Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument

Anna Novelli¹², Korbinian Hens¹, Cheryl Tatum Ernest¹³, Monica Martinez¹, Anke C. Nölscher¹⁴, Vinayak Sinha⁵, Pauli Paasonen⁶, Tuukka Petäjä⁶, Mikko Sipilä⁶, Thomas Elste⁷, Christian Plass-Dülmer⁷, Gavin J. Phillips¹⁸, Dagmar Kubistin¹⁷⁹, Jonathan Williams¹, Luc Vereecken¹², Jos Lelieveld¹ and Hartwig Harder¹

[1] {Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany}
[3] Now at: {Department of Neurology University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz}
[5] {Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81 S.A.S. Nagar, Manauli PO, Mohali 140 306, Punjab, India}
[6] {Department of Physics., P.O. Box 64. 00014 University of Helsinki, Finland}
[7] {German Meteorological Service, Meteorological Observatory Hohenpeissenberg (MOHp), 83282 Hohenpeissenberg, Germany}
[8] {Department of Natural Sciences, University of Chester, Thornton Science Park, Chester, CH2 4NU, UK}
[9] {University of Wollongong, School of Chemistry, Wollongong, Australia}
Correspondence to: H. Harder (hartwig.harder@mpic.de)

Abstract

We analysed the extensive dataset from the HUMPPA-COPEC 2010 and the HOPE 2012 field campaigns in the boreal forest and rural environments of Finland and Germany, respectively, and estimated the abundance of stabilised Criegee intermediates (SCI) in the lower troposphere. Based on laboratory tests, we propose that the background OH signal observed in our IPI-LIF-FAGE instrument during the afore-mentioned campaigns is caused at least partially by SCI. This hypothesis is based on observed correlations with temperature and with concentrations of unsaturated volatile organic compounds and ozone. Just like SCI, the background OH concentration can be removed through the addition of sulfur dioxide. SCI also adds to the previously underestimated production rate of sulfuric acid. An average estimate of the SCI concentration of $\sim 5 \times 10^4$ molecules cm$^{-3}$ (with an order of magnitude uncertainty) is calculated for the two environments. This implies a very low ambient concentration of SCI, though, over the boreal forest, significant for the conversion of SO$_2$ into H$_2$SO$_4$. The large uncertainties in these calculations, owing to the many unknowns in the chemistry of Criegee intermediates, emphasise the need to better understand these processes and their potential effect on the self-cleaning capacity of the atmosphere.

1 Introduction

Criegee intermediates (CI), or carbonyl oxides, are formed during the ozonolysis of unsaturated organic compounds (Criegee, 1975; Johnson and Marston, 2008; Donahue et al., 2011): in the gas phase ozone attaches to a double bond forming a primary ozonide (POZ) that quickly decomposes forming a Criegee intermediate and a carbonyl compound. The CI
can exist as thermally stabilised CI (SCI) or as chemically activated CI (Kroll et al., 2001; Drozd et al., 2011), where the chemically activated CI have high energy content and in the atmosphere either undergo unimolecular decomposition, or are stabilised by collisional energy loss forming SCI.

For many decades the chemistry of Criegee intermediates was investigated both with theoretical and indirect experimental studies as reviewed in detail by Johnson and Marston (2008), Vereecken and Francisco (2012), and Vereecken et al. (2015). During the last few years, numerous experimental studies specifically on stabilised Criegee intermediates have been performed following their first detection by Welz et al. (2012). Many laboratories have now detected SCI with various techniques (Berndt et al., 2012; Mauldin III et al., 2012; Ouyang et al., 2013; Taatjes et al., 2013; Ahrens et al., 2014; Buras et al., 2014; Liu et al., 2014a; Sheps et al., 2014; Novelli et al., 2014b; Stone et al., 2014; Chhantyal-Pun et al., 2015; Lee, 2015; Newland et al., 2015a; Fang et al., 2016a; Smith et al., 2016) and have confirmed that they are very reactive towards many atmospheric trace gases. Currently, the most studied Criegee intermediates are formaldehyde oxide, \(\text{CH}_2\text{OO} \), acetaldehyde oxide, \(\text{CH}_3\text{CHOO} \) (syn and anti, i.e. with the outer oxygen pointing towards or away from an alkyl group, respectively) and acetone oxide, \(\text{(CH}_3\text{)}_2\text{COO} \).

The importance of stabilised Criegee intermediates as oxidants in the atmosphere depends on the rate coefficient of their reaction with water vapour as the latter is ubiquitously present in
relatively high concentrations in the boundary layer (between 10^{16} to 10^{17} molecules cm$^{-3}$).

The rate of this reaction strongly depends on the CI conformation (Aplincourt and Ruiz-López, 2000; Tobias and Ziemann, 2001; Ryzhkov and Ariya, 2003; Kuwata et al., 2010; Anglada et al., 2011; Anglada and Sole, 2016; Chen et al., 2016; Lin et al., 2016; Long et al., 2016) and until now the rate coefficient has been measured for anti-CH_3CHO (Taatjes et al., 2013; Sheps et al., 2014) while lower limits have been determined for CH$_2$OO (Stone et al., 2014), syn-CH_3CHO (Taatjes et al., 2013; Sheps et al., 2014) and (CH$_3$)$_2$COO (Huang et al., 2015; Newland et al., 2015b). The uncertainties in these rate coefficients make it difficult to estimate the importance of Criegee intermediates and the impact they may have as oxidants in the atmosphere. Additionally, recent studies (Berndt et al., 2014b; Chao et al., 2015; Lewis et al., 2015; Smith et al., 2015; Lin et al., 2016) showed that the reaction between CH$_2$OO and water dimers (present in the ppmv range in the atmosphere (Shillings et al., 2011)) is faster than the reaction with water vapor, in agreement with the several theoretical studies (Ryzhkov and Ariya, 2004; Chen et al., 2016; Lin et al., 2016) which indicate the reaction with water dimers to be between 400 and 35,000 times faster than the reaction with water vapor depending on the conformers. Another important reaction of SCI that depends on the SCI conformation is their unimolecular decomposition. The decomposition rate and product formed depend on the SCI conformer structure. Anti-SCI are likely to isomerise via the ester channel forming an ester or an acid as final product while syn-SCI will form a vinyl hydroperoxide (VHP) which promptly decomposes forming hydroxyl radicals (OH) and a vinoxy radical (Paulson et al., 1999; Johnson and Marston, 2008; Drozd and Donahue, 2011; Vereecken and Francisco, 2012; Kidwell et al., 2016). Larger and more complex conformers such as hetero-substituted or cyclic structures are subject to additional unimolecular rearrangements (Vereecken and Francisco, 2012). On the unimolecular
decomposition rates and products few experimental data are available (Horie et al., 1997; Horie et al., 1999; Fenske et al., 2000a; Novelli et al., 2014b; Kidwell et al., 2016; Fang et al., 2016a; Smith et al., 2016), but more is available from theoretical studies explicitly focusing on the path followed by different conformers (Anglada et al., 1996; Aplincourt and Ruiz-López, 2000; Kroll et al., 2001; Zhang and Zhang, 2002; Nguyen et al., 2009b; Kuwata et al., 2010).

Most of the experimental and theoretical information described above refers to the smaller conformers. These compounds are likely to be formed relatively efficiently in the atmosphere as they can originate from any unsaturated compound with a terminal double bond, but they do not represent the entire Criegee intermediate population.

As SCI were found to react quickly with many trace gases, various model studies were performed on the impact SCI have as oxidants in the atmosphere (Vereecken et al., 2012; Boy et al., 2013; Percival et al., 2013; Pierce et al., 2013; Sarwar et al., 2013; Sarwar et al., 2014; Novelli et al., 2014b; Vereecken et al., 2014). Some of these studies focused in particular on the possible impact that SCI might have on the formation of sulfuric acid (H$_2$SO$_4$) in the gas phase, following Mauldin III et al. (2012) who suggested that Criegee intermediates are the missing SO$_2$ oxidant needed to close the sulfuric acid budget over a boreal forest. This is supported by theoretical and laboratory studies that have determined a rate coefficient between SCI and sulfur dioxide (SO$_2$) of the order of 10^{-11} cm3 molecule$^{-1}$ s$^{-1}$ (Aplincourt and Ruiz-López, 2000; Jiang et al., 2010; Kurtén et al., 2011; Vereecken et al., 2012; Welz et al., 2012; Taatjes et al., 2013; Liu et al., 2014b; Sheps et al., 2014; Stone et al., 2014). As the main atmospherically relevant oxidiser of SO$_2$ in the gas phase is the OH radical with a rather slow rate coefficient at ambient temperature and pressure of 2×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$ (Atkinson et al., 2004), the high rate coefficient for SO$_2$ oxidation would
allow SCI to have a significant impact on the H$_2$SO$_4$ formation even if present in small concentrations. The model studies have shown that, depending on the environment, SCI can have a potentially important impact on H$_2$SO$_4$ formation. All these studies are affected by large uncertainties and many simplifications used for coping with the paucity of data on the reactions of specific SCI with various trace gas species, on the speciation of SCI, and on the steady state concentration of SCI in the troposphere. Until now no direct or reproducible indirect method was able to determine the steady state concentration of SCI in the lower troposphere.

