4$ (50% RH) are given.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>RH</th>
<th>DMA/ NH$_3$</th>
<th>DMAH/NH$_4$</th>
<th>Displacement percentage χ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>t_{initial}^a</td>
<td>t_{pc}^b</td>
<td>t_{neutral}^c</td>
</tr>
<tr>
<td>0.10%</td>
<td>10</td>
<td>0.07 ± 0.01</td>
<td>0.07 ± 0.01</td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td>0.10%</td>
<td>50</td>
<td>0.07 ± 0.01</td>
<td>0.08 ± 0.01</td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td>0.50%</td>
<td>10</td>
<td>0.46 ± 0.04</td>
<td>0.43 ± 0.04</td>
<td>0.27 ± 0.01</td>
</tr>
<tr>
<td>0.50%</td>
<td>50</td>
<td>0.49 ± 0.02</td>
<td>0.34 ± 0.02</td>
<td>0.51 ± 0.04</td>
</tr>
<tr>
<td>ox0.50%</td>
<td>10</td>
<td>0.49 ± 0.02</td>
<td>0.25 ± 0.03</td>
<td>0.25 ± 0.03</td>
</tr>
<tr>
<td>ox0.50%</td>
<td>70</td>
<td>0.52 ± 0.52</td>
<td>0.34 ± 0.02</td>
<td>0.34 ± 0.02</td>
</tr>
</tbody>
</table>

a_{initial} indicates the time of the first measurement (10-15 min); b_{pc} indicates the time when the majority of particles changed from liquid to solid phase, c_{neutral} indicates the time when particles reached (maximum) neutralization, d_{equil} indicates the time when the particle composition reached equilibrium. e The displacement percentage χ_{DMAH^+} denotes nDMAH per particle at time t_{pc} over time t_{equil}. $\chi_{\text{NH}_4^+}$ denotes nNH$_4$ per particle at time t_{neutral} over t_{equil}.
Figure 1: Single gas uptake of NH$_3$ (1.9 ppm) and DMA (1 ppm and 0.15 ppm) into H$_2$SO$_4$, at 10% and 50% RH. NH$_4$/SO$_4$ and DMAH/SO$_4$ denote molar ratios of NH$_3$ or DMA species to total sulfate species in the particle.
Figure 2: DMA- NH₃ co-uptake of DMA and NH₃ into H₂SO₄ as a function of time: a) DMA/NH₃ = 0.07 at 10% RH (0.1₂₅), b) DMA/NH₃ = 0.46 at 10% RH (0.₅₀), c) DMA/NH₃ = 0.07 at 50% RH (0.₁₅₀), and d) DMA/NH₃ = 0.49 at 50% RH (0.₅₀). A value of two indicates complete neutralization of H₂SO₄. Contributions of DMAH (brown) and NH₄ (grey) to the neutralization are shown as molar ratios (DMAH/SO₄ and NH₄/SO₄). Crosshatched NH₄ bars indicate that the majority of particles underwent phase transition from liquid to solid. The inner graph in Fig. 2a is a magnified view of the DMAH fraction.
Figure 3: Particulate DMAH/NH$_4$ molar ratios as a function of time for DMA- NH$_3$ co-uptake at a) DMA/NH$_3$ = 0.07 at 10% RH (0.1$_{10\%}$), b) DMA/NH$_3$ = 0.46 at 10% RH (0.5$_{10\%}$), c) DMA/NH$_3$ = 0.07 at 50% RH (0.1$_{50\%}$), and d) DMA/NH$_3$ = 0.49 at 50% RH (0.5$_{50\%}$). DMA/NH$_3$ gas molar ratios (including uncertainties) are indicated by the grey bands. Dashed vertical lines indicate that the majority of particles underwent phase transition from liquid to solid. Solid vertical lines indicate that particles reached a neutralization ratio of two. Uncertainties from ion chromatography analysis are displayed on the vertical axis unless they are smaller than the symbols.
Figure 4: Comparison of particulate DMAH/\(\text{SO}_4\) (a, b) and \(\text{NH}_4/\text{SO}_4\) (c, d) in single gas uptake (line) vs. DMA- \(\text{NH}_3\) co-uptake (symbols) into \(\text{H}_2\text{SO}_4\) at 10\% RH (a,c) and 50\% RH (b, d), in the first 8 hours of reaction. Dashed vertical lines indicate phase transition of the majority of particles. Solid vertical lines indicate that particles reached a neutralization ratio of two. Uncertainties from ion chromatography analysis are displayed on the vertical axis unless they are smaller than the symbols.
Figure 5: Comparison of particulate NH$_4$/SO$_4$ in single gas uptake (filled triangles) vs. DMA-NH$_3$ co-uptake (open triangles) experiments at 10% RH into H$_2$SO$_4$: a) DMA/NH$_3$ = 0.07, and b) DMA/NH$_3$ = 0.46. Diamonds denote the neutralization ratio (X) in co-uptake experiments. Error bars are omitted for clarity.
Figure 6: Raman spectra of selected particles representing different phase states during uptake of NH$_3$ into H$_2$SO$_4$ at 10% RH. A spectrum of crystalline (NH$_4$)$_2$SO$_4$ is added for reference. Sketches indicate the cation composition range (as inferred from IC measurements) of particles when the spectra were recorded; grey denotes NH$_4$ and blue denotes H$_3$O$^+$ (HSO$_4^-$).
Figure 7: Raman spectra and morphological changes of selected particles during DMA - NH₃ co-uptake into H₂SO₄ at 10% RH at a DMA/NH₃ molar ratio of 0.46 (0.510%). Sketches indicate the cation composition range (as inferred from IC measurements) of particles when the spectra were recorded. Orange denotes DMAH, grey denotes NH₄⁺, and blue denotes H₃O⁺ (HSO₄⁻).
Figure 8: DMA-NH₃ co-uptake at DMA/NH₃ gas molar ratios of 0.5 (Table 1) into sulfuric and oxalic acid particles at 10%, 50% and 70% RH. a) Neutralization ratios as a function of time. The vertical dotted line indicates that the majority of oxalic acid particles at 70% RH underwent phase transition from liquid to solid; the vertical solid line indicates the morphological transformation of oxalic acid particles from a non-crystalline to a crystalline morphology at 70% RH. b) DMAH/NH₄ ratios as a function of particle neutralization ratio; the shaded area indicates the gas phase molar ratio of DMA/NH₃ (including uncertainties).
Figure 9: Particle neutralization ratios and the proportion of each cation at maximum neutralization (first column), equilibrium (second column), and after exposure of equilibrated particles to N₂ gas (third column). Color scheme: orange represents DMAH, grey represents NH₄⁺, shaded areas indicate uncertainty of the respective species, and blue represents H⁺ (HSO₄⁻). Stars around pie charts indicate that particles were crystalline solids. Concentrations of DMA and NH₃ are shown in Table 1.