Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

Shradda Dhungel1, Bhogendra Kathayat2, Khadak Mahata3, Arnico Panday1,4

1 Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA
2 Nepal Wireless, Shanti Marg, Pokhara, 33700, Nepal
3 Institute for Advanced Sustainability Studies, Potsdam, 14467, Germany
4 International Center for Integrated Mountain Development, Khulmaltar, Kathmandu, 44700, Nepal

Correspondence to: Shradda Dhungel (shradda@virginia.edu)

Abstract. Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and -scattering particles from these sources over the Indo-Gangetic Plain (IGP) of southern Asia form persistent haze layers, also known as atmospheric brown clouds, from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya yet observational evidence of transport through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC), ozone (O3), and associated meteorological conditions within the Kali-Gandaki Valley (KGV), Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s⁻¹) dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September). Concentrations of both species subsequently increased post monsoon and peaked during March to May. Average concentrations for O3 during April, August, and November were 41.7 ppbv, 24.5 ppbv, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17 µg m⁻³, 0.24 µg m⁻³, and 1.01 µg m⁻³, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations two to three times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre- monsoon, support the hypothesis that trans-Himalayan valleys are important conduits for transport of pollutants from the IGP to the higher Himalaya.

Keywords: black carbon, ozone, trans-Himalayan valleys, pollutant pathways, long-range transport, regional transport episodes, short-lived climate forcers.
1. Introduction

Persistent atmospheric haze, often referred to as Atmospheric Brown Cloud (ABC) (Ramanathan and Crutzen, 2003), affects broad geographic regions including the Indo-Gangetic plain (IGP) in southern Asia (Ramanathan and Carmichael, 2008), eastern China (Ma et al., 2010), southeast Asia (Engling and Gelencser, 2010), sub-Saharan Africa (Piketh et al., 1999), Mexico (Vasilyev et al., 1995), and Brazil (Kaufman et al., 1998). In southern Asia, the haze covers extensive areas particularly during the period of mid-November to mid-June preceding the summer monsoon season. Major combustion sources (primarily anthropogenic) including the burning of agricultural waste, garbage, biofuel, and fossil fuels as well as wildfires emit volatile and particulate-phase compounds to the atmosphere that contain oxidized and reduced forms of sulfur, nitrogen, and organic carbon (OC) together with elemental (black) carbon (BC) and other species. These emissions are intermixed and chemically interact with mechanically produced aerosols (e.g., sea salt and mineral dust). Important secondary pollutants such as ozone (O₃) form from photochemical reactions involving nitrogen oxides and volatile organic species are also produced. Together, this mixture of atmospheric species constitutes ABC or the brown haze in South Asia (Ramanathan et al., 2005; Gustafsson et al., 2009). These optically thick layers include high concentrations of light absorbing and light scattering particles (Menon et al., 2002) that modulate radiative transfer. Light absorbing aerosols (primarily BC and crustal dust) contribute to warming of the atmosphere while light scattering aerosols (primarily S-, N-, and OC dominated particles) drive cooling at the surface. The combined effects of light absorbing and light scattering aerosols from anthropogenic sources reduce UV and visible wavelength radiation at the surface (i.e., surface forcing), increase the warming of the troposphere (i.e., atmospheric forcing) and change the net top of the atmosphere solar flux (i.e., top-of-the-atmosphere forcing) (Andreae and Crutzen, 1997; Kaufman et al., 2002, Ramanathan et al., 2005). Light-absorbing anthropogenic pollutants like BC significantly influence global warming, in terms of direct radiative forcing (Jacobson, 2001; Bond et al., 2013); regional influences from such pollutants close to sources are greater than those on the global scale (Ramanathan et al., 2007b).

