Nitrate transboundary heavy pollution over East Asia in winter

Syuichi Itahashi1, Itsushi Uno2, Kazuo Osada3, Yusuke Kamiguchi3#, Shigekazu Yamamoto4, Kei Tamura5, Zhe Wang2,6, Yasunori Kurosaki7, Yugo Kanaya8

1 Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba, 270-1194, Japan
2 Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga Park, Kasuga, Fukuoka, 816-8580, Japan
3 Graduate School of Environmental Studies, Nagoya University, D2-1 (510) Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
4 Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka, 818-0135, Japan
5 Nagasaki Prefectural Environmental Affairs Department, 2-1306-11 Ikeda, Omura, Nagasaki, 856-0026, Japan
6 Institute of Atmospheric Physics, Chinese Academy of Sciences, 40 Huayanli, Chaoyang, Beijing, 100029, China
7 Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001, Japan
8 Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 236-0001, Japan
9 Present address: JCB Co. Ltd., Tokai Regional Office, 2-16-26, Nishi, Naka-ku, Nagoya, Aichi 460-0003, Japan

Correspondence to: Syuichi Itahashi (isyuichi@criepi.denken.or.jp)

Abstract. High PM2.5 concentrations of around 100 µg/m3 were observed twice during an intensive observation campaign in January 2015 at Fukuoka (33.52°N, 130.47°E) in western Japan. These events were analyzed comprehensively within a regional chemical transport model and by synergic ground-based observations with state-of-the-art measurement systems, which can capture the behavior of secondary inorganic aerosols (SO42−, NO3−, and NH4+). The first episode of high PM2.5 concentration was dominated by NO3− (type N), and the second episode by SO42− (type S). The concentration of NH4+ (the counterion for SO42− and NO3−) was high for both types. Sensitivity simulation in the chemical transport model showed that the dominant contribution was from transboundary air pollution for both types. To investigate the differences between these types further, the chemical transport model results were examined, and backward trajectory analysis was used to provide additional information. During both types of episodes, high concentrations of NO3− were found above China, and an air mass that originated from northeast China reached Fukuoka. The travel time from the coastline of China to Fukuoka differed between types: 18 h for type N and 24 h for type S. The conversion ratio of SO2 to SO42− (Fs) was less than 0.1 for type N, but reached 0.3 for type S as the air mass approached Fukuoka. The higher Fs for type S was related to the higher relative humidity and concentration of HO2, which produces H2O2, the most effective oxidant for the aqueous-phase production of SO42−. Analyzing the gas ratio as an indicator of the sensitivity of NO3− to changes in SO2 and NH4+ showed that the air mass over China was NH3-rich for type N, but almost NH3-neutral for type S. Thus, although the high concentration of NO3− above China gradually decreased during transport from China to Fukuoka, higher NO3− concentrations were maintained during transport owing to the lower SO42− for type N. In contrast, for type S, the production of SO42− led to decomposition of NH2NO3 and more SO42− was transported. Notably, the type-N transport pattern was limited to western Japan, and especially
Kyushu Island. Transboundary air pollution dominated by SO_4^{2-} (type S) has been recognized as a major pattern of pollution over East Asia. However, our study confirms the importance of transboundary air pollution dominated by NO_3^-, which will help refine our understanding of transboundary heavy PM$_{2.5}$ pollution in winter over East Asia.

1. Introduction

Particulate matter (PM) presents major environmental problems globally, especially in East Asia. A typical example is the episode of severe air pollution that occurred in January 2013 above China (e.g., Wang et al., 2014; Uno et al., 2014). During this episode, PM with aerodynamic diameters of less than 2.5 µm (PM$_{2.5}$) reached record-breaking concentrations of 772 µg/m3 on January 12, 2013 (Pan Y. et al., 2016). Transboundary air pollution in downwind regions resulting from the severe air pollution in China is also an important environmental problem. For example, the possible long-range transport of PM$_{2.5}$ was based on the comparison of observations in metropolitan areas and remote islands in western Japan (Kaneyasu et al., 2014). They highlighted the dominant effect of the transboundary transport for sulfate (SO_4^{2-}) as a major PM$_{2.5}$ component in western Japan throughout most of the year. During spring, due to the prevailing westerly wind over East Asia, transboundary air pollution of both aerosols and gases (e.g., carbon monoxide (CO) and ozone (O$_3$)) has been thoroughly discussed (Itahashi et al., 2010, 2013, 2015; Kanaya et al., 2016; Nagashima et al., 2010). In summer, the clean air mass from oceans is moved over Japan by the southerly wind caused by the Pacific High; however, some studies have discussed the importance of transboundary air pollution from China over western Japan (Itahashi et al., 2012a; Ikeda et al., 2014). Recently, one-year source-receptor relationships for SO_4^{2-} were evaluated, and China was identified as the main influence on downwind regions throughout the year, with local sulfur dioxide (SO_2) emissions making an important contribution during summer (Itahashi et al., 2016). Compared with the analyses for spring and summer, transboundary air pollution events during winter are less well understood.

In this study, we also focused on nitrate (NO_3^-), which is an important PM$_{2.5}$ component. NO_3^- in PM$_{2.5}$ is produced via the reaction of gas-phase nitrate (nitric acid; HNO$_3$) and ammonia (NH$_3$), and this process is reversible. This reaction favors a shift toward the aerosol phase at low temperatures and high humidity (Seinfeld and Pandis, 2006). The simulated spatial distribution over East Asia showed the possible impact of transboundary NO_3^- pollution during winter over western Japan (Zhang et al., 2007; Ying, 2014). However, a quantitative evaluation over downwind regions was not presented in their studies. This is partly because model ability was not evaluated owing to the difficulty in measuring NO_3^-. Particulate NH$_3$NO$_3$ may be volatilized after collection on the filter, by either an increase in the pressure drop across the particle-collecting medium or changes in the gas-aerosol equilibrium during sampling (Sickles et al., 1999; Chang et al., 2000). This volatilization could occur even in winter because the temperature in the instrument shelter can be increased by heat from the pump. Therefore, the ground-based Acid Deposition Monitoring Network in East Asia uses the four-stage filter pack method: NH$_3$NO$_3$ is collected on the first filter and gas-phase HNO$_3$ and NH$_3$ are detected on the subsequent filters. The
artifacts might not be significant; however, to avoid the possibility of volatilization, total nitrate (the sum of NO$_3^-$ and HNO$_3$) has been used to evaluate the model ability in previous studies (e.g., Kajino et al., 2011).

To improve our understanding of the behavior of NO$_3^-$, accurate measurements and the evaluation of model ability are needed. In this study, we used the state-of-the-art automated monitoring system for SO$_2^{2-}$ and NO$_3^-$, Aerosol Chemical Speciation Analyzer (ACSA). This system measures SO$_2^{2-}$ and NO$_3^-$ with high temporal resolution and 1 h intervals were used in this study, minimizing the possibility of volatilization. In addition, the behavior of ammonium (NH$_4^+$), which is the counterion for SO$_2^{2-}$ and NO$_3^-$, was captured by the well-validated NHx monitoring system. Therefore, the secondary inorganic aerosols (sulfate (SO$_2^{2-}$)–nitrate (NO$_3^-$)–ammonium (NH$_4^+$); SNA) were fully observed by our synergetic monitoring system. The denuder-filter pack (D-F pack) method with 6-8 h cycles was also used during the intensive observation period from January 7–17, 2015. This intensive observation was designed to capture the heavy PM$_{2.5}$ pollution episode in winter time, and to support and validate the ACSA and NHx monitoring system. Based on these measurement systems, gas-phase HNO$_3$ and NH$_3$ can be measured by the D-F pack method and NHx monitor, respectively. The related gas-phase behavior analysis is valuable for improving our understanding of the formation of NO$_3^-$. The observations were conducted at the Chikushi Campus of Kyushu University, which is in the suburbs of Fukuoka City (33.52°N, 130.47°E) in western Japan. The synergetic ground-based observation dataset was systematically interpreted by using the regional chemical transport model, and we also examined the impact of the domestic and transboundary air pollution during winter. Chemical transport model studies are one type of critical approach for analyzing the behavior of three-dimensional air pollutants and estimating source impacts. Systematic comparison of model results with observations, including gas-phase precursors, will promote understanding and improve model ability for Asia. This will also contribute to the Model Inter-Comparison Study for Asia (MICS-Asia), which focuses on providing a common understanding of model performances and uncertainties, especially for models of long-range transport in Asia (Carmichael et al., 2002, 2008; Li et al., 2017). This paper is constructed as follows. Section 2 documents the observation dataset and model simulation. Section 3 discusses the results with respect to temporal variations at observation sites and the model results combined with the backward trajectory analysis. Finally, a summary and conclusions are given in Section 4.