In this paper, we firstly estimate the concentration of SCI in the lower troposphere, based on the data collected during the HUMPPA-COPEC 2010 campaign (Williams et al., 2011) in a boreal forest in Finland and the HOPE 2012 campaign in rural southern Germany. The budget of SCI is analyzed using four different approaches: 1) based on an unexplained H$_2$SO$_4$ production rate (Mauldin III et al., 2012); 2) from the measured concentrations of unsaturated volatile organic compounds (VOC); 3) from the observed OH reactivity (Nölscher et al., 2012); and 4) from an unexplained production rate of OH (Hens et al., 2014). Secondly, we present measurements obtained using our inlet pre-injector laser-induced fluorescence assay by gas expansion technique (IPI-LIF-FAGE) (Novelli et al., 2014a) during the HUMPPA-COPEC 2010 and the HOPE 2012 campaigns. A recent laboratory study performed with the same instrumental setup showed that the IPI-LIF-FAGE system is sensitive to the detection of the OH formed from unimolecular decomposition of SCI (Novelli et al., 2014b). Building on this study, the background OH (OH$_{bg}$) (Novelli et al., 2014a) measured during the two field campaigns is investigated in comparison with many other trace gases in order to assess if the observations in controlled conditions are transferable to the ambient conditions.
2 Instrumentation and field sites

2.1 IPI-LIF-FAGE description

A comprehensive description of the IPI-LIF-FAGE ground-based instrument, HORUS (Hydroxyl Radical Measurement Unit based on fluorescence Spectroscopy), is given by Novelli et al. (2014a) and only some important features of the instrument are highlighted here. The IPI-LIF-FAGE instrument consists of: the inlet pre-injector (IPI), the inlet and detection system, the laser system, the vacuum system and the instrument control and data acquisition unit. The air is drawn through a critical orifice into a low pressure region (~300-500 Pa) where OH molecules are selectively excited by pulsed UV light around 308 nm. The light is generated at a pulse repetition frequency of 3 kHz by a Nd:YAG pumped, pulsed, tunable dye laser system and is directed into a multipass "White cell" making 32 passes through the detection volume (White, 1942). The air sample intersects the laser beam and the fluorescence signal from the excited OH molecules is detected using a gated micro-channel plate (MCP) detector. IPI, situated in front of the instrument inlet, is used to measure a chemical zero to correct for possible internal OH signal generation. An OH scavenger (propene) is added to the sample air 5 cm in front of the inlet pinhole in a concentration that allows a known, high proportion of atmospheric OH to be scavenged (~ 90 %). The OH scavenger is added every two minutes so that the instrument measures a total OH signal \(\text{OH}_{\text{tot}}\) when the OH scavenger is not injected and a background OH signal \(\text{OH}_{\text{bg}}\) when the OH scavenger is injected. The difference between these two signals yields the atmospheric OH concentration \(\text{OH}_{\text{atm}}\). The efficiency of this technique for measuring OH with this particular LIF-FAGE instrument is described together with the IPI characterisation in Novelli et al. (2014a). The OH calibration of the HORUS instrument is obtained via the production of
a known amount of OH and hydroperoxyl radicals (HO$_2$) from the photolysis of water at 185
nm using a mercury lamp. A more detailed description of the instrument calibration is
reported by Martinez et al. (2010) and Hens et al. (2014). A calibration factor for the
background OH signal observed by the HORUS instrument is currently not available.
Therefore, this signal will be discussed and plotted in OH fluorescence counts per seconds
(cps) measured by the MCP, normalized by the laser power and corrected for quenching and
sensitivity changes towards the detection of OH. The sensitivity of the instrument towards the
OH radical is affected by: alignment of the white cell, optical transmission of the
components, sensitivity of the MCP, water vapor, internal pressure, and internal temperature
(Martinez et al., 2010). These factors affect the sensitivity of HORUS towards the
background OH in a similar manner as they mainly impact the sensitivity of the instrument to
the detection of OH.
We hypothesise that the OH$_{bg}$ is formed chemically within the IPI-LIF-FAGE instrument.
Laser induced production of OH radicals was thoroughly tested in the laboratory and in the
field (Novelli et al., 2014a) showing that this background OH signal is not induced by the
laser beam from double pulsing, nor from air stagnating in the detection cell. By changing the
laser power, no quadratic dependency of the OH$_{bg}$ was observed even at night time, when the
contribution of the OH$_{bg}$ to the OH$_{tot}$ measured by the instrument is highest (Novelli et al.,
2014a). In addition, during the HUMPPA-COPEC 2010 and HOPE 2012 campaigns, the
correlation coefficient of the OH$_{bg}$ with the laser power was $R = 0.002$ and $R = 0.2$,
respectively.
In contrast, ozonolysis of alkenes performed during laboratory tests showed that the IPI-LIF-
FAGE instrument is sensitive to the OH formed from unimolecular decomposition of SCI
within the low pressure section of the instrument (Novelli et al., 2014b).
Recently, most of the LIF-FAGE instruments have been augmented with the titration of OH_{atm} in different environments to determine their background (Amédro, 2012; Mao et al., 2012; Griffith et al., 2013; Woodward-Massey et al., 2015; Griffith et al., 2016; Tan et al., 2016). Some of these instruments showed the presence of an unknown interference (Mao et al., 2012; Griffith et al., 2013; Tan et al., 2016) while for others no clear conclusions were drawn (Amédro, 2012; Woodward-Massey et al., 2015). In addition, laboratory studies (Fuchs et al., 2016; Griffith et al., 2016) have shown similarity with what was observed with the IPI-LIF-FAGE during experiments of ozonolysis of alkenes although the origin of the OH signal was not uniquely attributed to a particular mechanism.

Our hypothesis is that the OH_{bg} measured in ambient air with the IPI-LIF-FAGE at least partially originates from unimolecular decomposition of SCI. Section 4 describes the observed behaviour of the signal during the campaigns and its relationship to other observed chemical tracers and discusses if this is compatible with our hypothesis.

2.2 Measurement site and ancillary instrumentation

We present measurements from two sites, a boreal forest site in Finland and a rural site in Southern Germany. The HUMPPA-COPEC 2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study) campaign took place during summer 2010 at the SMEAR II station in Hyytiälä, Finland (61° 51’ N, 24°17’ E, 181 m a.s.l.) in a boreal forest dominated by Scots Pines (*Pinus Silvestris L*). The site hosts continuous measurements of several trace gases and meteorological parameters as well as aerosol particles concentrations, size distributions and composition (Junninen et al., 2009). Further details and a more complete description of the
site, the instrumentation and the meteorological conditions during the campaign can be found in Williams et al. (2011) and Hens et al. (2014). A brief description of the instruments used in this study is given here. Ozone was measured by a UV photometric gas analyser (Model 49, Thermo Electron Corporation). A gas chromatograph (GC, Agilent Technologies 6890A) coupled to a mass-selective detector (MS, Agilent Technologies MSD 5973 inert) was used for the measurements of biogenic volatile organic compounds (BVOC) (Yassaa et al., 2012). The total OH reactivity was measured by the comparative reactivity method (CRM) (Sinha et al., 2008) for two different heights, one within and one above the canopy (18 and 24 m, respectively) (Nölscher et al., 2012). CRM uses an in-situ kinetics experiment to measure the OH reactivity based on the competitive scavenging of OH by a reference gas (pyrrole) and atmospheric OH reactants. The overall uncertainty of the method during deployment was 16% with a limit of detection of 3 s⁻¹ (Hens et al., 2014). Sulfur dioxide (SO₂) concentration was measured with a fluorescence analyzer (Model 43 S, Thermo 20 Environmental Instruments Inc.). Aerosol number size distributions between 3 nm and 950 nm were measured with a Differential Mobility Particle Sizer (DMPS) (Aalto et al., 2001). The size distributions were used for calculating the loss rate of gas-phase sulfuric acid via condensation sink (CS) with the method presented by Kulmala et al. (2001). Sulfuric acid (H₂SO₄) and OH radical concentrations were measured on the ground with a chemical ionization mass spectrometer (CIMS; (Petäjä et al., 2009)). Time series of the measured trace gases are available in the study from Nölscher et al. (2012) and Hens et al. (2014). The average concentrations and their 1σ variability are listed in Table 1 and Table SI-2. For the first period of the campaign, between the 27th and the 31st of July, the IPI-LIF-FAGE instrument was run on the ground side-by-side with the CIMS. On the 2nd of August the IPI-LIF-FAGE instrument was moved to the top of the HUMPPA tower above the canopy and
measured there for the remainder of the campaign (12th of August). The data are therefore separated into ground and tower periods.

The HOPE 2012 (Hohenpeißenberg Photochemistry Experiment) campaign was conducted during the summer of 2012 at the Meteorological Observatory in Hohenpeissenberg, Bavaria, Germany (47° 48’ N, 11° 2’ E). The observatory is a Global Atmosphere Watch (GAW) station operated by the German Meteorological Service (DWD) and is located at an altitude of 985 m a.s.l. and about 300 m above the surrounding terrain, mainly consisting of meadows and coniferous forests. More information about the site can be found in Handisides et al. (2003). Ozone was measured by UV absorption with TEI 49C (Thermo Electron Corporation, Environmental Instruments) (Gilge et al., 2010). Non-methane hydrocarbons (NMHC) were measured with a GC-flame ionization detection (FID) system (series 3600CX, Varian, Walnut Creek, CA, USA) (Plass-Dülmer et al., 2002). BVOC were detected using a GC (Agilent 6890) with a FID running in parallel with a MS (Agilent Technologies MSD 5975 inertXL) described by Hoerger et al. (2014). Photolysis frequencies (J(NO$_2$) and J(O$_1^D$)) were measured next to the IPI-LIF-FAGE with a set of filter radiometers (Handisides et al., 2003). The OH reactivity was measured with two instruments for a short period of time from the 10th until the 18th of July. One method was the CRM and the same instrument was used as during the HUMPPA-COPEC 2010 campaign. The second method was a new application of the DWD CIMS instrument (Berresheim et al., 2000) which also measured H$_2$SO$_4$ and OH radicals. As the data will be used only in a qualitative way for the current study, a very short description of this novel technique is given here and details will be presented in a future publication. With the CIMS instrument, OH radicals are measured by converting them into H$_2$SO$_4$ after reaction with SO$_2$ in a chemical reactor and subtraction of a corresponding background after scavenging the OH with propane (Berresheim et al, 2000). A second SO$_2$
titration zone was used 15 cm (or 140 ms) downstream of the first injection to determine the
OH decay from OH radicals generated in the UV-calibration zone immediately upstream of
the first titration. The difference between these two titration zones in two consecutive 2.5 min
intervals allows the determination of the OH decay, after correcting for ambient OH and wall
losses. The uncertainty is estimated at ± 2 s\(^{-1}\) and the limit of detection is 2 s\(^{-1}\). SO\(_2\)
concentration was measured with a fluorescence analyzer and aerosol size distributions were
measured and used to calculate the loss rate of gas-phase sulfuric acid due to CS formed by
existing aerosol surface via the method presented by (Birmili et al., 2003). Time series of the
measured trace gases are available in Figure SI-1. The average concentrations and their 1σ
variability are listed in Table 1 and Table SI-2