The elevated concentration of aerosols in the anti-cyclone also weakens the circulation pattern and reduces total monsoon precipitation over southern India (Ramanathan et al., 2005; Fadnavis et al., 2013) while intensifying the monsoon over the foothills of the Himalaya (Lau et al., 2006). In addition to warming the atmosphere, the rising concentrations of BC and O₃ over southern Asia (e.g., Ramanathan and Carmichael, 2008) have detrimental impacts on human health. The effects of BC on cardiopulmonary and respiratory problems are greater than those of PM 2.5 or 10 particles (Janssen et al., 2011). O₃ also compromises pulmonary function (Krupnick et. al, 1990) and is a leading pollutant causing biodiversity loss (Royal Society, 2008) and declining crop yields by directly damaging leaves (Auffhammer et al., 2006).

Most haze over the IGP often reaches heights of more than 3 km above sea level via convection and advection, and the Himalaya range forms a 2500 km long, 8 km high complex topographic barrier along the northern edge of the IGP (Singh et al., 2004; Dey and Di Girolamo, 2010; Gautam et al., 2011). Numerous studies have investigated the transport of pollutants from the IGP to the Himalayan foothills, the immediate source region for potential transport to the Tibetan Plateau (TP)
(Pant et al., 2006; Dumka et al., 2008; Komppula et al., 2009; Hyvärinen et al., 2009; Ram et al., 2010; Brun et al., 2011; Gautam et al., 2011; Srivastava et al., 2012). Further, a suite of studies involving satellite imagery (Ramanathan et al., 2007a, Brun et al., 2011), back trajectories (Lu et al., 2011), model calculations (Kopacz et al., 2011), ice core analyses (Lee et al., 2008, Kang et al., 2010), and measurements in the higher Himalaya (Bonasoni et al., 2010) strongly suggest that pollutants are efficiently transported from the IGP to the higher Himalaya and onto the Tibetan Plateau, especially during spring prior to the monsoon. Absorbing aerosols warm the atmosphere at high altitudes and, when deposited onto snow and ice surfaces, decrease albedo thereby substantially increasing the rate of glacial and snow melting (Kang et al., 2010). Model simulations (Qian et al., 2011) show that the absorbing aerosols change the surface radiative flux in the higher Himalaya and the TP by 5 to 25 W m\(^{-2}\) during the pre-monsoon months of April and May. The TP plays a vital role in regulating the regional climate due to its effect on the Asian summer monsoon (ASM) and the hydrologic cycle. The interrelated perturbations of the ABC on radiative transfer, air quality, the hydrologic cycle, and crop yields have important long-term implications for human health, food security, and economic activity over southern Asia. However, to date, there has been little observational research to directly demonstrate the role of mountain valleys in the transport of air pollutants from the IGP and the Himalayan foothills to higher elevations within and north of the Himalayan range.

In other studied mountain ranges, it is well known that flow patterns carry polluted air masses up valleys to higher elevations by providing a path of least resistance between tall mountains. In the European Alps, prevailing wind systems in the mountain river valleys funnel polluted air from peripheral source regions to high elevations in a phenomenon known as “Alpine Pumping” (Weissmann et al., 2005). Under fair weather conditions during daytime, the upslope winds are capable of transporting significant pollutants and moisture into the free troposphere (Henne et al., 2004). Relative to air over plains, the air within the valley heats and cools more quickly (Steinacker, 1984). The resultant differences in temperature create gradients in pressure and density, which in turn drive transport of air from the plains to higher-elevations during the daytime (Reiter and Tang 1984, Whiteman and Bian, 1998; Egger et al., 2000). Such direct evidence of a Himalayan mountain valley wind system and its role in pollution transport has yet to be observed. Here we present 2.5 years of measurements of BC, \(\text{O}_3\), and associated meteorological data from one of the deepest trans-Himalayan valleys, the Kali-Gandaki Valley. We examine seasonal and diurnal patterns of BC and \(\text{O}_3\), investigate potential episodes of enhanced pollution transport up-valley, and make a preliminary estimate of BC mass transport. In doing so, we seek to provide the first observational evidence of trans-Himalayan valleys acting as conduits for pollution transport from the IGP to the higher Himalaya.