2 Observation and model simulation

2.1 Observation sites

The synergetic observations for capturing SNA behavior were conducted at Chikushi Campus of Kyushu University located in the suburbs of Fukuoka City (33.52°N, 130.47°E). Fukuoka City is the largest center of commerce in Kyushu Island. The population of Fukuoka City is 1.5 million and that of the Fukuoka metropolitan area is 2.5 million. This is the fourth largest metropolitan area in Japan, after Tokyo (34.8 million), Osaka (12.2 million), and Nagoya (5.5 million). This site is an urban site. In addition to the observation at Fukuoka, observations from the Goto Islands (32.68°N, 128.83°E) and Tsushima Island (32.20°N, 129.28°E) were also used. The Goto Islands are located in the East China Sea, 190 km southwest of Fukuoka and
have a population of 70,000. Tsushima Island is located in the Tsushima Strait, 140 km northwest of Fukuoka, and has a population of 34,000. These two islands have negligible anthropogenic emissions sources and are regarded as remote sites. In addition to these three sites over Kyushu Island, to investigate the regions affected by transboundary air pollution, observations from Tottori City (35.54°N, 134.21°E) in western Japan were also used. Tottori City has a population of 190,000, and this site is also regarded as a remote site in western Japan. The locations of these four observation sites over Japan are shown in Fig. 1. In addition to these observations over Japan, PM$_{2.5}$ observations in China from the US Embassy in Beijing and the US Consulates in the provincial capitals of Shanghai and Shenyang were used. The locations of these three sites over China are shown in Fig. 2.

2.1.1 Aerosol chemical speciation analyzer (ACSA)

An ACSA-12 Monitor (Kimoto Electric Co., Ltd., Osaka, Japan), for PM$_{10}$ and PM$_{2.5}$, which were separated by a US Environmental Protection Agency inlet and a virtual impactor, were measured with high temporal resolution (Kimoto et al., 2013). PM was collected on a tape filter made of Teflon (PTFE). Hourly observations were conducted for SO$_4^{2-}$ and NO$_3^-$ at Fukuoka. The mass concentrations of PM were determined by using the beta-ray absorption method. The ACSA-12 measured NO$_3^-$ using an ultraviolet spectrophotometric method, and SO$_4^{2-}$ by turbidimetry after addition of BaCl$_2$ to form BaSO$_4$ and polyvinyl pyrrolidone as a stabilizer. The analytical period was within 2 h of sampling; therefore, the volatilization of particulate NH$_4$NO$_3$ after collection was regarded as small compared with the traditional filter-pack observation method. ACSA has been tested (Osada et al., 2016) and used to analyze the severe winter haze in Beijing (Zheng et al., 2015; Li et al., 2016), and to identify the aerosol chemical compositions at Fukuoka (Pan X. et al., 2016).

2.1.2 NHx monitor

The behaviors of NH$_3$ and NH$_4^+$ are also important because they are the counterions for SO$_4^{2-}$ and NO$_3^-$. The concentrations of gaseous NH$_3$ and aerosol NH$_4^+$ were measured with a semi-continuous microflow analytical system (Kimoto Electric Co. Ltd., MF-NH$_3$A, Osada et al., 2011) at Fukuoka. The atmospheric NHx was dissolved in ultrapure water with a continuous air–water droplet sampler and quantified by fluorescence (excitation, 360 nm; emission, 420 nm) of the o-phthalaldehyde–sulfite–NH$_3$ reaction product (Genfa et al., 1989). Two inlet lines were used to differentiate the total amounts of NH$_x$ and particulate NH$_4^+$ after gaseous NH$_3$ was removed by a phosphoric acid-coated denuder from the sample air stream. The cut-off diameter of the inlet impactor was about 2 µm.

2.1.3 Denuder-filter pack method (D-F pack)

During the intensive observation period from January 7–17, 2015, D-F pack measurements were conducted at Fukuoka to validate the ACSA and NHx monitoring measurement systems. An annular denuder–multi-stage filter sampling system was used for HNO$_3$ and size-segregated aerosol sampling. The sampling interval was 6–8 h. At the inlet, coarse-mode aerosols were removed by Nuclepore membrane filters (111114, Nomura Micro Science Co., Ltd., Atsugi, Japan, pore size: 8 µm),
and then gas-phase HNO₃ was collected with the annular denuder (2000-30x242-3CSS, URG Co.) coated with NaCl (Perrino et al., 1990). Fine-mode aerosols were collected with a PTFE filter (J100A047A, ADVANTEC, Tokyo, Japan, pore size: 1 µm), and a nylon filter (66509, Pall Co.) captured volatized NO₃⁻ from the PTFE filter (Appel et al., 1981; Vecchi et al., 2009). Because of the use of an annular denuder system before PTFE filter collection, the adsorption of HNO₃, which would otherwise lead to overestimation of NO₃⁻ was low. The sample air flow rate was 16.7 L/min (1 atm, 25 °C). Under these conditions, the aerodynamic diameter of 50% cut-off for the Nuclepore filter was about 1.9 µm (John et al., 1983). The samples were analyzed by ion chromatography (IC). Comparing size-segregated SO₄²⁻ and NO₃⁻ data based on the D-F pack method with such data from ACSA showed systematic differences. Linear regression analysis of fine-mode and coarse-mode SO₄²⁻ and NO₃⁻ showed good correlation, but the slope was not unity. Fine-mode aerosols were underestimated by the D-F pack relative to ACSA measurements, and coarse-mode aerosols were overestimated by the D-F pack relative to ACSA measurements. However, by summing the fine- and coarse-mode data, the slope between D-F pack and ACSA results was close to unity. The difference in the cut-off diameter of the D-F pack method was considered to be the most important factor in explaining differences between results from D-F pack and ACSA. More details of the comparison and validation of ACSA data are reported in Osada et al. (2016).

2.1.4 PM-712

Hourly PM₁₀ and PM₂.₅ concentrations were measured by a PM monitor (PM-712, Kimoto Electric Co., Ltd.) at the Goto Islands, Tsushima Island, and Tottori. PM-712 used the beta ray attenuation method to measure the mass concentrations of PM₁₀ and PM₂.₅. The ionic constituents of the species on the PTFE tape filters were also analyzed by IC to compare the aerosol behavior at Fukuoka and the other sites. At all sites, sample spots collected on the tape filter were covered with polyester tape to avoid contamination and crosstalk interference during storage. The sampling duration for the PM-712 tape filters was 1 h, except for Tottori where it was 3 h. For chemical analysis, four consecutive 1 h tape samples were combined into one sample for the Goto Islands and Tsushima Island. For Tottori, tape samples for 1 or 0.5 days were combined. Because of a temperature change during PM sample storage, some NO₃⁻ may have escaped via volatilization of HNO₃ from the sample. Therefore, NO₃⁻ data from the Goto Islands, Tsushima Island, and Tottori were not used. NH₄⁺ is also affected by volatilization when it forms NH₂NO₃, but it preferentially forms (NH₄)₂SO₄. The data of NH₄⁺ were used to indicate the concentration trapped by SO₄²⁻. Hereafter, we call these datasets from the PM tape samples ‘tape filter’.

2.1.5 Beta attenuation monitors

Hourly PM₂.₅ concentrations in China were measured by beta attenuation monitors (BAMs) (1020, MetOne Instruments, Inc., Grants Pass, OR, USA) at the U.S. Embassy in Beijing from April 8, 2008, at the U.S. Consulates in Shanghai from December 21, 2011, and at the U.S. Consulates in Shenyang from April 22, 2013 (MOE, 2016). In the BAM technique, PM is collected on a quartz filter tape over a given time interval and the attenuation of beta rays through the sample is measured
and correlated directly with the PM mass. The details and the statistical analysis results of the BAM observation at the U.S. Embassy and Consulates are found in the work of San Martini et al. (2015).

2.1.6 Multi-angle absorption photometer (MAAP)

Observations of black carbon (BC), a primary aerosol that directly reflects local emissions contributions, from Fukuoka and the Goto Islands were also used to distinguish domestic and transboundary air pollution. BC is observed by using a multi-angle absorption photometer (MAAP; MAAP5012, Thermo Fisher Scientific, Waltham, MA, USA) (Petzold et al., 2005). In this method, the absorbance of the particles deposited on the filter is distinguished from scattering by reflectance measurements at multiple angles and by transmittance. This is to minimize the effects of coexisting aerosol particles other than BC on filter-based absorption photometers. The comparison measurements of BC from the Goto Islands were previously performed by Kanaya et al. (2013), and they reported that the BC MAAP measurements were strongly correlated with measurements by other techniques but had a positive bias. From the results reported by Kanaya et al. (2013), the MAAP absorption cross section of 6.6 m²/g was systematically increased to 10.3 m²/g at 639 nm. There were no MAAP BC measurements from the Goto Islands before January 11, 2015 during the intensive observation period.