3 SCI concentrations during HUMPPA-COPEC 2010 and HOPE 2012

3.1 Missing H\(_2\)SO\(_4\) oxidant

The study by Mauldin III et al. (2012) in a boreal forest during the HUMPPA-COPEC 2010
campaign showed a consistent discrepancy between the measured H\(_2\)SO\(_4\) and the calculated
gas phase H\(_2\)SO\(_4\) concentration when considering oxidation of SO\(_2\) from OH radical and the
condensation onto pre-existing aerosol particles (CS, condensation sink) as the sole
production and loss processes, respectively (Eq. 1).

\[
H_2SO_4 = \frac{k_{OH\cdot SO_2} \times [OH] \times [SO_2]}{CS}
\]

(1)

The H\(_2\)SO\(_4\) concentration is assumed to be in near-steady state: the lifetime of H\(_2\)SO\(_4\) in the
gas phase is of the order of minutes, i.e. spanning a similar time period compared to the
variability in the production and loss pathways, ensuring fast response of the H\(_2\)SO\(_4\)
concentration to varying conditions. Minor deviations from steady state are not critical for the
analysis performed in this study, given the uncertainties induced by other parameters.

On average the sulfuric acid in the gas phase calculated using Eq. 1 was only half of the total
H₂SO₄ observed in the field and lied outside the uncertainties associated with the calculation
of the formation channel and the condensation sink (Mauldin III et al., 2012). Although no
unambiguous evidence links SCI to the missing oxidant, laboratory tests performed with a
similar instrument (Berndt et al., 2012; Berndt et al., 2014a; Sipilä et al., 2014) confirmed the
role that SCI could have in the oxidation of SO₂ and formation of H₂SO₄. Assuming that SCI
are the only other species in addition to OH that oxidize SO₂ in the gas phase and knowing
the rate coefficient of SCI and OH with SO₂, it is possible to calculate the steady state
concentration of SCI in that environment:

\[
[H₂SO₄] = \frac{(k_{OH+SO₂} \times [OH] + k_{SCI+SO₂} \times [SCI]) \times [SO₂]}{CS}
\] (2)

The rate coefficient between OH and SO₂ at standard pressure is \((2.04 \pm 0.10) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) (Atkinson et al., 2004). The rate coefficient of SCI with
SO₂ was determined by several groups at \((3.3 \pm 2) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\), (Welz et al.,
2012; Taatjes et al., 2013; Liu et al., 2014b; Sheps et al., 2014; Stone et al., 2014; Chhantyal-Pun
et al., 2015; Newland et al., 2015a; Newland et al., 2015b; Foreman et al., 2016; Zhu et al.,
2016). An earlier, lower value of \(~ 5 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) (Mauldin III et al. (2012);
Berndt et al. (2012)) appears to be hard to reconcile with the remaining literature, as
extensively discussed in the supporting information.

Equation 2 allows for the calculation of a time series of SCI (Fig. SI-2) yielding an average

\([\text{SCI}] = (2.3 \pm 2) \times 10^4 \text{ molecules cm}^{-3}\).
A similar estimate of the SCI time series was derived for the HOPE 2012 campaign (Fig. SI-3). The H$_2$SO$_4$ concentration during this campaign can be mainly explained by the reaction between OH and SO$_2$. Figure 1 shows the correlation between the total production rate of H$_2$SO$_4$ (P(H$_2$SO$_4$)$_{tot}$) calculated from the product of measured H$_2$SO$_4$ and the condensation sink, as well as the production rate of H$_2$SO$_4$ from the reaction of OH and SO$_2$. The linear regression following the method of York et al. (2004) yields a slope of 0.90 ± 0.02 with a negligible intercept (57 ± 7 molecules cm$^{-3}$ s$^{-1}$). It should be noted that the H$_2$SO$_4$ budget for the HOPE 2012 campaign is nearly closed, such that the moderate fluctuations on the source data (CS, [OH], etc.) lead to very large relative uncertainties of the small missing H$_2$SO$_4$ production term, and concomitantly the time series for the SCI concentration (Fig. SI-3) shows extreme variability reflecting this noise on the source data. On average, the [SCI] obtained is low, (2 ± 3) x 104 molecules cm$^{-3}$, with no values in the time series exceeding 105 molecule cm$^{-3}$.

Repeating the above analysis using the low k$_{\text{SCI}+\text{SO}_2}$ value of Mauldin III et al. and Berndt et al. yields concentrations of (1.6 ± 2) x 106 and (1 ± 3) x 106 molecule cm$^{-3}$ for the HUMPPA-COPEC and HOPE campaigns, respectively. It is interesting to notice that both values estimated with the fast and low k$_{\text{SCI}+\text{SO}_2}$ rate coefficient are in agreement with the concentrations calculated from measured VOC and O$_3$ for polluted and pristine environments, 1.9 x 106 molecules cm$^{-3}$ and 4.5 x 104 molecules cm$^{-3}$ respectively, from a previous study (Welz et al., 2012).
3.2 Measured unsaturated VOC

Another method to estimate the SCI concentration is based on their production and loss processes. In a forest SCI are expected to be formed from the ozonolysis of unsaturated BVOC. It is possible to calculate an average steady state concentration for SCI using the following equation

\[
[SCI] = \sum_i \left(\frac{k_{VOC_i + O_3} \times [VOC_i] \times Y_{SCI}}{L_{SCI_{syn}}} \right) \times [O_3]
\] (3)

Where \(k_{VOC_i + O_3} \) is the rate coefficient between the VOC\(_i\) and ozone (Table SI-2), \(Y_{SCI} \) is the yield of SCI in the ozonolysis reaction, and \(L_{SCI_{syn}} \) is the total loss of syn-SCI. We assume \([SCI] \approx [SCI_{syn}]\) following the model described by Novelli et al. (2014b), which accounts for many possible losses of SCI including the reaction with water dimers and unimolecular decomposition. The latter study suggests that anti-acetaldehyde oxide and formaldehyde oxide react quickly with water and water dimers and that their contributions can be neglected. A yield of SCI formation (\(Y_{SCI} \)) of 0.4 was estimated based on the data by Hasson et al. (2001). The steady state concentration of SCI for the HUMPPA-COPEC 2010 campaign was calculated using the measured data for [O\(_3\)] and [VOC\(_i\)] and an average value of 40 s\(^{-1}\) (Novelli et al., 2014b) for \(L_{SCI_{syn}} \) as this value was found to be rather constant and mainly dependent on the unimolecular decomposition rate of the SCI. Equation 3 allows for the calculation of a time series of SCI (Fig. SI-4) yielding an average \([SCI]\) of \(~ (5 \pm 4) \times 10^3\) molecules cm\(^{-3}\).

During the HOPE 2012 campaign a larger number of unsaturated organic trace gases, both anthropogenic and biogenic, were measured (Table SI-1). For \(Y_{SCI} \) the same value of 0.4 was used while for \(L_{SCI_{syn}} \) the value of 32 s\(^{-1}\), obtained from the model described by Novelli et al.
(2014b) for the rural European environment, was used. Using these values in Eq. 3 results in
{\[\text{[SCI]} = (7 \pm 6) \times 10^3 \text{ molecules cm}^{-3}, \text{obtained as an average of the SCI time series (Fig. SI-5). It should be noted that recent work on the unimolecular decomposition (Fang et al., 2016b; Long et al., 2016; Smith et al., 2016) yields loss rates significantly faster than used here; this implies that the [SCI] obtained here could be an overestimate.} \]

3.3 OH reactivity

During HUMPPA-COPEC 2010, between 27th July and 12th August, an average OH reactivity, \(R = 9.0 \pm 7.6 \text{ s}^{-1} \), was measured. On average, the majority of the measured OH reactivity (\(R_{\text{unex}} = 7.4 \pm 7.4 \text{ s}^{-1} \)), 80%, was not accounted for by the measured organic and inorganic trace gases (Fig. SI-6). Biogenic emissions comprised up to ~ 10% of the total measured OH reactivity and up to half of the calculated OH reactivity (Fig. SI-6). As the measurement site was located in a pristine forest environment, affected only little by anthropogenic emissions (Williams et al., 2011), it is likely that a large fraction of the unexplained OH reactivity was formed by unmeasured primary emissions by the vegetation and secondary products of oxidation. By assuming that the unmeasured VOC are unsaturated, and by using a lumped rate coefficient, \(k_{\text{VOC}+\text{OH}} \), between OH and the fraction of unspeciated VOC of \(7 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \), typical for an OH addition to a carbon-carbon double bond (Atkinson et al., 2004; Peeters et al., 2007), it is possible to estimate the concentration \([\text{VOC}_{\text{unknown}}]\) of VOC that would be necessary to close the OH reactivity budget (Eq. 4).

\[
R_{\text{unex}} = k_{\text{VOC}+\text{OH}} \times [\text{VOC}_{\text{unknown}}] \tag{4}
\]

Using Eq. 4, a time series for \([\text{VOC}_{\text{unknown}}]\) with an average of \((1 \pm 1) \times 10^{11} \text{ molecules cm}^{-3}\) is obtained. This value is substituted into Eq. 3 and a lumped rate for reaction of \([\text{VOC}_{\text{unknown}}]\)
and O$_3$ of 7×10^{17} molecules cm$^{-3}$ is used. This value is based on the rate coefficient of the measured VOC with O$_3$ weighted with their abundance (Table SI-1). The same Y_{SCI} and L_{SCIsyn} of 0.4 and 40 s$^{-1}$, respectively, were used as described in section 3.2. With these values, a time series of SCI (Fig. SI-7) with an average of $\sim (1 \pm 1) \times 10^5$ molecules cm$^{-3}$ is obtained. To this SCI concentration estimate, we add the SCI formed from the measured unsaturated VOC, $[SCI] = (5 \pm 4) \times 10^3$ molecules cm$^{-3}$, to obtain the total SCI across all VOC. As this estimate requires assumptions for the rate coefficient between [VOC$_{unknown}$] and OH and O$_3$, a sensitivity study probing the upper and lower bounds of this estimate is described in the supplementary information.