2. Measurement Sites and Methods

2.1 Measurement Sites and Instrumentation

This paper presents data from an atmospheric measurement station in Jomsom (28.87° N, 83.73° E, 2900 m asl) within the core region of the KGV along with four other automated weather stations up and down the valley from Jomsom. With the exception of aerosol optical depth measured as part of AERONET (AErosol RObotic NETwork) (Xu et al., 2015), no pollution data from Jomsom have been previously reported previously. Here we report diurnal and seasonal trends in two
important SLCPs – BC and O₃ – to evaluate the role of trans-Himalayan valleys as pathways for the transport of polluted air
from the IGP to the higher Himalaya.

The KGV is located in the Dhaulagiri zone of western Nepal (Fig. 1(a)). The KGV floor changes elevation from
approximately 1100 m to 4000 m above sea level (asl) over a horizontal distance of 90 km (Fig. 1(b)). Passing between the
two eight thousand meter peaks of Dhaulagiri and Annapurna, it forms one of the deepest valleys in the world. The valley is
a narrow gorge at the lower end and opens up into a wider, arid basin (Fig. 1(b)) with a maximum width of approximately
one kilometer. The orientation of KGV varies from the entrance to the exit. The general orientation of the valley is from SW
(the mouth of the valley) to NE (the head of the valley) (Fig. 1). Approximately 13,000 inhabitants in several small
settlements sparsely populate the valley. Emission sources within the valley include biofuel combustion for cooking and
fossil-fuel combustion by off-road vehicles. There is an airport in Jomsom which operates only in the morning as narrow
valley width and high up-valley wind speeds make it dangerous for small aircraft to land at other times. A total of 5245
vehicles have been registered in Dhaulagiri Zone since 2008, but most are based in the southern towns of Kusma, Baglung,
and Beni, below 1 km altitude, at the lowest left corner of the map in Figure 1(b) (DOTM, 2016).

The atmospheric observatory at Jomsom (JSM_STA) is equipped with instruments to measure BC, O₃, and meteorology
(Figure 2). The observatory is located on the southeast corner of a plateau jutting out from an east-facing slope about 100 m
above the valley floor and with no major obstructions either up or down the valley. Equivalent black carbon (hereafter
referred to as BC) was measured with a Thermo Multiangle Absorption photometer (MAAP), model 5012 that uses a multi-
angle photometer to analyze the modification of radiation fields – as caused by deposited particles that entered through a
straight, vertical inlet line – in the forward and back hemisphere of a glass-fiber filter (GF-10). MAAP was operated at a
flow rate of 20 L min⁻¹, measuring BC at 1-minute frequency. We note that Hyvärinen (2013) illustrates the artifact in
MAAP measurements in environments with high aerosol loading with an underestimation of concentration above 9 µg m⁻³.
Since the median monthly concentrations for the duration of the measurement were less than 1 µg m⁻³ and 90th percentile
below 2 µg m⁻³ (and therefore below this threshold), MAAP corrections were not applied. O₃ was measured with a 2B Tech
model 205 via the attenuation of ultraviolet light at 254 nm passing through a 15 cm long absorption cell fitted with quartz
windows. The instrument was operated at a flow rate of 1.8 L min⁻¹. For instrument calibration, the BC instrument performed
an automatic span and zero checks every 24 hours while zero checks on the O₃ instrument were performed every 7 days.
Wind speed and direction were measured by an automated weather station installed on a ridge 900 m (JSM_2) above the
sampling site for BC and O₃.

2.2 Data summary

The observatory operated from January 2013 through July 2015, but periodic power disruptions caused occasional data gaps
(Table 1). Unless otherwise noted, data reported herein correspond to periods when BC, O₃, and meteorological data were
available simultaneously. Data are binned by season as follows: monsoon (July-September), post-monsoon (October-
February) and pre-monsoon (March-June). Times correspond to Nepal’s local time (LT) (UTC + 5.75 h). From March to May 2015, four additional automated weather stations were operated along a transect roughly 10 meters above and in the center of the valley floor where wind speeds are typically the highest: near the entrance of the valley at Lete (LET), within the core at Marpha (MPH) and Jomsom (JSM_2), and near the valley exit at Eklobhatti (EKL) (Fig. 1b). Power outages, instrument malfunctions, and a major earthquake in Nepal on April 25th, 2015 (and its aftershocks) limited the duration of records at all sites. However, between 1st and 14th May, all stations operated simultaneously and the resulting data provide information with which to evaluate diurnal variability of wind fields along the valley.