2.2 Chemical transport model

The chemical transport model simulation was performed by using the Community Multi-scale Air Quality (CMAQ) modeling system version 4.7.1 (Byun and Schere, 2006) with nesting over East Asia. The meteorological fields of CMAQ were prepared with the Weather Research and Forecasting model version 3.3.1 (Skamarock et al., 2008) with analysis nudging applied to the National Centers for Environmental Prediction final operational global analysis data. The model domain covers the whole of East Asia with an 81 km horizontal grid resolution, with a 95 × 75 grid centered at 30°N and 115°E on a Lambert conformal projection. The nested domain covers eastern China and the whole of Japan with a 27 km horizontal grid resolution and a 145 × 145 grid. The vertical grid for sigma-pressure coordinates extends to 50 hPa with 37 layers with nonuniform spacing. The lateral boundary condition was as given by the global chemical transport model of Geos-Chem (Uno et al., 2014). The simulation period was from January 1–17, 2015, and the first 6 days were discarded as model spin-up time. The dry deposition velocity of HNO₃ over land was increased by a factor of five based on the model intercomparison results (Shimadera et al., 2014; Morino et al., 2015).

Emissions were set as follows. Anthropogenic emissions and natural sources of NOx from soil were obtained from the latest Regional Emission inventory in ASia (REAS) version 2.1 (Kurokawa et al., 2013), which covers 2000 to 2008. Therefore, the emissions for January 2008 were used in this study. This assumption is based on the following reasons. Satellite observation of the NO₂ column showed a decreasing trend in NOx emissions from China of -6%/year after 2011, and the levels for 2015 are similar to those for 2009 (Irie et al., 2016). In contrast, the NO₂ column over Japan decreased until 2013, and then began to increase from 2013 owing to the change in power plant use after the Fukushima Daiichi nuclear disaster (Morino et al., 2011). The level of the NO₂ column over Japan in 2015 was close to that in 2008 (Irie et al., 2016). The
installation of flue-gas desulfurization systems in power plants in China decreased SO₂ emissions in China from 2005 to 2006; after this turning point, SO₂ emissions generally showed a decreasing trend but the variation in SO₂ emissions is complicated (Xia et al., 2016). The assumption about the 2008 level for SO₂ emissions may overestimate the actual status. In Japan, SO₂ emissions are increasing for the same reasons as for NOx; however, there are no reliable references for the current status of SO₂ emissions. Considering these factors in the variation of NOx and SO₂ emissions over China and Japan, it was assumed that the 2008 emissions would be within the range of uncertainty of the bottom-up emission inventories. Because REAS does not consider the monthly variation in NH₃, we used the monthly variation estimated by Huang et al. (2013). Annual NH₃ emission amount was also adjusted to match the estimate of Huang et al. (2013). Other anthropogenic emissions, such as BC, organic carbon (OC), and volatile organic compounds (VOC), were also assumed to be at the 2008 level due to the lack of information needed to update the status. The anthropogenic emission amounts of SO₂, NOx, and NH₃ on January 2015 are listed in Table 1. Biogenic emissions were prepared from MEGAN (Model of Emissions of Gases and Aerosols from Nature) (Guenther et al., 2012). As a biogenic source, dimethylsulfide (DMS) was not treated in the modeling system. Biomass burning emissions were used from the climatological database of RETRO (REanalysis of the TROpospheric chemical composition) (Schulz et al., 2008). Volcanic activity data were taken from ACESS (Ace-Asia and TRACE-P Modeling and Emission Support System) (Streets et al., 2003) and were modified by the volcanic activity observation data from the Japan Meteorological Agency (JMA) for available volcanoes (JMA, 2016). The 14 main active volcanoes in Japan and Mt. Mayon and Mt. Bulsan on Luzon Island in the Philippines were considered. The model simulation using the above dataset is referred to as the base case simulation. The modeling system domain with overlaid anthropogenic NOx emissions is shown in Fig. 3.

To investigate whether the effect of domestic or transboundary air pollution is dominant, we also conducted a sensitivity simulation, in which the anthropogenic emissions in Japan are switched off. Here, anthropogenic emissions were taken from the REAS inventory; because of this, emissions from agriculture were included. Shipping emissions were not treated in the sensitivity simulation. In terms of O₃, which is involved in complex nonlinear chemistry, larger nonlinearities in the atmospheric concentration response to emissions variation for China but not Japan were clarified due to the higher amount of emissions from China than from Japan (Itahashi et al., 2015). Therefore, the sensitivity simulation was designed to remove anthropogenic emissions in Japan instead of those in China. Based on the differences between the base case simulation and this sensitivity simulation, the domestic contribution from Japan was estimated.

3 Results and Discussion

3.1 Meteorological conditions

Meteorological conditions during the intensive observation campaign from January 7–17, 2015 are shown in Fig. 4 with observations and model results. Meteorological observation stations of the JMA in the corresponding nested model grid of Fukuoka were used. Temperatures (Fig. 4a) were around 5 °C at night and 10 °C during the day in January 2015. On January
9, the temperature was nearly 0 °C at Fukuoka. For the wind field (Fig. 4b and c), because of the dominance of the northwesterly wind system from the Asian continent during winter, the wind direction was generally 270°–360° (west to north) and the wind speed was around 5 m/s, with the exception of January 9 and 12–15. On January 9, when the coldest temperature during the intensive observation campaign was observed, the wind speed was less than 1 m/s and wind direction was from the south. On January 13–15, the wind speed was also low, at 2–3 m/s, and the wind direction was easterly, caused by a warm front passing over the south of Kyushu Island on January 14. After the warm front had passed, the relative humidity was close to 100% on January 15–16 (Fig. 4d), with a maximum of 10 mm/h rain on January 15 (Fig. 4e). The model tended to underestimate the precipitation amount, as we have reported in a previous study (Itahashi et al., 2014). Comparing the observations with the model results shows that our modeling system generally captures the observed meteorological variations during this episode.

3.2 Temporal variation of particulate matter

(a) PM$_{2.5}$

The temporal variation of PM$_{2.5}$ over Japan at Fukuoka, Tsushima Island, the Goto Islands, and Tottori are presented in Fig. 1. PM$_{2.5}$ observation data are taken from ACSA at Fukuoka, and are taken from PM-712 at other sites. Temporal resolutions are 1 h for all observations. During the analyzed period of January 7–17, 2015, episodic PM$_{2.5}$ peaks reached around 100 µg/m3 at Fukuoka twice. The first peak, observed at 12:00 LT on January 11 (shown in blue in Fig. 1) reached a maximum concentration of 86.4 µg/m3 at Fukuoka and 105.1 µg/m3 at the Goto Islands. During this first peak, the concentration at Tsushima Island was 63.9 µg/m3, which was lower than at the other remote island site in the Goto Islands, and there was no distinctive peak at Tottori. The second peak observed at 00:00 LT on January 17 (shown in red in Fig. 1) reached a maximum concentration at Fukuoka of 106.2 µg/m3. During this second peak, the remote sites of the Goto Islands and Tsushima Island also recorded high PM$_{2.5}$ concentrations of 104.8 and 89.1 µg/m3, respectively, and the PM$_{2.5}$ concentration reached 37.6 µg/m3 at Tottori. In Fig. 1, we show the model results as black lines. Generally, the model captured the observed temporal PM$_{2.5}$ behavior, although it underestimated the first peaks at Fukuoka and the Goto Islands, and the second peak at the Goto Islands. The timing of the high PM$_{2.5}$ concentration was reproduced well by the modeling system.

Statistical analysis of the model reproducibility demonstrated that all paired datasets for PM$_{2.5}$ showed good correlations between the observations and the model at the four sites in Japan, with a correlation coefficient (R) of 0.86. Mean fractional bias (MFB) and mean fractional error (MFE) were -42.6% and 67.4%, respectively, and these results satisfied the model performance criteria (MFB \leq ±60% and MFE \leq +75%) proposed by Boylan and Russell (2006). Figure 1 also shows the model results of a sensitivity simulation performed by switching off the Japanese anthropogenic emissions. The sensitivity simulations results are shown as dotted black lines and the difference between the base case and the sensitivity simulation is shown in gray, which indicates the domestic contribution of Japan. Except for Fukuoka, there were little domestic contributions for PM$_{2.5}$; therefore, transboundary air pollution was dominant during January 2015 at remote sites in western Japan. At Fukuoka, although domestic contributions for PM$_{2.5}$ were found in some cases on January 8–10 and 14, the
concentration of PM$_{2.5}$ was lower compared with the two peaks. During the two episodes when PM$_{2.5}$ concentration reached around 100 µg/m3 over Japan, the model simulation suggested that the effect of transboundary air pollution was dominant, even at Fukuoka.

The temporal variations of PM$_{2.5}$ over China at Beijing, Shanghai, and Shenyang are shown in Fig. 2. PM$_{2.5}$ observation data are taken from BAM-1020 and the temporal resolution is 1 h. The model results of a sensitivity simulation suggested that the impact on three Chinese sites from Japanese anthropogenic emissions was negligible during this period. At Beijing, there were high concentrations of PM$_{2.5}$ which correspond to the high concentration of PM$_{2.5}$ found over Japan. One high concentration was approximately 300 µg/m3 on January 10–11, and other was around 600 µg/m3 on January 16. These peak times were almost one day before the high concentration was observed over Japan. At Shanghai, there were two clear peaks with a PM$_{2.5}$ concentration of 200 µg/m3 on January 11 and 17. The time corresponded well to the peak time over Japan. At Shenyang, where the local emissions from domestic sources were dominant in winter, the temporal variation was complex compared with Beijing and Shanghai. PM$_{2.5}$ showed sharp peaks several times with concentrations of around 300 µg/m3, whereas the model only showed gentle peaks. Analysis of the model reproducibility showed that all PM$_{2.5}$ paired datasets for the observations and model at three sites over China showed that R was 0.73, and MFB and MFE were -9.8% and 46.8%, respectively; satisfying the model goal criteria (MFB \leq ±30% and MFE \leq ±50%) proposed by Boylan and Russell (2006). The evaluation of model performance over China supports the discussion of downwind regions.