During the HOPE 2012 campaign the total OH reactivity was on average 3.5 ± 3.0 s$^{-1}$. Using the measured trace gas concentrations it is possible to calculate the expected OH reactivity (Fig. SI-8). Table SI-2 lists all the species included in the calculation of the OH reactivity with their rate coefficient with OH. An average value of 2.7 ± 0.7 s$^{-1}$ was calculated. Figure SI-8 shows that half of the measured OH reactivity can be explained by methane, carbonyl compounds (mainly acetaldehyde and propanal) and inorganic compounds which were present in higher concentrations compared to the HUMPPA-COPEC 2010 campaign (Table SI-2). On average, 24% of the measured OH reactivity remains unexplained by the measured trace gases. In contrast to the HUMPPA-COPEC 2010 campaign, in HOPE 2012 a more complete speciation of VOC was measured (Table SI-1) and the site was influenced by relatively fresh anthropogenic emissions. With the extensive VOC speciation available, the reactivity budget can virtually be closed, but any remaining unexplained OH reactivity could still be due to unmeasured VOC. The time series for this unexplained OH reactivity, typically about ~ 1 s$^{-1}$, shows very large variability as it reflects the statistical noise of the small difference between measured and calculated OH reactivities, both of which are associated
with variability. The resulting [SCI] time series (Fig. SI-9) is also highly variable, and yields a low average SCI concentration of \((2.0 \pm 1.5) \times 10^4\) molecules cm\(^{-3}\), with no values exceeding \(6 \times 10^4\) molecule cm\(^{-3}\).

The total SCI is then obtained by summing the SCI predicted from the measured VOC and from the unexplained OH reactivity, leading to a total SCI concentration of \((7 \pm 6) \times 10^3\) molecules cm\(^{-3}\).

3.4 Unexplained OH production rate

During the HUMPPA-COPEC 2010 campaign, the comprehensive measurements (Williams et al., 2011) allowed the calculation of a detailed OH budget (Hens et al., 2014). Most of the OH production during daytime is due to photolysis of \(O_3\) and recycling of \(HO_2\) back to OH via reactions with NO and \(O_3\). This result holds for both high \((R > 15\ \text{s}^{-1})\) and low \((R \leq 15\ \text{s}^{-1})\) OH reactivity episodes during the campaign. While the OH budget can be closed during daytime \((J(O_1D) > 3 \times 10^6\ \text{s}^{-1})\) for low OH reactivity periods, during periods with high OH reactivity there was a large unexplained production rate of OH, \(P_{\text{OH}}^{\text{unexplained}} = (2 \pm 0.7) \times 10^7\) molecule cm\(^{-3}\) s\(^{-1}\), which can thus be surmised to originate from VOC chemistry. In addition, for both periods, during night time \((J(O_1D) \leq 3 \times 10^6\ \text{s}^{-1})\), the IPI-LIF-FAGE and the CIMS instruments both measured non-negligible OH concentrations (Hens et al., 2014) where most of the OH production was from unknown sources \((P_{\text{OH}}^{\text{unexplained}} = 1 \pm 0.9 \times 10^6\ \text{molecule cm}^{-3}\ \text{s}^{-1} (1\sigma)\) and \(P_{\text{OH}}^{\text{unexplained}} = 1.7 \pm 0.7 \times 10^7\ \text{molecule cm}^{-3}\ \text{s}^{-1} (1\sigma)\) for low and high reactivity, respectively). Our hypothesis is that ozonolysis of VOC could represent the missing OH source. Indeed, formation of OH from oxidation of unsaturated VOC has been shown to be an
important source of OH in winter, indoors and during night time (Paulson and Orlando, 1996; Geyer et al., 2003; Ren et al., 2003; Heard et al., 2004; Harrison et al., 2006; Johnson and Marston, 2008; Shallcross et al., 2014). As OH formation from ozonolysis proceeds through Criegee intermediates (Fig. 2), we can attempt to estimate a SCI concentration from the OH budget. First, we estimate from the unexplained OH reactivity \(P_{\text{OH}}^{\text{unexplained}} \) a so-called unexplained O\(_3\) reactivity, \(\Sigma(k_{\text{VOC+O3}} \times [\text{VOC}_{\text{unidentified}}]) \), assuming a certain yield of OH from ozonolysis of unsaturated VOC. Next, we estimate a yield of SCI based on available literature data, and finally we combine both to estimate the SCI concentration required to close the OH budget. In contrast to the previous estimates, an average value is obtained for the SCI, and not a time series, as we start from the average \(P_{\text{OH}}^{\text{unexplained}} \), as reported in Hens et al. (2014).

Assuming that all unexplained OH production, \(P_{\text{OH}}^{\text{unexplained}} \), comes from VOC ozonolysis with a certain OH yield \(Y_{\text{OH}} \) we obtain:

\[
P_{\text{OH}}^{\text{unexplained}} = k_{\text{VOC+O3}} \times [\text{VOC}_{\text{unidentified}}] \times [O_3] \times Y_{\text{OH}}
\]

(5)

where \(\text{VOC}_{\text{unidentified}} \) includes the VOC not considered in the OH budget performed by Hens et al. (2014), i.e. the VOC causing the unknown OH reactivity discussed above. The average total OH yield from ozonolysis, \(Y_{\text{OH}} \), is estimated at about 0.6 based on observed OH yields from the literature (Atkinson et al., 2006). OH formation from ozonolysis occurs through two channels (Fig. 2): prompt formation by the decomposition of chemically activated CI\(^*\), and delayed OH by formation of SCI followed by their thermal decomposition; there are also product channels not yielding OH. The prompt yield of OH, \(Y_{\text{OH}}^{\text{CI}} \), is estimated at \(~ 0.4\) from SCI scavenging experiments (Atkinson et al., 2004); the remaining yield \(Y_{\text{OH}}^{\text{SCI}} \) is then formed from SCI, where \(Y_{\text{OH}} = Y_{\text{OH}}^{\text{CI}} + Y_{\text{OH}}^{\text{SCI}} \) and hence \(Y_{\text{OH}}^{\text{SCI}} \approx 0.2 \).
We adopt a value for Y_{SCI} of 0.4, as argued in section 3.2. The SCI formed do not all decompose to OH, e.g. anti-CI tend to form esters instead. We label all SCI able to yield OH as SCI_{syn}, without mandating a speciation but following the observation that syn-CI usually yield OH through the vinylhydroperoxide channel. The total SCI yield is then divided into a fraction, Y_{syn}, forming SCI_{syn}, and the remainder, Y_{anti}, forming non-OH-generating SCI. Little information is available on the Y_{syn}:Y_{anti} ratio, with only a few theoretical calculations on smaller alkenes and a few monoterpenes (Rathman et al., 1999; Fenske et al., 2000b; Kroll et al., 2002; Nguyen et al., 2009b; Nguyen et al., 2009a). For most of these compounds the ratio of syn- to anti-SCI is between 0.2 and 1.0 (Rickard et al., 1999) where a larger fraction of syn- to anti-SCI, or vice versa, will depend on the single alkene. As there is no information available for the VOC included in this study, we estimate the ratio of Y_{syn} to Y_{anti} as 1:1. This number avoids overestimating the impact of SCI in the OH production and, using the syn to anti range indicated above, would cause a variation in the final [SCI] estimate of maximum 20 %, (see eq. 7 and Figure 3) well below the total uncertainty of the result.

The production of OH from SCI_{syn} formed from VOC not included in the OH budget is then $k_{OH}[SCI_{syn}]$, where we estimate $k_{OH} \approx 20 \text{ s}^{-1}$ as measured by Novelli et al. (2014b) for syn-CH$_3$CHO, and where the steady state concentration of the SCI$_{syn}$, [SCI$_{syn}$], is determined by the ratio of the formation processes and the sum $L_{SCI_{syn}}$ of the loss processes already defined above:

$$[SCI_{syn}] = \frac{k_{\text{voc}+O_3} \times [\text{VOC}_{\text{unidentified}}] \times [O_3] \times Y_{SCI} \times Y_{syn}}{L_{SCI_{syn}}}$$ \hspace{1cm} (6)

Merging the above equations, expressing the measured OH production from unknown sources as the sum of direct OH production from CI* and indirect from SCI$_{syn}$, we obtain:
The measured \(P^{\text{unexplained}} \) and \([O_3]\), and the estimates of the other parameters allow us to calculate the factor \(k_{\text{voc+O}_3} \times [\text{VOC}_{\text{unidentified}}] \). Substituting this factor into Eq. 6 yields an estimate of the steady state concentration of SCI\(_{\text{syn}}\). With a value for \(P^{\text{unexplained}}_{\text{OH}} \) of \(1 \times 10^6 \) molecules cm\(^{-3}\) s\(^{-1}\) as observed for low reactivity episodes and at night during HUMPPA, a steady state concentration of SCI\(_{\text{syn}}\) of \((2 \pm 2) \times 10^4\) molecules cm\(^{-3}\) is calculated. For high reactivity episodes during HUMPPA-COPEC 2010, the missing \(P^{\text{unexplained}}_{\text{OH}} \) of \(2 \times 10^7 \) molecules cm\(^{-3}\) s\(^{-1}\) results in a SCI concentration of \((4 \pm 4) \times 10^5\) molecules cm\(^{-3}\). To obtain the total SCI concentration, we then need to add the non-OH-producing SCI. Here we assume that these are mostly anti-SCI or \(\text{H}_2\text{COO} \), both of which react rather quickly with \(\text{H}_2\text{O} \) or \((\text{H}_2\text{O})_2\) (Taatjes et al., 2013; Chao et al., 2015; Lewis et al., 2015), and that their contribution can be neglected. We thus obtain that \([\text{SCI}] \approx [\text{SCI}_{\text{syn}}]\). To this we add the SCI concentration calculated from the measured unsaturated VOC (section 3.2), \((5 \pm 4) \times 10^3\) molecules cm\(^{-3}\), to obtain the SCI formed from all VOC.