BC, O₃, and meteorological data were averaged over 10 minute intervals. Up-valley (southwesterly) flows are defined as between 35° and 55° while down-valley (northeasterly) flows include data between 215° and 235°. Data for all days for which complete data were available over entire 24-hour periods were binned by season. The statistical significance of differences between up-valley and down-valley flow conditions during different seasons were evaluated using the non-parametric Kruskal Wallis and Mann-Whitney tests.

To normalize for the influence of day-to-day variability in absolute concentrations, relative diurnal variability in O₃ and BC concentrations measured during a given month were normalized to a common scale ranging from 0 to 1 (see e.g., Sander et al., 2003; Fischer et al., 2006). Normalized BC values for month m were calculated as:

\[BC_{n,t} = \frac{BC_t - \min BC_m}{\max BC_m - \min BC_m} \]

where \(BC_t \) is the BC concentration at time \(t \) in the month \(m \), and \(\max BC_m \) and \(\min BC_m \) are the maximum and minimum BC concentrations observed during month \(m \). The normalized data were then binned into twenty-four, hourly increments. These calculations were repeated for O₃.

2.3 Preliminary flux estimates

Up-valley and down-valley BC fluxes were calculated separately and determined using wind direction measurements. Instantaneous flux at time \(t \) was calculated as:

\[j_t = BC_t ws_t \]

where \(BC_t \) is the BC concentration (mg BC m⁻³) at time \(t \) and \(ws_t \) is the wind speed (m hr⁻¹) at time \(t \). From this, net daily mass transport \((M_d) \) for day \(d \) was estimated as:

\[M_d = A \left(\sum \left(\frac{1}{6} j_{t,up} \right) - \sum \left(\frac{1}{6} j_{t,down} \right) \right) \]

where \(A \) is the cross-sectional area of the valley at Jomsom (1.41x10⁶ m²), \(j_{t,up} \) and \(j_{t,down} \) are the instantaneous up-valley and down-valley fluxes, respectively, occurring during day \(d \), and the factor of 1/6 is the length of each time step in hours (i.e.,
10 minutes divided by 60 minutes). The cross-sectional area was estimated as a trapezoid with a height of 800 m (the difference in elevation between the two Jomsom stations) and cross-valley distances of 800 m (at JSM_1) and 2720 m (at JSM_2). The average of these two cross-valley distances (1760 m) multiplied by the height (800 m) yields the cross-sectional area of 1.41 x 10^6 m^2.

If we assume that (1) the polluted boundary layer within the valley at Jomsom is 800 m deep (i.e., the approximate elevational difference between the two AWS sites at Jomsom), (2) BC within the polluted boundary layer is well mixed, and (3) wind velocities do not vary significantly with altitude through the polluted layer, the mass flux BC through a vertical plane across the valley can be estimated. Supplementary Figure 1 shows that JSM_2 is well within the polluted haze layer during daytime/upvalley flows and that some BC is almost certainly transported above 800 m elevation. In this way we ensure that our estimates are conservative. The long lifetime of particulate BC against deposition (several days to a week or more) coupled with turbulent flow within the valley supports the assumption that BC is well mixed. Supplementary figure 2 shows that the potential temperature (theta) gradient is less than zero between JSM_1 and JSM_2 which illustrates that the air within the valley is unstable. In addition, Egger et al. (2000) used theodolite measurements to demonstrate uniform wind speeds within the bottom 1000m above the KGV floor at Jomsom and other locations. While we observed differences in wind speed of ~5 m s^-1 between the two Jomsom stations during the limited times when data were available from both, we were unable to determine whether this pattern persisted throughout the year. These data limitations also prevented us from a more in-depth assessment of potential nighttime decoupling. For these reasons, our only option was to follow the findings of Egger et al. (2000) and assign the wind speed at JSM_2 to the entire flux plane.