(b) SNA

The temporal variations of SNA are shown in Figs. 5 and 6. In Fig. 5, SO$_4^{2-}$ and NH$_4^+$ are shown for four sites in Japan. At Fukuoka, ACSA and D-F pack observations are shown for SO$_4^{2-}$, and NHx monitor and D-F pack results are shown for NH$_4^+$. The temporal resolutions of ACSA and the NHx monitor were 1 h, and those of the D-F packs were 6–8 h depending on the samples. For the Goto Islands, Tsushima Island, and Tottori, the PM-712 tape filter data were used. The temporal resolution was 4 h at the Goto Islands and Tsushima Island, and 1 or 0.5 day at Tottori. In Fig. 6, NO$_3^-$, HNO$_3$, NH$_3$, and total ammonia (sum of NH$_4^+$ and NH$_3$) are shown for Fukuoka. ACSA and D-F pack observations for NO$_3^-$ are shown, D-F pack observations are shown for HNO$_3$, and NHx monitor observations are shown for NH$_3$ and total ammonia. Because of a temperature change during PM-712 sample storage, NO$_3^-$ concentrations could have been affected by volatilization; hence, only NO$_3^-$ analysis at the Fukuoka site was used. At Fukuoka, the SNA concentration contributed 52% and 46% of the PM$_{2.5}$ concentration in the first and second episodes, respectively. For SO$_4^{2-}$ (Fig. 5 (left)), the concentration during the second episode was larger than during the first episode at Fukuoka, the Goto Islands, and Tsushima Island. At Tottori, there was no peak for the first episode for SO$_4^{2-}$. In contrast to SO$_4^{2-}$, a higher NO$_3^-$ concentration was observed during the first episode instead of the second episode (Fig. 6). NH$_4^+$ showed high concentrations during both episodes because it is the counterion for SO$_4^{2-}$ and NO$_3^-$ (Fig. 5 (right)). Based on the analysis of the PM$_{2.5}$ (Fig. 3) and SNA (Figs. 5 and 6) observations, the PM$_{2.5}$ concentrations were similar during the episodes on January 11 and 17; however, the main component of SNA was NO$_3^-$ during the first episode and SO$_4^{2-}$ during the second episode. At Fukuoka, the relative portions of SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$
within PM$_{2.5}$ were respectively 18%, 20%, and 14% during the first episode, and 27%, 6%, and 14% during the second episode. Therefore, the first episode (shown in blue in Figs. 3, 5, and 6) is referred to as ‘type N’, and the second episode (shown in red in Figs. 3, 5, and 6) is referred to as ‘type S’ hereafter.

The model results for the base case and sensitivity simulations are overlaid with the same temporal resolution as the observations in Figs. 5 and 6. The model tended to underestimate the SO$_3^{2-}$ concentration (Fig. 5 (left)); however, the model reproduced the features of types N and S, and sensitivity simulation indicated the dominance of transboundary air pollution for SO$_3^{2-}$ during the intensive observation campaign in January 2015, even at Fukuoka. For NO$_3^-$ (Fig. 6), the model reproduced the features of the type N and S peaks well, although the model overestimated the dip in NO$_3^-$ concentration found from the evening of January 10 to before the type N episode. The D-F pack observations generally underestimated NO$_3^-$ compared with the ACSA observations, because of the difference in cut-off diameter between these measurement systems. Except for the type N and S episodes, domestic contributions were seen for NO$_3^-$ on January 8–10 and 14. However, the sensitivity simulation confirmed that transboundary NO$_3^-$ air pollution was dominant for types N and S. Because NH$_4^+$ is the counterion for both SO$_3^{2-}$ and NO$_3^-$, small domestic contributions for NH$_4^+$ were observed at Fukuoka (Fig. 5 (right)). This result corresponded to the domestic contribution for NO$_3^-$. For the other three remote sites, there were no domestic contributions for NH$_4^+$.

The behavior of SNA, gas-phase HNO$_3$, and NH$_3$ were analyzed comprehensively based on the NHx monitor and D-F pack observations (Fig. 6) to support our understanding of NO$_3^-$ behavior. There are few synergetic analyses including gas-phase behavior over the downwind region of Asian continent. Peaks for gas-phase HNO$_3$ were found for types N and S, whereas the concentration of gas-phase NH$_3$ was nearly zero (less than 1 µg/m3 for 24 h average) for types N and S, and on January 8, 10, 12, and 15 (green arrows in Fig. 6). Type S, in particular, showed almost zero concentration of NH$_3$. The concentration of total ammonia showed distinct peaks for types N and S; therefore, the nearly zero concentration of NH$_3$ suggested the full conversion of NH$_3$ to produce NH$_4^+$ as a counterion for SO$_3^{2-}$ and NO$_3^-$. The sensitivity simulation, in which Japanese anthropogenic emissions were switched off, clarified the different features of related gas-phase species. The base case simulation and sensitivity simulation were similar for HNO$_3$, suggesting it originated from transboundary air pollution. A slight increase in HNO$_3$ in the sensitivity simulation was found on January 8–10 and 12 (red arrows in Fig. 6). These were the complex cases connected to overseas and domestic emissions. If there are no Japanese NH$_3$ emissions, the transported HNO$_3$ cannot produce NO$_3^-$ in Japan, and so it remains as gas-phase HNO$_3$. The synergetic analysis for gas-phase HNO$_3$ and NH$_3$ indicated that abundant HNO$_3$ was transported from abroad and reacted with domestic NH$_3$, producing NO$_3^-$ on January 8–10. Compared with these cases, domestic HNO$_3$ and NH$_3$ produced NO$_3^-$ on January 14 (orange arrows in Fig. 6). The concentrations were lower than for types N and S, which were dominated by transboundary air pollution.

(c) Coarse mode aerosols

Coarse-mode aerosols were also partly analyzed in this study. Because of the effect of transboundary air pollution on HNO$_3$ (Fig. 6), we focused on coarse-mode NO$_3^-$. Coarse-mode NO$_3^-$ was produced by reactions of HNO$_3$ with mineral dust or sea-
salt particles. In general, mineral dust mainly has an effect in spring over East Asia (Itahashi et al., 2010), whereas sea-salt particles play an important role throughout the year. Recently, we reported the importance of coarse-mode NO$_3^-$ as an atmospheric input in East Asian ocean regions (Itahashi et al., 2016). Figure 7 shows the modeled and observed coarse-mode NO$_3^-$, Na$^+$, and Cl$^-$. ACSA and D-F pack observations are shown for coarse-mode NO$_3^-$, and D-F pack observations are also shown for coarse-mode Na$^+$ and Cl$^-$. During the intensive observation period in January, coarse-mode NO$_3^-$ also showed high concentrations for types N and S of around 10 µg/m3, and on January 9–10 of around 5 µg/m3. Based on the model results, because the domestic contribution for HNO$_3$ was found on January 14 (Fig. 6), the domestic contribution for coarse-mode NO$_3^-$ was found only on January 14, but the concentration was below 1 µg/m3. Na$^+$ and Cl$^-$ from sea-salt particles also had peaks for types N and S. Sea-salt particles are mechanically produced by high winds; therefore, these peaks generally corresponded to high wind speeds (Fig. 2). High winds were observed on January 15, and Na$^+$ and Cl$^-$ peaks occurred, but the coarse-mode NO$_3^-$ concentration was close to zero. This was because there was no HNO$_3$ to react with NaCl from January 12–15, and wet deposition of coarse-mode NO$_3^-$ with precipitation from noon on January 14 to the evening of January 15. For coarse-mode NO$_3^-$, transboundary air pollution was the dominant factor. This means that a large amount of HNO$_3$ was transported from abroad (Fig. 5) and reacted with sea-salt particles over the ocean, and reached Fukuoka in the air mass.