For HOPE 2012 it is difficult to accurately derive an OH budget due to the lack of information on the HONO concentration, which can represent an important primary source of OH. A detailed analysis of the OH production and loss during the campaign thus requires a detailed model study to derive HONO concentrations, which is outside the scope of this paper. Hence, an estimate on the SCI from a possible missing OH production rate during the HOPE 2012 campaign is not included here.
Equation 7, for a given set of yields, unimolecular decomposition rates and SCI losses, allows the estimate of the relative contribution of SCI and CI* to the total production rate of OH from the ozonolysis of VOC. With the yields considered in this study and for a unimolecular decomposition rate of SCI into OH of 20 s\(^{-1}\), the SCI would contribute up to 12\% to the total formation of OH from ozonolysis of VOC in both environments. This indicates that the SCI do not have a large impact in the production of OH radicals and at the same time emphasizes how important a realistic estimate of VOC concentration is for modeling the OH radical as already underlined by (Hens et al., 2014).

3.5 Robustness of the [SCI] estimates

Figure 3 summarises the steady state concentration of SCI calculated on the basis of the H\(_2\)SO\(_4\) budget, the measured unsaturated VOC concentration and OH reactivity (R), and the OH budget for the HUMPPA-COPEC 2010 and HOPE 2012 campaigns. By considering the lower and the highest values estimated from the measured VOC and from the missing H\(_2\)SO\(_4\) oxidant for both campaigns, respectively, the steady state concentration of SCI is calculated to be between 5 x 10\(^3\) and 2 x 10\(^6\) molecules cm\(^{-3}\) for the boreal forest environment during the HUMPPA-COPEC 2010 campaign and between 7 x 10\(^3\) and 1 x 10\(^6\) molecules cm\(^{-3}\) for rural Germany during the HOPE 2012 campaign (Table 2). The SCI concentrations calculated using these approaches represent a best-effort estimate made for the environments studied here based on the available data; due to the many uncertainties related to the chemistry of SCI both in production and loss processes these estimates span about two orders of magnitude.

The estimate of the SCI concentration from the sulfuric acid budgets relies on the rate of oxidation of SO\(_2\) to H\(_2\)SO\(_4\). As indicated in section 3.1, two significantly different rate coefficients for the reaction of SCI with SO\(_2\) are currently available. One coefficient is high, \(3.3 \pm 2 \times 10^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\), while the other is several orders of magnitude lower, 5 x
10^{13} cm3 molecule$^{-1}$ s$^{-1}$. Justifications of the differences in the values due to the diverse procedures, i.e. direct detection of SCI + SO$_2$ for the high rate coefficient and detection of H$_2$SO$_4$ for the lower one, are difficult, while recent measurements tend to agree with the highest value. This casts doubts on the highest obtained SCI concentrations of $\sim 10^6$ molecules cm3. In addition, the remaining three estimates strongly depend on the yield of SCI, k_{VOC-O_3} and L_{SCIsyn}. Among these, the parameter with the highest uncertainty is the loss rate of syn-SCI, L_{SCIsyn}, as it is based on relatively few studies, which report large differences between the observations. In this study, a value of 40 s$^{-1}$ and of 32 s$^{-1}$, based on previous model analysis (Novelli et al., 2014b), for the HUMPPA-COPEC 2010 and HOPE 2012 campaigns respectively, were used. Recent work (Smith et al., 2016; Fang et al., 2016a; Long et al., 2016) suggests a faster unimolecular decomposition rate for the acetone oxide Criegee intermediate, exceeding 10^2 s$^{-1}$ in ambient conditions. It is currently not clear whether this rate applies to more substituted SCI as formed from monoterpenes but the use of these higher decomposition rate in the model by (Novelli et al., 2014b) would result in a total L_{SCIsyn} of \sim 110 s$^{-1}$. This loss rate would decrease the estimated SCI concentration by almost a factor of 3, closer to the lower estimates not exceeding 10^5 molecule cm$^{-3}$; this also casts doubt on the highest estimates given in Figure 3. Therefore, an average estimated SCI concentration of about 5×10^4 molecules cm$^{-3}$, with an order of magnitude uncertainty, is considered more appropriate for both campaigns.

4 The source of the OH background signal

In this section we examine the background OH signal, OH$_{bg}$ (Novelli et al., 2014b) measured during the two field campaigns discussed in the previous sections. In particular, we examine if this signal is consistent with the SCI chemistry and concentrations indicated above.
4.1 Correlation of OH$_{bg}$ with temperature

The time series of the background OH signal measured during the HUMPPA-COPEC 2010 and HOPE 2012 campaigns are shown together with temperature and J(O1D) values in Fig. 4. Increases and decreases in the OH$_{bg}$ signal follow the temperature changes. During the HUMPPA-COPEC 2010 campaign the OH$_{bg}$ shows a strong correlation with temperature (Fig. 5) with a correlation coefficient $R = 0.8$ for the exponential fit. The exponential dependency with temperature is in agreement with data shown by Di Carlo et al. (2004) for the unexplained OH reactivity and indicates that the species responsible for the OH$_{bg}$ strongly correlate with emission of biogenic VOC (BVOC) such as monoterpenes and sesquiterpenes, which have been shown to also exponentially depend on temperature (Guenther et al., 1993; Duhl et al., 2008; Hakola et al., 2003). This suggests that OH$_{bg}$ is directly related to BVOC chemistry. The relationship between OH$_{bg}$ and temperature during the HOPE 2012 campaign is less obvious. It is possible to observe a weakly exponential correlation between the two ($R = 0.51$, Fig. SI-10) but there is very large scatter in the data. It is worthwhile to underline the differences between the two environments. The forest in Finland is essentially pristine and BVOC dominated while in southern Germany a large fraction of non-biogenic VOC was observed. The lack of a clear exponential correlation between OH$_{bg}$ and temperature during the HOPE 2012 campaign could suggest different precursors or a different origin for the OH$_{bg}$ within the two environments.

During both campaigns a negligible correlation, $R = 0.2$, was observed between background OH and J(O1D). This suggests that the OH$_{bg}$ does not primarily originate from photolabile species.
4.2 Correlation of OH\textsubscript{bg} with unexplained OH reactivity

As described in section 3.3, during the HUMPPA-COPEC 2010 campaign high average OH reactivity was observed (~ 9 s-1), of which between 60 % and 90 % cannot be explained by the loss processes calculated from the measured species (Nölscher et al., 2012). A large unexplained fraction of the reactivity has often been observed, especially in forested environments (Di Carlo et al., 2004; Sinha et al., 2008; Edwards et al., 2013) indicating a large fraction of undetected BVOC and/or secondary oxidation products. The OH\textsubscript{bg} shows some correlation with the measured unexplained OH reactivity at 18 m, for the period on the ground (R = 0.4), and the measured unexplained OH reactivity at 24 m, for the period on the tower (R = 0.4) (Fig. 6). If we consider only night time data, i.e. J(O1D) \leq 3 \times 10-6 s-1 (Hens et al., 2014), we obtain better agreement between the two datasets for both ground and tower periods. During the night a large fraction of observed OH production (section 3.4) could not be explained, which can tentatively be attributed to formation of OH from ozonolysis of BVOC, suggesting that the background OH could be related to such a process. Correlation between the OH\textsubscript{bg} and the OH reactivity was also observed in a study by Mao et al. (2012) in a Ponderosa pine plantation (California, Sierra Nevada Mountains) dominated by isoprene where even higher OH reactivity was observed (~ 20 s-1).

During the HOPE 2012 campaign such a correlation with the unexplained OH reactivity was not observed (R = 0.1). The OH reactivity was, on average, 3 times less than during the campaign in Finland and, as shown in section 3.3, of which 50 % can be explained by reaction of OH with methane, formaldehyde, acetaldehyde, inorganic compounds (NOx, SO\textsubscript{2}, CO) and anthropogenic VOC. On average only 17 % of the OH reactivity is caused by reaction of OH with BVOC in this environment (Fig SI-8), dropping to 10 % during the night. The unexplained OH reactivity is not influenced by distinguishing between day and
night time data suggesting a small contribution of non-measured BVOC. As this site is more strongly affected by anthropogenic emissions (Table SI-2) compared to the site in Finland, assuming that the OH\textsubscript{bg} originates from BVOC driven chemistry, a lack of correlation between OH\textsubscript{bg} and OH reactivity can be expected.

\section*{4.3 Correlation of OH\textsubscript{bg} with ozonolysis chemistry}

During the HUMMPA-COPEC 2010 campaign a high correlation with O\textsubscript{3}, R = 0.7 (Fig. SI-11), indicates that background OH likely originates from ozonolysis processes. A comparison of background OH with the product of ozone concentration, measured unsaturated VOC concentration and their ozonolysis rate coefficient does not show the same relationship. No correlation (R = 0.05) is found by using the measured BVOC concentrations (Table SI-1). As most of the OH reactivity remains unexplained, with measured BVOC comprising less than 10 \% of the measured OH reactivity (Fig SI-6, Table SI-2), the lack of correlation could suggest that the VOC responsible for the formation of SCI detected by the HORUS instrument are likely part of the large fraction of unmeasured species to which a correlation was reported in the previous section.