3. Results and Discussion

3.1 Evolution of local wind system in the KGV

An understanding of the local wind regime is essential for analyzing pollution transport through mountain valleys. Measurements from JSM_2 show the diurnal evolution of wind at Jomsom in each season. All data collected were used to analyze the diurnal pattern of wind at Jomsom (Fig. 3a, 3b, 3c). Wind roses illustrate the temporal evolution of up- and down-valley flows at JSM_2 for each season. At JSM_2, up-valley flows are southwesterly and dominant during daytime, with peak velocities above 15 m s^-1 between 0900 LT to 1800 LT. Wind velocities decreased substantially after 1800 LT, with variable wind direction until midnight, followed by northeasterly winds (during pre- and post-monsoon seasons (Fig. 3a and 3c)). The wind patterns during monsoon appear strongly influenced by the monsoon anticyclone; this observation is in agreement with wind direction measurements from other Himalayan valleys (Bonasoni et al., 2010; Ueno et al., 2008) (Fig. 5b). Although wind velocities at JSM_2 varied over the year, non-monsoon months exhibited similar diurnal patterns that evolved seasonally as a function of sunrise and sunset (Fig. 3a, 3b, 3c), characteristics which were exhibited in the monsoon season. As discussed below, this alternating pattern in wind direction from strong daytime flows to weak nighttime flows during dry months results in a net transport of pollutants up the valley.
Our measurements at the four AWS stations on the valley floor illustrate the evolution of surface wind velocities along the length of the KGV (Supplementary Figure 3). In general, wind speeds along the valley floor were strongest within the core of the valley at MPH, JSM_1 and JSM_2 and were lower in the entrance (LET) and exit (EKL) regions (Supplementary Figure 3). The duration of strong wind speeds within the valley during daytime is consistent with the hypothesis that wind patterns are modulated by the pressure gradient created as a result of differential heating of the arid valley floor relative to the mouth of the valley (Egger et al, 2000). In addition, comparison of measurements at JSM_1 and JSM_2 (Fig. 3a, 3b, 3c and Supplementary Figure 3) provided information regarding vertical variability in wind speed. Velocities at the higher elevation site of JSM_2 were about 5 m s⁻¹ and 3 m s⁻¹ greater than those near the valley floor during daytime and nighttime, respectively. The two sites exhibited similar diurnal cycles with the exception of a relatively stronger northeasterly wind at JSM_2 from 0300 to 0900 LST.

3.2 Diurnal variability in BC and O₃
Based on median values, O₃ peaked during daytime and dropped to minimal levels before sunrise during all three study seasons (pre-monsoon, monsoon, and post-monsoon. However, in April 2013(pre-monsoon period) O₃ peaked in the late afternoon whereas in November 2014(post-monsoon), it peaked in the early afternoon. In addition, the normalized diurnal excursions were greater during the pre- and post-monsoon periods relative to the monsoon period – represented by August 2014. In contrast, BC concentrations increased rapidly in the early morning, decreased during late morning, and then rose again through the afternoon and early evening hours (Fig. 4). Relative diurnal variability was somewhat greater during post-monsoon relative to the pre-monsoon and monsoon periods. Across all seasons, the lower normalized distributions for BC relative to O₃ reflect infrequent periods of high BC concentrations.

Several factors likely contributed to differences in timing of the daily peaks in O₃ and BC concentrations. These include potentially different source regions for BC and O₃ precursors, the timing of the photochemical production and destruction of O₃, and contributions of O₃ and its precursors from non-combustion sources like stratospheric ozone and biogenic hydrocarbons from vegetation. The early morning BC peak during all seasons suggests contributions from the local combustion of biofuels for cooking and heating, which are most prevalent during early morning. The secondary peak in the afternoon and early evening occurs when the local anthropogenic emission sources are at a minimum in the KGV.