(d) BC

To support the discussion of the domestic and transboundary contributions to SNA, the behavior of BC at Fukuoka and the Goto Islands is shown in Fig. 8. The sensitivity simulation would suffer from a nonlinear chemical response if complex atmospheric chemistry were involved; hence, we focused on BC, which is a primary aerosol. The temporal variation of BC also showed distinctive peaks for types N and S at Fukuoka and the Goto Islands. The model results reproduced these peaks well, and the sensitivity simulation also suggested the dominance of transboundary air pollution for both peaks N and S. The temporal variation at the Goto Islands showed only two peaks of types N and S, although many short-term peaks were seen at Fukuoka. The sensitivity simulation confirmed that domestic air pollution contributed to these short-term peaks at Fukuoka; however, the model could not fully capture the peaks observed on January 7, 13, and 14. To improve the performance of the model to capture these short-term peaks, a higher-resolution model simulation and a revision of the emission inventory are needed. Analysis of the primary aerosol confirmed that transboundary air pollution was dominant for types N and S in January 2015. Consequently, the well-validated model simulation indicated that two high PM$_{2.5}$ episodes with concentrations of around 100 µg/m3 that occurred over western Japan during January were dominated by NO$_3^-$ for the first peak (type N) and by SO$_4^{2-}$ for the second peak (type S), and that NH$_4^+$ concentration was high for both types. The model sensitivity simulation clarified that these high SNA concentrations in the type N and S episodes were dominated by transboundary air pollution. In addition to the transport of SNA, abundant gas-phase HNO$_3$ and coarse-mode NO$_3^-$ reacted with sea-salt particles over the ocean and
were also transported to western Japan. NH$_3$, which mainly came from domestic emissions, showed concentrations around zero during type N and S events, suggesting that NH$_3$ was depleted to neutralize SO$_4^{2-}$ and NO$_3^-$.

3.2 Trajectory analysis

Analyzing the synergetic observations at Fukuoka and the other three remote sites in Japan with the regional chemical transport model demonstrated that the two PM$_{2.5}$ episodic peaks were dominated by transboundary heavy pollution, even at Fukuoka. The two peaks had different SNA compositions. The first episode on January 11 showed a high NO$_3^-$ (type N) concentration and the second episode on January 17 was dominated by SO$_4^{2-}$ (type S). The differences in these episodes were investigated further by a model simulation combined with backward trajectory analysis. The spatial distributions of SO$_4^{2-}$ and NO$_3^-$ during type N and S patterns are shown in Figs. 9 and 10, respectively.

In type N (Fig. 9 (right)), the model results showed that a low SO$_4^{2-}$ concentration of less than 5 µg/m3 and a high NO$_3^-$ concentration of more than 10 µg/m3 covered Fukuoka. The spatial distribution patterns indicated the outflow of SO$_4^{2-}$ and NO$_3^-$ from continental Asia to western Japan. The dominance of transboundary air pollution suggested by these spatial distributions was consistent with the model sensitivity simulation results (Figs. 5 and 6). High-concentration regions of SO$_4^{2-}$ and NO$_3^-$ stretched from the eastern coastline of China to the East China Sea and western Japan. The spatial distribution implied the direct transport from continental Asia to the downwind regions. In addition, the high-concentration region stretched from eastern China to western Japan, consistent with the corresponding PM$_{2.5}$ peak on January 11 at Shanghai and over Japan. To investigate the air mass origin for type N, the HYSPLIT backward trajectory (Stein et al., 2015) starting from Fukuoka over 72 h was analyzed (T$_N$ in Fig. 9 (right)). The backward trajectory during type N transport suggested that the air mass originated from Shaanxi Province and passed over Shanxi Province, southern Hebei Province, Shandong Province, and then reached Fukuoka. The traveling time from the coast of China to Fukuoka was about 18 h. The distance from the coastline of China to Fukuoka is approximately 1000 km, so the air mass speed for type N was 55.6 km/h. Fig. 9 (left) shows the spatial distribution for when the air mass was located over China. A high concentration of NO$_3^-$ of more than 60 µg/m3 occurred over the east coast of China before the air mass arrived in Fukuoka, whereas the SO$_4^{2-}$ concentration was as high as 10 µg/m3 above the East China Sea.

In type S (Fig. 10 (right)), the model calculated that a high SO$_4^{2-}$ concentration of more than 20 µg/m3 and a low NO$_3^-$ concentration of around 5 µg/m3 covered Fukuoka. The HYSPLIT backward trajectory is shown as T$_S$ in Fig. 10. The air mass during type S transport originated from Shanxi Province and slowly moved over northern Henan Province, Shandong Province, and reached Fukuoka within about 24 h. The high-concentration regions stretched from eastern China to western Japan, consistent with the simultaneous PM$_{2.5}$ peak at Shanghai and over Japan. The air mass was stagnant over China compared with type N transport. The spatial distribution when the air mass was located over China is shown in Fig. 10 (left). For SO$_4^{2-}$, the concentration was higher when the air mass arrived at Fukuoka compared with that in China, suggesting the fast production of SO$_4^{2-}$ during the transport process. A high concentration of SO$_4^{2-}$ of 20 µg/m3 spread over the East China Sea and western Japan. A high NO$_3^-$ concentration of more than 60 µg/m3 occurred over China, similar to type N; however,
the NO₃⁻ concentration was immediately reduced during the transport. The high NO₃⁻ concentration of more than 10 µg/m³ did not reach Fukuoka in this type S transport. Comparing the spatial distribution of the air mass over Fukuoka (Fig. 10 (right)) and China (Fig. 10 (left)) showed a 1 day delay in the high concentration peaks over Japan compared with the peak for Beijing (Figs. 3 and 4).

The backward trajectories for types N and S both showed similar transport patterns from China and Fukuoka. However, the spatial distribution patterns demonstrated clear differences between SO₄²⁻ and NO₃⁻ distributions for type N and S patterns. To discuss the different mechanisms for types N and S further, the model results were analyzed along the backward trajectories of Tₙ and Tₛ. The path analyses are shown in Figs. 11 and 12, along with additional indexes. The conversion ratio of SNA from the gas phase to the aerosol phase is an important indicator. For SO₄²⁻, considering the concentration of their gas-phase species of SO₂, the conversion ratio of Fs is defined as follows and calculated based on molar concentrations, shown in square brackets (Khoder, 2002).

\[
F_s = \frac{[\text{SO}_4^{2-}]}{[\text{SO}_2]+[\text{SO}_4^{2-}]} \text{[mol/mol].} \quad (1)
\]

A ratio of 0 indicates that SO₄²⁻ was not produced, and a ratio of 1 indicates that SO₂ was converted completely to SO₄²⁻. To confirm the Fs analysis, the concentration of the highly reactive hydroperoxy radical (HO₂) was also analyzed. Self-reaction of HO₂ produces hydrogen peroxide (H₂O₂), and this is the most effective oxidant of aqueous-phase SO₂ (Pandis and Seinfeld, 1989). Because the analyzed period was during winter, aqueous-phase reactions would be the main pathway for producing SO₄²⁻.

For NO₃⁻, the conversion ratios of Fn are defined by considering the concentration of NO₂ as a precursor and calculated based on molar concentrations (Khoder, 2002).

\[
F_n = \frac{[\text{HNO}_3]+[\text{NO}_3]}{[\text{NO}_2]+[\text{HNO}_3]+[\text{NO}_3]} \text{[mol/mol].} \quad (2)
\]

To investigate the ratio of NO₃⁻ to gas- and aerosol-phase components, analogous to the calculation for SO₄²⁻, the conversion ratio of Fn' is introduced.

\[
F_n' = \frac{[\text{NO}_3]}{[\text{HNO}_3]+[\text{NO}_3]} \text{[mol/mol].} \quad (3)
\]

The behavior of SNA is determined by introducing candidate indicators according to the work of Ansari and Pandis (1998) and Pinder et al. (2008). The gas ratio (GR) is an indicator of the sensitivity of NO₃⁻ to changes in SO₄²⁻ and NH₄⁺ concentration. The GR is defined as the ratio of free ammonia to total nitrate as

\[
\text{GR} = \frac{[\text{NH}_3]+[\text{NH}_4^+]-2[\text{SO}_4^{2-}]}{[\text{HNO}_3]+[\text{NO}_2]} \text{[mol/mol],} \quad (4)
\]

where it is assumed that SO₄²⁻ is fully neutralized, as indicated by the coefficient of 2 for [SO₄²⁻]. The GR value implies the following condition for NO₃⁻ production.
Here, NH$_3$-rich means that there is sufficient NH$_3$ to neutralize both SO$_4^{2-}$ and NO$_3^-$; NH$_3$-neutral means that there is sufficient NH$_3$ to neutralize SO$_4^{2-}$; and NH$_3$-poor means that there is insufficient NH$_3$ to neutralize SO$_4^{2-}$ or NO$_3^-$. Free ammonia, which can form NH$_2$NO$_3$ in the equilibrium process, is quantified more accurately by adjusting [SO$_4^{2-}$] with the degree of sulfate neutralization (DSN). The DSN is defined as
\[
DSN = \frac{[NH_3^+][-NO_3^-]}{[SO_4^{2-}]} \quad [\text{mol/mol}], \tag{6}
\]
where DSN is equal to or greater than 2 if there is sufficient NH$_4^+$. By substituting the coefficient of 2 before [SO$_4^{2-}$] in Eq. (2) with Eq. (4), the adjusted GR (adjGR) can be defined as
\[
adjGR = \frac{[NH_3^+]-DSN\times[SO_4^{2-}]}{[HNO_3^+]+[NO_3^-]} = \frac{[NH_3^+]-[NO_3^-]}{[HNO_3^+]+[NO_3^-]} \quad [\text{mol/mol}], \tag{7}
\]
by using the indexes, and the path analysis of backward trajectories for the model results are shown in Figs. 11 and 12, and are summarized in Table 1. The analyses are shown for (a) the meteorological components of temperature and relative humidity, (b) SO$_4^{2-}$ and SO$_2$ with an enlarged view for SO$_4^{2-}$, (c) HO$_2$ concentration, (d) NO$_3^-$, HNO$_3$, NO, NO$_2$, other NOy consisting of NO$_3$, HNO$_3$, N$_2$O$_5$, and peroxycyl nitrates (PANs), and coarse-mode NO$_3^-$, (e) NH$_4^+$ and NH$_3$, and (f) adjGR, Fs, and Fn’. The concentrations of the air pollutants were reduced by chemical reactions, dispersion, and deposition during the transport; therefore, as an index of dispersion and deposition processes, BC and CO concentrations normalized to their maximum concentrations during the transport were used in the variation of the total concentration in (b), (d), and (e). Table 1 shows the meteorological components and the air pollutant concentrations of each component and total sulfate, total nitrate, and total ammonia. The indexes were averaged over China, the transport time above the ocean, and Fukuoka. The SNA concentration was balanced between SO$_4^{2-}$ with NO$_3^-$ and NH$_4^+$ during both types N and S.