During HOPE 2012 a weak correlation was observed between background OH and ozone (R = 0.5, fig. SI-12).

This campaign, from July 10th to August 19th 2012, encompasses a time period, from 1st to 3rd of August 2012, which was characterized by tree cutting in the vicinity of the measurement site. During this period a significantly larger fraction of unexplained OH reactivity, up to 40 \% (Fig. SI-13), was observed. The relative contribution of measured BVOC and inorganic compounds did not change, while the presence of unidentified BVOC emitted from the trees...
as a result of the stress induced on the plants from the cutting activity, caused the larger fraction of unexplained reactivity. Figure 7 shows the correlation between OH_{bg} and the product $k_{O_3}[\text{VOC}][O_3]$ of measured unsaturated VOC concentration (Table SI-1), $[O_3]$ and the relevant ozonolysis rate coefficients. In red are depicted the data points belonging to the tree cutting period, which naturally correspond to a larger OH_{bg} concentration for similar concentrations of measured VOC during the rest of the campaign, as the additional contribution from the non-identified BVOC is neglected. The overall correlation appears to be pretty poor in particular due to the few points scattering in the lower right corner. These points all belong to three consecutive days, from 26th to 28th of July, which were characterised by high temperature and large concentrations of BVOC (Table SI-3). As noticeable in Figure 4, during those three days the OH_{bg} strongly deviates from the temperature trends and reaches lower values. At present, the reason for such a low concentration of OH_{bg}, during a period which should favour its formation if it originates from SCI, is unclear. The instrument was left unattended at the site and the drop in the quality of the signals required its shutdown on the evening of the 28th of July. However, as no evidence was found to suggest an error in the data the points have not been omitted. Excluding that period yields a correlation factor of $R = 0.65$. The correlation line intercept could arise for a number of reasons. Unmeasured components of the OH reactivity (i.e. unspeciated VOCs) are not accounted for in the calculation, and doing so would shift the data to higher [VOC], decreasing the positive intercept. This is also consistent with a higher intercept for the cutting tree period where a larger unexplained OH reactivity was observed. It is also conceivable that the intercept is in part due to an additional, non-ozonolysis source of background OH. One candidate for the night time periods could be NO_3 as found in the work by Fuchs et al. (2016). Unfortunately, there was no measurement of the NO_3 radical during the HOPE 2012
campaign, but based on previous studies at the site (Handisides et al., 2003), a concentration up to 14 pptv of NO$_3$ could be present and could have a detectable impact.

Apart from the possible partial origin of OH$_{bg}$ from NO$_3$ or other interferences, there are also indications that the background OH could originate from ozonolysis of unsaturated biogenic compounds. The correlation analysis requires that all VOCs are accounted for, and omitting large contributions from unspeciated VOCs, as evidenced e.g. by OH reactivity measurements, can be expected to reduce the correlation as observed in the case of HUMPPA-COPEC 2010. The reason for the lack of correlation during the period from 26th to 28th July 2012 during HOPE-2012 characterised by large BVOC emissions remains unclear.

4.4 Correlation of OH$_{bg}$ with P(H$_2$SO$_4$)$_{unex}$

During both campaigns, measurements of H$_2$SO$_4$, SO$_2$, OH and CS (condensation sink) were performed allowing the calculation of the sulfuric acid budget in the gas phase. As shown by Mauldin III et al. (2012), during the HUMPPA-COPEC 2010 campaign the well-known SO$_2$ oxidation process by OH (Wayne, 2000) (Eq. 1) was not sufficient to explain the measured concentration of H$_2$SO$_4$. As shown in section 3.1, half of the production rate of H$_2$SO$_4$, \sim 1 x 104 molecules cm$^{-3}$ s$^{-1}$, cannot be explained by reaction with OH radicals (Fig. 8). The missing oxidant is assumed to be SCI, as discussed in section 3.1, because of their fast reaction rate with SO$_2$. As our hypothesis about the origin of the OH$_{bg}$ supports this assumption, we compared the [H$_2$SO$_4$]$_{unex}$ observed during the HUMPPA-COPEC 2010 campaign with the OH$_{bg}$ multiplied by SO$_2$ for the ground-based period when the instruments (HORUS and CIMS) measured side-by-side (Fig. 9). The two datasets indicate a correlation
coefficient of $R = 0.6$ suggesting that whichever species is responsible for the oxidation of SO$_2$ is related to the formation of OH within the HORUS instrument.

Note that for the HOPE 2012 campaign the same budget calculation shows only a small fraction (10%) of unexplained H$_2$SO$_4$ production rate (Fig. 1).

Assuming SCI to be the unknown SO$_2$ oxidant, the results observed in both campaigns are in agreement with the modeling study by Boy et al. (2013), who analyzed measurements at the same sites described in this study. Similar to our result, they found a larger contribution of SCI in the formation of H$_2$SO$_4$ for the boreal forest compared to rural Germany. As the OH concentration differs by, on average, less than 50% between the two environments, a similar concentration of SCI in HOPE to that calculated for HUMPPA-COPEC 2010 would contribute up to 30% in the formation of H$_2$SO$_4$. However, the H$_2$SO$_4$ budget during this campaign can approximately be closed by only considering the measured OH concentrations, suggesting that the concentration of SCI in this environment is smaller than that during the HUMPPA-COPEC 2010 campaign. This is consistent with the calculation in section 3 based on the smaller reactivity and hence smaller VOC concentration in this environment.

4.5 Scavenging experiments

A series of scavenging tests of the OH$_{bg}$ was performed during the HOPE 2012 campaign to help identify the interfering species. SO$_2$ was chosen as scavenger for the species causing the OH$_{bg}$, as it has been shown in several laboratory studies to react quickly with SCI ($k \sim 3.3 \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$) mostly independently of their structure (Taatjes et al., 2014). The injection of SO$_2$ was performed through the IPI system (Novelli et al., 2014a) together with an OH scavenger. First the OH scavenger propane was injected within IPI to remove the atmospheric OH; subsequently, SO$_2$ was injected in addition to the OH scavenger (Fig. 10). The concentration of SO$_2$ is small enough not to scavenge SCI inside the low pressure section.
of the instrument, nor is it additionally removing atmospheric OH within the IPI system as the lifetime of OH by reaction with SO$_2$ is 200 times that of propane. With the addition of SO$_2$ (1×10^{13} molecules cm$^{-3}$ in the sampled air) it is possible to suppress the OH$_{bg}$ signal from the instrument to within the zero noise, indicating that the OH$_{bg}$ signal originates from an SCI-like species that reacts with SO$_2$ and decomposes unimolecularly to OH.

4.6 SCI as a source of background OH

During the HUMPPA-COPEC 2010 campaign the background OH showed a strong exponential relationship with temperature ($R = 0.8$) and it correlates with unexplained OH reactivity ($R = 0.5$), which suggests correlation with BVOC, with ozone ($R = 0.7$), and also with the P(H$_2$SO$_4$)$_{unex}$ ($R = 0.6$). During the HOPE 2012 campaign a weak exponential correlation with temperature was recognized ($R = 0.5$) but no correlation was observed with OH reactivity. The OH$_{bg}$ correlated with the product of ozone and unsaturated VOC for most of the campaign ($R = 0.6$) although not for a period of three days at the end of July with partly higher BVOC-O$_3$ turnover. In addition, during HOPE 2012 the OH$_{bg}$ signal was scavenged by the addition of SO$_2$.

All evidence presented indicates that substantial parts of the OH$_{bg}$ originate from a species formed during the ozonolysis of unsaturated VOC that decomposes into OH, is removable by SO$_2$ and, if present in a significant concentration, increases the H$_2$SO$_4$ production. We are currently not aware of any chemical species, other than SCI, known to oxidise SO$_2$ at a fast enough rate and also decompose into OH. In addition, HORUS was shown to be sensitive to the OH formed after unimolecular decomposition of SCI in the low-pressure region of the instrument (residence time 2 ms) in controlled laboratory studies (Novelli et al., 2014b).
During the HUMPPA-COPEC 2010 campaign, the correlation with OH reactivity improved when considering only data during night time, the period during which a higher fraction of the production rate of OH could not be accounted for (Hens et al., 2014). Indeed, during the night recycling via HO$_2$+NO is low due to the negligible NO concentration, therefore a different path of formation of OH is expected. One likely path could be the formation of OH from excited and stabilised CI formed from ozonolysis of unsaturated compounds.

The considerations above are all consistent with the hypothesis that OH$_{bg}$ largely originates from unimolecular decomposition of SCI in the field as well as in the laboratory.