3.3 Seasonal variability in BC and O₃
All data generated during the measurement period were binned by month to evaluate the seasonal patterns of BC and O₃ (Fig. 5). In addition, individual months with the most complete data coverage during the pre-monsoon (April 2013), monsoon (August 2014), and post-monsoon (November 2014) seasons were selected to evaluate aspects of temporal variability in greater detail (Fig. 5). We divided the seasons into dry (pre-monsoon, post-monsoon) and wet (monsoon) seasons to understand the transport of pollutants via Himalayan valleys in the presence and absence of wet deposition processes. Based on median values, the highest concentrations of both species occurred during the months preceding the monsoon and the
lowest were during months of the monsoon. The significantly lower concentrations during the monsoon reflect the combined influences of synoptic easterly airflow that transports a cleaner marine air mass over the region, reduced agricultural residue burning (Sarangi et al., 2014), and more efficient aerosol removal via wet deposition (Dumka et al., 2010). In addition to possible active wet deposition of O₃ precursors during the monsoon season, increased cloudiness during monsoon may also reduce O₃ production (Lawrence and Lelieveld, 2010).

The post-monsoon timing of peak BC concentrations observed in previous studies performed in the IGP and Himalayan foothills (see e.g., Tripathi et al., 2005; 2007; Ramchandran et al., 2007; Putero et al., 2015) differs from our observations in the KGV, where we see heightened BC during the pre-monsoon season (Fig. 5). These findings are generally in agreement with other high altitude observations. For example, the Nepal Climate Observatory-Pyramid (NCO-P) station at the 5079 m asl in the Himalaya has also shown high seasonal differences for BC and O₃ between pre-monsoon (0.444 ±0.443) µg m⁻³ BC; 61 (±9) ppbv O₃) and monsoon (0.064 (±0.101) µg m⁻³ BC; 39 (±10) ppbv O₃) (Cristofanelli et al., 2010, Marinoni et al., 2013) (Table 2). Our results therefore indicate a lagged peak in BC and O₃ within the KGV and presumably other deep Himalayan valleys, as compared to sites within the IGP.

3.4 Local winds as drivers of BC and O₃ transport in the KGV

Figure 6 shows the time series of BC and O₃ during individual month in each season (April/pre-monsoon, August/monsoon, November/post-monsoon). For April, BC concentrations peaked at 0700 LST (Fig.6) when wind velocities were low (Fig.6). This peak occurred about an hour later in November, with both periods experiencing a decrease in BC over the rest of the morning as wind speeds increased and diluted local emissions (Fig.4). Thereafter, BC concentrations increased over the afternoon and early night, reaching secondary peaks near midnight LST in April and several hours earlier in November and August (Fig. 4 and6). Distinct morning and afternoon peaks in BC concentration are seen in the post-monsoon season when the up-valley wind speeds are relatively weaker than in pre-monsoon season (Fig. 4 and 6). The bimodal diurnal distribution of BC concentration in Jomsom is similar to that observed in Kathmandu (Putero et al. 2015) but unlike a singular late afternoon/evening peak seen at high elevation sites (Bonasoni et al., 2010) during non-monsoonal seasons. This illustrates that deep Himalayan valleys are susceptible to diurnal pollution similar to that of urban areas like Kathmandu. The morning peak in BC is most likely due to local pollutants (from household and morning aircraft traffic) in Jomsom and settlements downwind of Jomsom, while the afternoon peak is likely primarily associated with long range in addition to local pollutants. At the same time, O₃ exhibits a distinct minimum in the early morning with concentrations increasing towards an early afternoon peak – occurring well before BC’s afternoon peak. The O₃ minimum in the morning further supports that the morning BC peak originates from local sources, as O₃ is only formed downwind of pollution sources. Further, the Jomsom station measuring BC and O₃ (JSM_STA) is located more than 100 m above the valley floor where the village of Jomsom sits. As such, we do not expect that local evening emissions would reach the stations at the cessation of up-valley flows and that evening drainage flows, following the valley floor would remove these local evening emissions down-valley.
Percentage distributions of up-valley and down-valley BC concentrations, fluxes, and net daily fluxes are depicted in Figure 7 and summarized in Supplementary Table 1. The differences in BC concentration between up-valley and down-valley flows are quite similar yet statistically significant for all seasons, with higher down-valley concentrations (Figure 7a). However, because wind velocities were relatively higher during up-valley daytime flow and the durations of up-valley were modestly longer than those of down-valley flow, the corresponding up-valley fluxes of BC during daytime were markedly and significantly greater than down-valley fluxes during all seasons (Fig. 7b). These results suggest an oscillatory movement of polluted air within the valley, where polluted air masses are pushed up-valley during daytime and retreat a shorter distance during nighttime. These differences between up-valley and down-valley fluxes yielded significant net daily up-valley fluxes of BC during all seasons (Fig. 7c). Because heating would have driven growth of the boundary layer and thus greater ventilation and dilution of pollutants during daytime relative to night, we infer that the calculated differences in up-valley versus down-valley fluxes correspond to lower limits for net BC fluxes.