During the type N pattern (Fig. 11), the concentration of air pollutants increased after the air mass moved into Hebei Province (-30 h). The relative humidity was lower than 40% when the air mass traveled over Shanxi Province and Hebei Province (Fig. 11a). The SO$_4^{2-}$ concentration was around 1 µg-S/m3 during transport (Fig. 11b and Table 1), and SO$_2$ was dominant in the total sulfate concentration. In this type N pattern, the concentration of the most effective oxidant of HO$_2$ for the SO$_2$ aqueous-phase reaction was smaller due to the lower relative humidity (Fig. 11c), and the conversion ratio was less than 0.1 (Fig. 11f and Table 1). Compared with the SO$_4^{2-}$ variation, as the trajectory passed from Shanxi Province (-36 h) to Shandong Province (-18 h), and over the ocean (-12 h), NO$_3^-$ and NH$_4^+$ concentration increased. The concentration of NO$_3^-$ and NH$_4^+$ decreased as the air mass traveled to Japan (Figs. 11d and 11e). Over China (-30 to -18 h), gas-phase NH$_3$ was abundant and HNO$_3$ was fully consumed to produce NH$_4$NO$_3$ (Figs. 11d and 11e). The excess HNO$_3$ over the ocean contributed to producing coarse-mode NO$_3^-$ by reacting with sea-salt particles as the air mass traveled over the ocean (Fig. 11d). The adjGR was super NH$_3$-rich over China (Fig. 11f). After the air mass left Shandong, HNO$_3$ increased and NH$_3$ was
close to zero (Figs. 11d and 11e), so adjGR shifted to NH$_3$-neutral status (Fig. 11f). Consequently, the proportion of NO$_3^-$, indicated by Fn', remained around 80% during transport from China to Japan (Fig. 11f). The rate of the decrease of total sulfate, total nitrate, and total ammonia were generally consistent with the rate of decrease of normalized BC and CO, suggesting that the budget was almost satisfied during transport (Table 1). The decrease of BC was larger than that of CO because of wet deposition (e.g., Pan et al., 2011; Kanaya et al., 2016).

During the type S pattern (Fig. 12), SNA concentrations were higher compared with the type N pattern (Fig. 11), partly due to the slower motion of the air mass compared with type N. SO$_4^{2-}$ concentration was around 2 µg-S/m3 over Shanxi Province to Henan Province (-72 to -36 h), it increased slightly to 3 µg-S/m3 over Henan Province to Shandong Province (-36 to -24 h), and subsequently increased to 3 µg-S/m3 over the ocean (Fig. 12b and Table 1). The aqueous-phase reaction contributed to the production, as suggested by the variation in HO$_2$ concentration. Over oceans, the relative humidity was around 80%, 20% larger than in the case of the type N pattern (Fig. 12a and Table 1). The Fs conversion ratio was 0.3 when the air mass reached Fukuoka (Fig. 12f). The increase in SO$_4^{2-}$ over Fukuoka compared with over China was +67.2% (Table 1). The behaviors of gas-phase HNO$_3$ and NH$_3$ were similar in type N patterns (Figs. 12d and 12e); the NH$_3$ concentration was high over China, and HNO$_3$ gradually increased after the air mass approached the ocean, partly because coarse-mode NO$_3^-$ was produced. However, the NH$_3$ concentration was smaller compared with type N patterns and remained near zero when the air mass passed over Henan Province (Fig. 12e). adjGR showed slight NH$_3$-rich status over China (-54 to -36 h), and shifted to NH$_3$-neutral status before the air mass left China (-36 h), and at the same time, the ratio of NO$_3^-$ indicated by Fn' decreased to 0.45 (Fig. 12f and Table 1). Similar to type N, the rates of decrease of total sulfate, total nitrate, and total ammonia were generally consistent with the rates of decrease of normalized BC and CO.

To summarize the key points for type N and S patterns, the behavior of SO$_4^{2-}$, NO$_3^-$, and HNO$_3$ concentrations during transport from China to Japan are shown in Fig. 13. The relative percentages of the concentration of each species to the total concentration of SO$_4^{2-}$, NO$_3^-$, and HNO$_3$ are shown. It is clear that NO$_3^-$ was not produced, whereas SO$_4^{2-}$ was produced during transport from China to Fukuoka. Types N and S both showed the dominance of NH$_3$NO$_3$ (over 70%) when the air mass was over China (-48 h). For the air mass close to Fukuoka, because there was no NH$_3$, NH$_3$NO$_3$ decomposed into gas-phase NH$_3$ and HNO$_3$. Therefore, HNO$_3$ concentration increased as the air mass reached Fukuoka for types N and S. At this time, the SO$_4^{2-}$ concentration was important in determining the NO$_3^-$ concentration. SO$_4^{2-}$ production (Figs. 11b and 12b) through an aqueous-phase reaction was indicated by the HO$_2$ concentration (Figs. 11c and 12c), and Fs showed a large difference between types N (lower than 0.1 during transport; Figs. 11f) and S (around 0.3 at Fukuoka; Figs. 12f). Once H$_2$SO$_4$ was produced via an aqueous-phase reaction, it reacted with gas-phase NH$_3$ to produce (NH$_3$)$_2$SO$_4$, leading to further decomposition of NH$_3$NO$_3$. The ratio of NO$_3^-$ (Fn') showed different behavior for types N (around 0.8 during transport; Figs. 11f) and S (lower than 0.5 at Fukuoka; Figs. 12f). The transport pattern under similar conditions over China was determined by the low SO$_4^{2-}$ concentration maintaining a higher NO$_3^-$ concentration at Fukuoka (type N), or by SO$_4^{2-}$ production under a higher relative humidity resulting in the dominance of SO$_4^{2-}$ with further NH$_3$NO$_3$ decomposition (type S).
3.3 Outflow analysis

Finally, the outflow of \(\text{SO}_4^{2-} \) and \(\text{NO}_3^- \) from China to western Japan during the intensive observation campaign is summarized in Fig. 14. In this figure, the modeled \(\text{SO}_4^{2-} \) and \(\text{NO}_3^- \) concentrations were averaged at 32–36°N to cover the four sites in Japan (Fig. 3) and are shown as a time-longitude cross section. The longitude of Shanghai, the Goto Islands, Tsushima Island, Fukuoka, and Tottori are indicated at the bottom of the figure. This outflow analysis can help to identify the areas affected by transboundary heavy pollution. The main outflow from China to western Japan occurred twice (types N and S). The outflow concentration of \(\text{SO}_4^{2-} \) was lower on January 11 for types N and larger on January 17 for type S; a high concentration of more than 15 \(\mu g/m^3 \) reached 130°N (Fukuoka) and a concentration of around 10 \(\mu g/m^3 \) reached 134°N (Tottori) for type S (Fig. 14a). The outflow of \(\text{NO}_3^- \) was observed over the Goto Islands, Tsushima Island, and Fukuoka on January 11 for type N, whereas the high concentration of over 10 \(\mu g/m^3 \) was limited to the East China Sea regions on January 17 for type S. A concentration of \(\text{NO}_3^- \) of more than 5 \(\mu g/m^3 \) did not reach 134°N (Tottori) for type N (Fig. 14b). The outflow analysis suggested that \(\text{SO}_4^{2-} \) can be transported longer distances, whereas transboundary \(\text{NO}_3^- \) air pollution is limited to western Japan, especially over Kyushu.