Attempts to analyse the absolute concentration of SCI based on our OH$_{bg}$, however, indicates that this hypothesis is not without difficulties. A particular problem is that to date no method is available to produce and quantify a known concentration of a specific SCI conformer, which precludes the absolute calibration of SCI-generated OH. A priori, it seems unlikely that the IPI-LIF-FAGE instrument calibration factor for ambient OH, i.e. sampled from outside the instrument through the nozzle, is identical to the sensitivity for OH generated inside. The transmission factor through our nozzle pinhole is currently not known for OH radicals; the calibration factor used for ambient OH accounts for this transmission as well as for e.g. OH losses on the walls, alignment of the white cell, transmission optics, and response of the MCP. These last three factors should affect the OH generated from any interfering species similarly, while wall losses and transmission through the pinhole are different and possibly also differ between SCI conformers. Additionally, different SCI vary in their unimolecular decomposition rates and hence affect calibration by a different time-specific OH yield. For example, theoretical studies (Vereecken and Francisco, 2012) and laboratory experiments (Smith et al., 2016) indicate that acetone oxide will decompose faster than syn-acetaldehyde oxide causing the formation of a different amount of OH, which in turn will
also be affected by different loss rates in the low pressure segment of the instrument. Thus, it
is not possible to convert the internal OH to an absolute SCI concentration since the mixture
of SCI is not known. At best one could obtain an "average" sensitivity factor, if one knew the
OH_{bg} formed from a series of reference SCI conformers, and if the ambient SCI speciation is
known and not too strongly dependent on reaction conditions. To further illustrate the need of
a SCI-specific calibration, we try to simply calculate the external [SCI] from the internal
OH_{bg} signal strength, calibrated based on the combined experimental and modelling study by
Novelli et al. (2014b). For a SCI mixture that behaves identical to syn-CH$_3$CHOO, the OH_{bg}
from the HUMPPA-COPEC 2010 campaign would then indicate an external [SCI] $\geq 2 \times 10^7$
molecules cm$^{-3}$, well above the estimates presented in section 3. Moreover, the observed
OH_{bg} signal interpreted in this way would imply an ambient OH production exceeding $4 \times$
10^8 molecules cm$^{-3}$ s$^{-1}$, clearly in disagreement with known chemistry, and also inconsistent
with our estimates (Table 2). If we assume a faster decomposition rate for the SCI of 200 s$^{-1}$,
a higher fraction of the SCI decomposes in the low-pressure region, i.e. 80 % compared to 25
% for $k_{uni} = 20$ s$^{-1}$. This leads to a higher OH signal per SCI, and from this a [SCI] of 4×10^6
molecules cm$^{-3}$, though the implied ambient OH production would remain significantly too
high. Thus, the conversion of the OH signal to an absolute concentration of ambient SCI is
not unambiguous without full SCI speciation and knowledge of their chemical kinetics. Note
furthermore that these [SCI] estimates would represent a lower limit as we only observe SCI
that decompose to OH, whereas e.g. anti-SCI convert to acids/esters.

In an effort to work towards SCI-specific calibration, we probed the transmission of OH and
syn-CH$_3$CHOO through the nozzles and the low-pressure region in the instrument, with
explorative laboratory tests using a traditional nozzle and a molecular beam skimmer nozzle,
where the latter has much thinner sidewalls and a significantly narrower gas expansion,
strongly reducing wall contact. The laboratory test showed that the OH radical has a 23 %
higher transmission through the molecular beam nozzle compared to the traditional nozzle.
The syn-acetaldehyde oxide did not show any statistical difference in the transmission
between the two nozzles. This indicates that (a) SCI and OH have a different transmission
efficiency and most likely different wall losses, underlining that the OH calibration factor is
not applicable to SCI for ambient measurements, and (b) that the calibration factor for OH
obtained for ambient OH alone does not allow the quantification of the absolute OH
concentration in the low-pressure section of the FAGE instrument. This is the fundamental
reason why the earlier simple estimate of [SCI] and OH production leads to strong over-
estimations.

In addition to the above effects, one should also consider that OH-production from SCI in the
low-pressure section might be catalysed to proceed at rates beyond their ambient counterpart,
biasing our interpretation of their ambient fate. The catalysis might involve wall-induced
isomerisation of the higher-energy anti-SCI to the more stable, OH-producing syn-SCI,
which would artificially increase the syn:anti ratio. Another possibility is the evaporation of
clusters stabilizing the SCI, as it is known that SCI efficiently form complexes with many
compounds, including water, acids, alcohols, hydroperoxides, HO\(_x\) radicals, etc. (Vereecken
and Francisco, 2012). Redissociation of secondary ozonides (SOZ) seems less important,
except perhaps the SOZ formed with CO\(_2\) (Aplincourt and Ruiz-López, 2000), which has no
alternative accessible unimolecular channels. At present, insufficient (if any) information is
available to assess the impact of such catalysis.

Taking into account the factors considered above, and assuming that the estimates for the SCI
concentration in both environments are correct, it appears unlikely that SCI are responsible
for such a large OH\(_{bg}\) signal as observed by the HORUS instrument. If SCI were to be solely
responsible for the OH\(_{bg}\) signal, the HORUS instrument would need to be far more sensitive
to the detection of SCI than to the detection of OH radicals by, for example, pinhole losses
that are 100 times smaller for SCI than for OH radicals. The evident discrepancy between the
qualitative evidence in support of the SCI hypothesis and the current quantitative difficulty in
reconciling the OH\(_{bg}\) signal with the estimated ambient concentration of SCI does not allow
an unequivocal identification of the origin of the OH\(_{bg}\) within our system. It cannot be
excluded that multiple species are contributing to the OH\(_{bg}\) signal. NO\(_3\) chemistry during
night time has been identified as a possible source of OH\(_{bg}\) in the LIF-FAGE instrument of
the FZ-Jülich (Fuchs et al., 2016). However, in the case of the large observed night time OH\(_{bg}\)
concentrations during HUMPPA-COPEC 2010, the measured night time NO\(_3\) concentrations
were below 1 ppt and therefore too small to explain the observed OH\(_{bg}\).

5 Conclusions

We estimated a steady state concentration of SCI for the HUMPPA-COPEC 2010 and the
HOPE 2012 campaigns based on a large dataset. Starting from four different approaches, i.e.
based on unaccounted (i.e. non-OH) H\(_2\)SO\(_4\) oxidant, measured VOC concentrations,
unexplained OH reactivity or unexplained production rates of OH, we estimated the
concentration of SCI to be between \(~10^3\) and \(~10^6\) molecules cm\(^{-3}\). The highest values in
this range are linked to an assumed low rate coefficient for SCI + SO\(_2\) of \(5 \times 10^{-13}\) cm\(^3\)
molecule\(^{-1}\) s\(^{-1}\) (see section 3.1), which is at odds with a larger body of more direct
measurements on this rate coefficient. Hence, higher SCI values appear to be relatively less
likely. We thus obtain an average SCI concentration of about \(5 \times 10^4\) molecules cm\(^{-3}\), with an
order of magnitude uncertainty, for both campaigns. At such concentrations, SCI are
expected to have a significant impact on H\(_2\)SO\(_4\) chemistry during the HUMPPA-COPEC
2010 campaign while during the HOPE 2012 campaign their impact is much smaller and possibly negligible. Additionally, it was shown that, based on the yields and unimolecular decomposition rate applied in this study, SCI do not have a large impact on the OH production compared to the direct OH generation from ozonolysis of unsaturated VOC. During both campaigns, the IPI-LIF-FAGE instrument detected an OH background signal that originates from decomposition of one or more species inside the low pressure region of the instrument. The source compound of the OH$_{bg}$ was shown to be unreactive towards propane but to be removed by SO$_2$, and a relationship was found with the unaccounted H$_2$SO$_4$ production rate. It correlates with temperature in the same way as the emission of terpenes and, in most but not all measurements periods, with the product of unsaturated VOC and ozone as well as with the OH reactivity. While it is not possible at the moment to unequivocally state that OH$_{bg}$ originates from stabilised Criegee intermediates, the observations are consistent with known SCI chemistry. The contribution of SCI to the observed OH$_{bg}$ cannot be quantified until a calibration scheme for SCI in the IPI-FAGE system has been developed.

The predicted SCI concentrations derived in this study are low, likely not exceeding 10^5 molecule cm$^{-3}$, therefore, the presence of SCI is unlikely to have a large impact on atmospheric chemistry; the main exception appears to be H$_2$SO$_4$ production in selected environments.

Acknowledgements

LV was supported by the Max Planck Graduate Centre (MPGC) with the Johannes Gutenberg-Universität Mainz.
Work during HUMPPA-COPEC was supported by the Hyytiälä site engineers and staff. Support of the European Community Research Infrastructure Action under the FP6 "Structuring the European Research Area" Programme, EUSAAR Contract No RII3-CT-2006-026140 is gratefully acknowledged. The HUMPPA-COPEC 2010 campaign measurements and analyses were supported by the ERC Grant ATMNUCLE (project No 227463), Academy of Finland Centre of Excellence program (project No 1118615), Academy of Finland Centre of Excellence in Atmospheric Science – From Molecular and Biological processes to The Global Climate’ (ATM), 272041, the European integrated project on Aerosol Cloud Climate and Air Quality Interactions EUCAARI (project No 036833-2), the EUSAAR TNA (project No 400586), and the IMECC TA (project No 4006261).

The work during HOPE 2012 was supported by the scientists and staff of DWD Hohenpeißenberg whom we would like to thank for providing the "platform" and opportunity to perform such campaign. In particular, we thank, Anja Werner, Jennifer Englert and Katja Michl for the VOC measurements, Stephan Gilge for the trace gases measurements and Georg Stange for running the CIMS.

We also would like to thank Markus Rudolf for much technical support and guidance, Eric Regelin and Umar Javed for the numerous scientific discussions, Petri Keronen for providing meteorological and trace gas concentration data from Hyytiälä during the HUMPPA-COPEC 2010 and Thorsten Berndt for providing the data to re-evaluate the rate coefficient between SCI and SO₂.

References

Amédro, D.: Atmospheric measurements of OH and HO2 radicals using FAGE: Development and deployment on the field, Université Lille1 - Sciences et Technologies, Tokyo Metropolitan University, 2012.

stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations, Atmos. Chem. Phys., 13, 3865-3879, 10.5194/acp-13-3865-2013, 2013.

Ryzhkov, A. B., and Ariya, P. A.: A theoretical study of the reactions of parent and
substituted Criegee intermediates with water and the water dimer, Phys Chem Chem Phys, 6,

Sarwar, G., Fahey, K., Kwok, R., Gilliam, R. C., Roselle, S. J., Mathur, R., Xue, J., Yu, J.,
concentrations: Aqueous-phase oxidation by NO2 and gas-phase oxidation by Stabilized
Criegee Intermediates, Atmos Environ, 68, 186-197,

environment: new insights, Indoor Air, n/a-n/a, 10.1111/ina.12102, 2014.