Positive up-valley fluxes are consistent with an “alpine pumping” mechanism in the Himalayan valleys and thereby support the hypothesis that these valleys are important pathways for pollution transport. In addition, we estimate substantial net daily mass transport of BC up the valley during the pre-monsoon season: 1.05 kg day\(^{-1}\) (based on the average net daily flux) and 0.72 kg day\(^{-1}\) (based on the median net daily flux). While preliminary, these estimates provide the first semi-quantitative constraints on mass transport of BC from the IGP to the high Himalaya through deep valleys and, more generally, on the regional cycling of BC over southern Asia.

3.5 Evidence of regional transport episodes in valley concentration

Along with the regular diurnal and seasonal variability driven by local winds as described above, we also observed anomalous periods—lasting several days to more than a week—during which BC concentrations were significantly greater than the 90\(^{th}\) percentile for corresponding annual averages (Table 3). These extended periods of high BC at JSM_STA are evidence of large-scale transport from the IGP to the foothills in conjunction with local valley winds (Fig. 8). Elevated O\(_3\) concentrations did not always accompany these long-duration periods of high BC concentrations above 90\(^{th}\) percentile. Different atmospheric lifetimes, chemical reactivity, source location, and sinks of BC and O\(_3\) all may contribute to these differences in BC and O\(_3\) concentrations detected in the valley. Table 3 reports the number of days in which O\(_3\) concentration was above 90\(^{th}\) percentile within each episode.

We partitioned these episodes into three characteristic patterns based on the relative variability of BC. Pattern A was characterized as a fluctuating daily maximum in BC with peaks that repeatedly exceeded the 90\(^{th}\) percentile but with daily minima below the 90\(^{th}\) percentile (Fig. 8[1a]). Pattern B was characterized by a steady buildup of BC concentration over the period of the regional transport episode, with peak BC concentrations over the 90\(^{th}\) percentile but without a low daily minimum (Figure 8b). Pattern C exhibited a combination of both Patterns A and B during a single regional episode (Figure 8c). A total of 34 regional episodes were identified from January 2013 through June 2015, 47% of which were categorized as
Pattern A, 32% as Pattern B, and 21% as Pattern C. The wind speeds at Jomsom during these transport episodes exhibited diurnal variability similar to those during other periods (Fig. 8 [II]). During the regional transport period in November 2014 (Pattern A), average daily BC concentration was 1.29 µg m\(^{-3}\) which is over the 75\(^{th}\) percentile (0.88 µg m\(^{-3}\)) of the BC concentration for the measurement duration. The maximum daily concentration during the period was 3.04 µg m\(^{-3}\). However, the corresponding average O\(_3\) was only 28.07 ppbv, slightly below the average (29.48 ppbv) for the entire data set (Figure 8 [Ia]). The mean BC concentration during pattern B, one example of which occurred in May 2014, was 1.77 µg m\(^{-3}\) (Figure 8[Ib]). It was above the 90\(^{th}\) percentile (1.49 µg m\(^{-3}\)) for entire measurement period while O\(_3\) concentrations were at 49.71 ppbv, slightly below the 90\(^{th}\) percentile (52.9 ppbv). One of the Pattern C-type transport episodes was identified in May 2013, when the average concentration was well above the 90\(^{th}\) percentile for both BC (2.09 µg m\(^{-3}\)) and O\(_3\) (57.49 ppbv) (Fig. 8 [Ic]). The diurnal wind pattern in the KGV was conserved during the Pattern A example, but a longer period of up-valley flows occurred during the examples for Patterns B and C (Fig. 8).