4 Conclusion

Using state-of-the-art observation systems to capture SNA behavior and a chemical transport model, two episodes of high \(\text{PM}_{2.5} \) concentrations of around 100 \(\mu g/m^3 \) were analyzed that occurred during winter over western Japan. The first episode (January 11) was dominated by \(\text{NO}_3^- \) (type N) and the second episode (January 17) by \(\text{SO}_4^{2-} \) (type S). The chemical transport model captured the behavior of SNA and the related gas-phase species of \(\text{HNO}_3 \) and \(\text{NH}_3 \) as well as coarse-mode \(\text{NO}_3^- \) observed over Japan. The model also reproduced \(\text{PM}_{2.5} \) variation over China. To evaluate the domestic contributions, sensitivity analysis was performed. In this analysis, the anthropogenic emissions from Japan were switched off in the chemical transport model. The results showed some domestic contributions for \(\text{NO}_3^- \), although the type N and S patterns were dominated by transboundary air pollution, even at Fukuoka. The effect of transboundary air pollution on type N and S patterns were also confirmed by analyzing the behavior of BC at Fukuoka and the remote Goto Islands. The importance of transboundary air pollution for coarse-mode \(\text{NO}_3^- \), produced by abundant \(\text{HNO}_3 \) and sea-salt particles, was also revealed. To investigate the characteristic differences between type N and S patterns, the chemical transport model results were analyzed by backward trajectory analysis from Fukuoka to continental Asia. We also evaluated the adjusted gas ratio (adjGR), which indicates the sensitivity of \(\text{NO}_3^- \) to changes in \(\text{SO}_4^{2-} \) and \(\text{NH}_4^+ \), and examined Fs, which is the conversion ratio of \(\text{SO}_2 \) to \(\text{SO}_4^{2-} \). For the \(\text{SO}_2 \) aqueous-phase reaction, \(\text{H}_2\text{O}_2 \) is the most effective oxidant. Thus, \(\text{HO}_2 \), which produces \(\text{H}_2\text{O}_2 \) through self-reaction, was also analyzed. The features of type N and S patterns are summarized as follows.

- In the type N transport pattern, \(\text{NO}_3^- \) was mainly the \(\text{NH}_4^+ \) counterion during transport from China to Japan. A high \(\text{NO}_3^- \) concentration of more than 10 \(\mu g/m^3 \) was observed at Fukuoka. \(\text{NH}_3 \) was abundant and \(\text{HNO}_3 \) was completely consumed to produce \(\text{NO}_3^- \) over China; hence, adjGR indicated \(\text{NH}_3 \)-rich status, which meant full neutralization of
both SO_4^{2-} and NO_3^- over China. After the air mass left China, HNO_3 increased and NH_3 was close to zero; so adjGR shifted to NH_3-neutral status. The SO_4^{2-} concentration was always lower than the NO_3^- concentration. This was because the HO_2 concentration was less than 3 pptv during transport from China to Fukuoka, and Fs suggested a slow conversion ratio for SO_4^{2-} of less 0.1. SO_4^{2-} production via an aqueous-phase reaction was also inhibited. This also explained why the air mass maintained a higher NO_3^- concentration during transport.

- In the type S transport pattern, the ion balance between NH_4^+ and NO_3^- with SO_4^{2-} showed that the counterion of NH_4^+ was mainly NO_3^- over China, and then became SO_4^{2-} as the air mass left China and approached Fukuoka. A high concentration of SO_4^{2-} of more than 20 µg/m3 was observed at Fukuoka. The change in Fs from 0.1 to 0.3 when the air mass reached Fukuoka was consistent with this observation. Higher Fs values were related to higher relative humidity and HO_2 concentration, indicating the high production of SO_4^{2-} via an aqueous-phase reaction (H_2SO_4). The production of H_2SO_4 promoted the reaction with NH_3 to produce (NH_4)$_2\text{SO}_4$ and further decomposition of NH_3NO_3 during the transport process from China to Fukuoka. The temporal behaviors of gas-phase HNO_3 and NH_3 were similar for type N; however, the NH_3 concentration was lower. adjGR showed almost NH_3-neutral conditions during type S. The production of SO_4^{2-} and the insufficient supply of NH_3 contributed to the rapid decomposition of NH_3NO_3 in this case.

In this study, we clarified two types of transport patterns for SNA. The spatial distribution pattern of the outflow over East Asia during January 2015 showed that the outflow of SO_4^{2-} stretched over the whole of western Japan, whereas transboundary NO_3^- air pollution played an important role over Kyushu Island in western Japan. Generally, transboundary air pollution dominated by SO_4^{2-} (type S) has been recognized over East Asia, but we have elucidated the effect of transboundary heavy pollution dominated by NO_3^- (type N). Our findings demonstrate the importance of NO_3^- long-range transport.

The study period was limited to January 2015, so the analyzed period should be extended to investigate the type S and N transport patterns further. The variation of the gas ratio for emissions (GRe), which considers the balance between SO_2, NO_x, and NH_3 (analogous to Eq. 4) may be useful for future analysis. The emission reductions achieved by the 12th Chinese Five Year Plan during 2011–2015 (Asia Society, 2016), resulted in a GRe increase, which caused an NH_3-rich status compared with the current status. Moreover, the target for the 13th Chinese Five Year Plan during 2016–2020, suggests there will be further increases in GRe. The effects of different reduction rates for SNA precursor gases on transboundary NO_3^- air pollution, especially over western Japan, should be modeled.

Author contributions

I. Uno designed the synergetic observations at Chikushi Campus of Kyushu University and other remote sites in western Japan. S. Yamamoto and K. Osada respectively carried out the ground-based ACSA and NHx-monitor observations at Fukuoka. Y. Kamiguchi and K. Osada conducted air sampling and chemical analysis for D-F pack samples during the intensive observation period at Fukuoka. K. Osada and Y. Kurosaki measured PM$_{2.5}$ and analyzed samples at Tottori. K.
Tamura analyzed the observations from the remote sites of Tsushima Island and the Goto Islands. Y. Kanaya conducted the BC observations at Fukuoka and the Goto Islands. Z. Wang and S. Itahashi discussed the modeling configuration, and Z. Wang conducted the model comparison to brush up the model results. S. Itahashi developed the modeling system, performed the model simulations and analysis, and prepared the manuscript with contributions from all co-authors.

5 Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP25220101, JP23310004, JP15H02803. This work was also supported by the Environment Research and Technology Development Fund of the Ministry of the Environment, Japan (No. S-7, 2-1403, 5-1505). This work was partly funded by the Joint Research Program of Arid Land Research Center, Tottori University (No. 28C2011) and by the Collaborative Research Program of Research Institute for Applied Mechanics, Kyushu University (No. 26AO-2, 27AO-6, 28AO-2). We thank Dr. Sayako Ueda at Nagoya University for analyzing tape filters at Tottori University. We acknowledged the Ministry of the Environment, Japan, which provided preliminary observation data at Tsushima before final production.
References

Khoder, M. I.: Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate and gaseous nitric acid in an urban area, Chemosphere., 49, 675-684, 2002.

Pinder, R. W., Dennis, R. L., Bhave, P. V.: Observable indicators of the sensitivity of PM$_{2.5}$ nitrate to emission reductions - Part I: Derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales, Atmos. Environ., 42, 1275-1286, 2008.

Uno, I., Sugimoto, N., Shimizu, A., Yumimoto, K, Hara, Y., Wang, Z.: Record Heavy PM$_{2.5}$ air pollution over China in January 2013: Vertical and horizontal dimensions, SOLA, 10, 136-140. 2014.