Sheps, L., Scully, A. M., and Au, K.: UV absorption probing of the conformer-dependent
reactivity of a Criegee intermediate CH3CHOO, Phys Chem Chem Phys,

Shillings, A. J. L., Ball, S. M., Barber, M. J., Tennyson, J., and Jones, R. L.: An upper limit
for water dimer absorption in the 750 nm spectral region and a revised water line list, Atmos.
Chem. Phys., 11, 4273-4287, 10.5194/acp-11-4273-2011, 2011.

Method – a new tool to measure total OH Reactivity in ambient air, Atmos. Chem.
Phys., 8, 2213-2227, 10.5194/acp-8-2213-2008, 2008.

Sipilä, M., Jokinen, T., Berndt, T., Richters, S., Makonen, R., Donahue, N. M., Mauldin Iii,
R. L., Kortén, T., Paasonen, P., Sarnela, N., Ehn, M., Junninen, H., Rissani, M. P.,
Thornton, J., Stratmann, F., Herrmann, H., Worsnop, D. R., Kulma, M., Kerminen, V. M.,
and Petäjä, T.: Reactivity of stabilized Criegee intermediates (sClis) from isoprene and
monoterpene ozonolysis toward SO2 and organic acids, Atmos. Chem. Phys., 14, 12143-
12153, 10.5194/acp-14-12143-2014, 2014.

Smith, M. C., Chang, C.-H., Chao, W., Lin, L.-C., Takahashi, K., Boering, K. A., and Lin, J.
J.-M.: Strong Negative Temperature Dependence of the Simplest Criegee Intermediate
CH2OO Reaction with Water Dimer. The Journal of Physical Chemistry Letters, 2708-2713,
10.1021/acs.jpcl.5b01109, 2015.

Decomposition Rate of the Criegee Intermediate (CH3)2COO Measured Directly with UV
Absorption Spectroscopy. The Journal of Physical Chemistry A, 10.1021/acs.jpca.5b12124,
2016.

reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure, Phys Chem Chem

measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO,

44

Yassaa, N., Song, W., Lelieveld, J., Vanhatalo, A., Back, J., and Williams, J.: Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010, Atmospheric Chemistry and Physics, 12, 7215-7229, 10.5194/acp-12-7215-2012, 2012.

Table 1. Average concentration (molecule cm\(^{-3}\)), with 1σ variability, of trace gases relevant for this study.

<table>
<thead>
<tr>
<th>Compound</th>
<th>HUMPPA-COPEC 2010</th>
<th>HOPE 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SO}_2^a)</td>
<td>((1.4 \pm 1.7) \times 10^{10})</td>
<td>((2.2 \pm 2.3) \times 10^9)</td>
</tr>
<tr>
<td>(\text{H}_2\text{SO}_4^a)</td>
<td>((2 \pm 2) \times 10^6)</td>
<td>((8.5 \pm 8.5) \times 10^5)</td>
</tr>
<tr>
<td>(\text{OH}^a)</td>
<td>((7 \pm 8) \times 10^5)</td>
<td>((1.6 \pm 1.6) \times 10^6)</td>
</tr>
<tr>
<td>(\text{O}_3^a)</td>
<td>((1.1 \pm 0.2) \times 10^{12})</td>
<td>((1.1 \pm 0.3) \times 10^{12})</td>
</tr>
<tr>
<td>(\Sigma[\text{VOC}]^{a,b})</td>
<td>((7.3 \pm 7.1) \times 10^9)</td>
<td>((9.8 \pm 9.0) \times 10^9)</td>
</tr>
<tr>
<td>(\text{OH Reactivity}^c)</td>
<td>9.0 ± 7.6</td>
<td>3.5 ± 3.0</td>
</tr>
<tr>
<td>(\text{Condensation sink (CS)}^c)</td>
<td>((10 \pm 4.0) \times 10^{-3})</td>
<td>((7 \pm 3) \times 10^{-3})</td>
</tr>
</tbody>
</table>

\(a\), Units: molecules cm\(^{-3}\).

\(b\), HUMPPA COPEC 2010: isoprene, \((-)/(+) \alpha\)-pinene, \((-)/(+) \beta\)-pinene, 3-carene, and myrcene.

\(c\), HOPE 2012: isoprene, \(\alpha\)-pinene, \(\beta\)-pinene, 3-carene, myrcene, limonene, 2-methylpropene, but-1-ene, sabinene, \(\gamma\)-terpinene, propene, cis-2-butene and ethene.

\(\text{OH Reactivity}\), Units: molecules cm\(^{-3}\) s\(^{-1}\).

\(1\) ppbv = \(2.46 \times 10^{10}\) molecules cm\(^{-3}\) at 295K and 1013 hPa.
Table 2. SCI estimates for the HUMPPA-COPEC 2010 and HOPE 2012 campaigns. Average concentration (molecule cm$^{-3}$), with 1σ variability.

<table>
<thead>
<tr>
<th>Approach</th>
<th>HUMPPA-COPEC 2010</th>
<th>HOPE 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing H$_2$SO$_4$</td>
<td>$(2.3 \pm 2) \times 10^4$ a</td>
<td>$(2.0 \pm 3) \times 10^4$ a</td>
</tr>
<tr>
<td></td>
<td>$(1.6 \pm 2) \times 10^6$ b</td>
<td>$(1 \pm 3) \times 10^6$ b</td>
</tr>
<tr>
<td>Measured unsaturated VOC</td>
<td>$(5 \pm 4) \times 10^3$</td>
<td>$(7 \pm 6) \times 10^3$</td>
</tr>
<tr>
<td>Unexplained OH reactivity</td>
<td>$(1 \pm 1) \times 10^5$</td>
<td>$(2 \pm 1.5) \times 10^4$</td>
</tr>
<tr>
<td>Unexplained OH production</td>
<td>$(2 \pm 2) \times 10^4$ c</td>
<td>n. a.</td>
</tr>
<tr>
<td></td>
<td>$(4 \pm 4) \times 10^5$ d</td>
<td>n. a.</td>
</tr>
</tbody>
</table>

a, $k_{SCI+SO2} = 3.3 \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$

b, $k_{SCI+SO2} = 5 \times 10^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$

c, $P_{OH}^{unexplained} = 1 \times 10^6$ molecule cm$^{-3}$ s$^{-1}$

d, $P_{OH}^{unexplained} = 2 \times 10^7$ molecule cm$^{-3}$ s$^{-1}$

1 ppbv = 2.46×10^{10} molecules cm$^{-3}$ at 295K and 1013 hPa.
Figure 1. Total production rate of H_2SO_4 ($P(\text{H}_2\text{SO}_4)_{\text{tot}}$) as a function of the production rate of H_2SO_4 from the reaction between OH and SO$_2$ during the HOPE 2012 campaign. The linear regression, following the method of York et al. (2004), yields a slope of 0.9 ± 0.02 and an intercept of 57 ± 7.
Figure 2. Schematic representation of the formation of OH from the ozonolysis of unsaturated VOC.
Figure 3. Schematic overview of the estimated steady state concentration of SCI ([SCI]_{ss}, molecules cm^{-3}) observed during the HUMPPA-COPEC 2010 and HOPE 2012 campaigns. For both campaigns the SCI estimate is based on the unsaturated VOC concentration measured, [VOC], and the H_{2}SO_{4} budget using different SCI+SO_{2} rate coefficients (k_{SCI+SO_{2}} in cm^{3} molecule^{-1} s^{-1}). In addition, during the HUMPPA-COPEC campaign SCI can be calculated from the unexplained OH reactivity, R_{unexplained}, and unexplained OH production, P_{OH\ unexplained}^{unexplained}. See main text for more details (Section 3).
Figure 4. Background OH (red diamonds) measured during the HUMPPA-COPEC 2010 (a, ground and b, tower) and the HOPE 2012 (c, July and d, August) campaigns together with scaled J(O\(^1\)D), multiplied by 4 \times 10^4 and 4 \times 10^3 for HUMPPA-COPEC 2010 and HOPE 2012, respectively (orange), and scaled temperature divided by 90 and 160 K for HUMPPA-COPEC 2010 and HOPE 2012, respectively (green).
Figure 5. Background OH as a function of the temperature during the HUMPPA-COPEC 2010 campaign.

\[\text{OH}_{bg} = 4.7 \times 10^{-12} \exp(0.08 \times T) \]

\[R = 0.8 \]
Figure 6. Background OH as a function of unexplained OH reactivity for ground and tower period measurements during the HUMPPA-COPEC 2010 campaign. Squares represent the daytime data, bullets represent night time data and are coloured accordingly to temperature (right legend).
Figure 7. Background OH as a function of the sum of the product of the measured unsaturated VOC-ozone turn-over (Table SI-1), during the HOPE 2012 campaign. The blue points refer to the entire field campaign excluding tree cutting, which occurred between 1st and 3rd of August 2012, described by the red squares.
Figure 8. Comparison of the total H_2SO_4 production rate (black line), calculated from the measured H_2SO_4, and the production rate of H_2SO_4 (red line) involving only the oxidation process of SO_2 by OH for the ground measurements during the HUMPPA-COPEC 2010 campaign.

$P(\text{H}_2\text{SO}_4)_{\text{tot}} = [\text{H}_2\text{SO}_4] \times \text{Condensation Sink}$

$P(\text{H}_2\text{SO}_4)_{\text{OH}} = [\text{OH}] \times [\text{SO}_2] \times k$
Figure 9. The production rate of H$_2$SO$_4$ unaccounted for by the oxidation of SO$_2$ by OH as a function of the OH$_{bg}$ multiplied by SO$_2$ concentration during the ground measurements of the HUMPPA-COPEC 2010 campaign. OH$_{bg}$ is expressed in molecules cm$^{-3}$ equivalents of OH.
Figure 10. SO$_2$ injection test within IPI during the HOPE 2012 campaign. The blue data points represent the total OH measured when no injection is performed. The black data points represent the background OH measured while injecting propane (2.5×10^{15} molecules cm$^{-3}$) scavenging > 90 % of ambient OH. The red signal is the background OH observed when SO$_2$ (1×10^{13} molecules cm$^{-3}$) is injected in addition to propane.