Figure 1: Temporal variation of PM$_{2.5}$ over Japan at Fukuoka, the Goto Islands, Tsushima Island, and Tottori during January 7-17, 2015. Blue and red shading show the episodes focused on in this study. Red lines indicate observations. Black lines indicate the base case simulation and dotted black lines indicate the sensitivity simulation in which the anthropogenic emissions from Japan were switched off; the differences between these results shown in gray represent local contributions.
Figure 2: Temporal variation of PM$_{2.5}$ over China at Beijing, Shanghai, and Shenyang during January 7-17, 2015. Red lines indicate observations by BAM at the U.S. Embassy in Beijing and at the U.S. Consulates in Shenyang and Shanghai. Black lines indicate the base case simulation.
Figure 3: Modeling domain for horizontal resolutions of (top) 81 km and (bottom) 27 km with anthropogenic NOx emissions.
Figure 4: Temporal variation of (a) temperature, (b) wind speed, (c) wind direction, (d) relative humidity, and (e) precipitation at Fukuoka during January 7-17, 2015. Gray and black indicate observations and model results, respectively.
Figure 5: Temporal variation of SO\textsubscript{4}^2- and NH\textsubscript{4}+ over Japan at Fukuoka, the Goto Islands, Tsushima Island, and Tottori during January 7-17, 2015. Blue and red shading show the type N and S patterns focused on in this study. Red lines indicate SO\textsubscript{4}^2- observations by ACSA and green lines indicate NH\textsubscript{4}+ observations by NHx monitor at Fukuoka. Open circles are D-F pack observations at Fukuoka. Open squares are tape filter measurements at the Goto Islands, Tsushima Island, and Tottori. Black lines indicate the base case simulation and dotted black lines indicate the sensitivity simulation in which the anthropogenic emissions from Japan were switched off; the differences between these results shown in gray represent local contributions.
Figure 6: Temporal variation of NO$_3^-$, HNO$_3$, NH$_3$, and total ammonia at Fukuoka during January 7-17, 2015. Blue and red shading show the type N and S patterns focused on in this study. Red lines indicate NO$_3^-$ observations by ACSA, green lines indicate NH$_3$ and total ammonia observations by NHx monitor, and open circles indicate D-F pack observations. For NH$_3$, periods of nearly zero concentration (24 h average of less than 1 µg/m3) are indicated by arrows. Black lines indicate the base case simulation and dotted black lines indicate the sensitivity simulation in which the anthropogenic emissions from Japan were switched off; the differences between these results shown in gray represent local contributions.
Figure 7: Temporal variation of coarse-mode NO$_3^-$, Na$^+$, and Cl$^-$ at Fukuoka during January 7-17, 2015. Blue and red shading show the type N and S patterns focused on in this study. Red lines indicate coarse-mode NO$_3^-$ observations by ACSA and open circles indicate D-F pack observation. Black lines indicate the base case simulation and dotted black lines indicate the sensitivity simulation in which the anthropogenic emissions from Japan were switched off; the differences between these results shown in gray represent local contributions.
Figure 8: Temporal variation of BC at Fukuoka and the Goto Islands during January 7-17, 2015. Blue and red shading show the type N and S patterns focused on in this study. The magenta line indicates BC observations by MAAP. Black lines indicate the base case simulation and dotted black lines indicate the sensitivity simulation in which the anthropogenic emissions from Japan were switched off; the differences between these results shown in gray represent local contributions.
Figure 9: Simulated spatial distribution for (a) SO$_4^{2-}$ and (b) NO$_3^-$ during type N pattern. Contours shown by white lines for NO$_3^-$ represent 40 and 60 µg/m3. The 72 h HYSPLIT backward trajectory from Fukuoka is overlaid with orange lines with circles at 12 h intervals. (Left) 21:00 LT, January 10, 2015, when the air mass left China, and (right) 15:00 LT, January 11, 2015, when the air mass reached Fukuoka.
Figure 10: Simulated spatial distribution for (a) SO$_4^{2-}$ and (b) NO$_3^-$ during type S pattern. Contours shown by white lines for NO$_3^-$ represent 40 and 60 µg/m3. The 72 h HYSPLIT backward trajectory from Fukuoka is overlaid with orange lines with circles at 12 h intervals. (Left) 00:00 LT, January 16, 2015, when the air mass left China, and (right) 00:00 LT, January 17, 2015, 00LT when the air mass reached Fukuoka.
Figure 11: Path analysis of model results along trajectory T_n. (a) Temperature and relative humidity, (b) SO$_4^{2-}$ (with expansion at the bottom) and SO$_2$, (c) HO$_2$ concentration, (d) NO$_3^-$, HNO$_3$, NO, NO$_2$, other NOy (NO$_3$, HNO$_2$, N$_2$O$_5$, and PANs), and coarse-mode NO$_2$, (e) NH$_4^+$ and NH$_3$, (f) adjGR, Fs, and Fns'. In (b), (d), and (e), BC and CO concentrations normalized to the maximum value are also shown. Time axis indicates the backward time from Fukuoka. Brown and blue bars at the bottom are schematic images of the trajectory location over land and ocean.
Figure 12: Path analysis of model results along trajectory T_s. (a) Temperature and relative humidity, (b) SO_2^{2-} (with expansion at the bottom) and SO_4^{2-}, (c) HO$_2$ concentration, (d) NO$_3^-$, HNO$_3$, NO, NO$_2$, other NOy (NO$_3$, HNO$_2$, N$_2$O$_5$, and PANs), and coarse-mode NO$_2$ (e) NH$_4^+$ and NH$_3$, (f) adjGR, Fs, and Fn'. In (b), (d), and (e), BC and CO concentrations normalized to the maximum value are also shown. Time axis indicates the backward time from Fukuoka. Brown and blue bars at the bottom are schematics of the trajectory location over land and ocean.
Figure 13: Path analysis of model results along trajectories T_N and T_S. Percentages of each concentration relative to the sum of the SO_4^{2-}, NO_3^-, and HNO_3 concentrations in equivalent units are shown. Time axis indicates the backward time from Fukuoka. Brown and blue bars at the bottom are schematics of the trajectory location over land and ocean.
Figure 14: Outflow frequency of (a) SO$_2^*$ and (b) NO$_3^-$. Contours shown by white lines for NO$_3^-$ represent 30, 40, 50, and 60 µg/m3. Model results are averaged over 32–36°N, and are shown as the time-longitude cross section. Longitudes of representative locations are indicated by thin black lines and the location names are written in brown at the bottom of the figure.
Table 1. Anthropogenic emission amounts used in this study. Units are Gg/month for January 2015.

<table>
<thead>
<tr>
<th></th>
<th>China</th>
<th>Republic of Korea</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>2882.2</td>
<td>35.8</td>
<td>61.1</td>
</tr>
<tr>
<td>NOₓ</td>
<td>2150.2</td>
<td>90.3</td>
<td>189.3</td>
</tr>
<tr>
<td>NH₃</td>
<td>642.1</td>
<td>15.0</td>
<td>15.3</td>
</tr>
</tbody>
</table>
Table 2. Summary of path analysis for types N and S.

<table>
<thead>
<tr>
<th>Type</th>
<th>Type N</th>
<th>Type S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival at Fukuoka</td>
<td>15:00 LT, January 11</td>
<td>00:00 LT, January 17</td>
</tr>
<tr>
<td>Transport time from China</td>
<td>18 h</td>
<td>24 h</td>
</tr>
<tr>
<td></td>
<td>Over China</td>
<td>During transport</td>
</tr>
<tr>
<td>Temperature [°C]</td>
<td>6.6</td>
<td>6.7</td>
</tr>
<tr>
<td>Relative humidity [%]</td>
<td>32.7</td>
<td>60.5</td>
</tr>
<tr>
<td>SO(_2^{2-}) [µg-S/m(^3)]</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>SO(_2) [µg-S/m(^3)]</td>
<td>(+24.5%)</td>
<td>(+25.5%)</td>
</tr>
<tr>
<td>Total sulfate [µg-S/m(^3)]</td>
<td>55.9</td>
<td>25.0</td>
</tr>
<tr>
<td>Other NO(_x) [µg-S/m(^3)]</td>
<td>26.1</td>
<td>26.1</td>
</tr>
<tr>
<td>Coarse-mode NO(_x) [µg-S/m(^3)]</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Total NO(_x) [µg-S/m(^3)]</td>
<td>27.1</td>
<td>19.1</td>
</tr>
<tr>
<td>Fs [mol/mol]</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>NO(_3) [µg-N/m(^3)]</td>
<td>4.9</td>
<td>7.5</td>
</tr>
<tr>
<td>HNO(_3) [µg-N/m(^3)]</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>NH(_4) [µg-N/m(^3)]</td>
<td>22.2</td>
<td>8.5</td>
</tr>
<tr>
<td>Total NO(_x) [µg-N/m(^3)]</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>FN′ [mol/mol]</td>
<td>1.00</td>
<td>0.81</td>
</tr>
<tr>
<td>NH(_4) [µg-N/m(^3)]</td>
<td>5.6</td>
<td>8.7</td>
</tr>
<tr>
<td>Total ammonia [µg-N/m(^3)]</td>
<td>7.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Total ammonia [µg-N/m(^3)]</td>
<td>13.2</td>
<td>9.1</td>
</tr>
<tr>
<td>adjGR [mol/mol]</td>
<td>2.56</td>
<td>0.87</td>
</tr>
<tr>
<td>BC [µg/m(^3)]</td>
<td>6.5</td>
<td>5.2</td>
</tr>
<tr>
<td>CO [ppbv]</td>
<td>904.4</td>
<td>737.6</td>
</tr>
<tr>
<td>Key points</td>
<td>● Dominance of NO(_3)− compared with SO(_4^{2−})</td>
<td>● Dominance of SO(_4^{2−}) compared with NO(_3)−</td>
</tr>
<tr>
<td></td>
<td>● Under 10% conversion ratio for SO(_4^{2−})</td>
<td>● Approximately 30% conversion ratio for SO(_4^{2−})</td>
</tr>
<tr>
<td></td>
<td>● Lower relative humidity</td>
<td>● Higher relative humidity of around 70%</td>
</tr>
<tr>
<td></td>
<td>● Abundant NH(_3) supply above China</td>
<td>● No NH(_3) in gas-phase</td>
</tr>
<tr>
<td></td>
<td>● NH(_3)-rich air mass maintaining neutralization of NO(_3)−</td>
<td>● NH(_3)-neutral conditions during transport, SO(_4^{2−}) neutralized</td>
</tr>
</tbody>
</table>

Note: Parentheses indicate the multiplying factors compared with the status over China. The status is averaged over 6 h before the air mass leaves China, over during transport time from China to Fukuoka above the ocean, and over 3 h before the air mass reaches Fukuoka. Other NO\(_x\) consists of NO, NO\(_2\), NO\(_3\), HNO\(_2\), N\(_2\)O\(_5\), and PANs.