4. Conclusion

This study provides new in-situ observational evidence of the role of a major Himalayan valley as an important pathway for transporting air pollutants from the IGP to the higher Himalaya. We found that concentrations of BC and O\(_3\) in the KGV exhibited systematic diurnal and seasonal variability. The diurnal pattern of BC concentrations during the pre- and post-monsoon seasons were modulated by the pulsed nature of up-valley and down-valley flows. Seasonally, pre-monsoon BC concentrations were higher than in post-monsoon season. We also found that morning and afternoon peaks in the post-monsoon season were more pronounced than those of pre-monsoon season, likely due to the relatively lower wind speeds during post-monsoon. Significant positive up-valley fluxes of BC were measured during all seasons and preliminary flux estimates (which require a more robust estimate in future work) show the efficiency and magnitude of pollutant transport up the valley. During episodes of regional pollution over the IGP, relatively higher concentrations of BC and O\(_3\) were also measured in the KGV.

The frequency and magnitude of pollution events highlighted in the paper need to be studied for a longer period in order to understand the associated interannual variability. In addition, future work should focus on understanding the vertical and horizontal distribution of particulate matter and ozone in the Himalayan region, and their impacts on the radiative budget, the ASM and regional climate.

Acknowledgments.

We would like to acknowledge our field assistant in Nepal, Buddhi Lamichhane who helped us in various stages of the study, as well as the logistic and administrative support and internet at the Jomsom station provided by Nepal Wireless. Financial support was provided by the National Aeronautics and Space Administration NNX12AC60G, and additional field support was provided by ICIMOD’s Atmosphere Initiative. The authors are very thankful for comments from William Keene, Jennie Moody and Kyle Davis.
References.

black carbon mass concentration over the high altitude location in the central Himalayas from multi-year observations.

Figure 1. (a) NASA Worldview image from November 4th, 2014 depicting thick haze intruding the Himalayan foothills with red arrow over the KGV. (b) Expanded scale of the KGV showing locations of LET near the entrance of the valley (yellow star); MPH in the core region (gray star); the JSM_STA sampling station for BC and O₃ and the two associated AWS sites (JSM_1 and JSM_2) in the core region (orange star); and EKL near the exit (blue star). (c) The atmospheric observatory at Jomsom (JSM_STA). (d) Cross-sectional elevation profile at the indicated locations.
<table>
<thead>
<tr>
<th>Station</th>
<th>Location</th>
<th>Elevation</th>
<th>Instrument (parameters measured)</th>
<th>Measurement period</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSM_STA</td>
<td>28.87N, 83.73E</td>
<td>2850m</td>
<td>Thermo BC MAAP–Model 5012 (Black carbon)</td>
<td>Jan 2013 – July 2015</td>
</tr>
</tbody>
</table>

Figure 2. The valley floor of KGV is shown in purple along with details pertaining to measurement sites, the installed instruments and measurement period.
Table 1. Data timeline for JSM_2 AWS, BC and O3 measurements in Jomsom. Green indicates complete data, blue is with few data points missing, yellow is more than 15 days data, orange is less than 15 days and blank is no data.

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3a. Wind rose for pre-monsoon season – binned into 3-hour increments depicting diurnal evolution in wind speed and direction at JSM_2.
Figure 3b. Wind rose for monsoon season – binned into 3-hour increments depicting diurnal evolution in wind speed and direction at JSM_2.
Figure 3c. Wind rose for monsoon season – binned into 3-hour increments depicting diurnal evolution in wind speed and direction at JSM_2.

Post-Monsoon

\[\text{[m s}^{-1}] \]

- Dark red: \(\geq 16 \)
- Orange: \(12-16 \)
- Green: \(8-12 \)
- Blue: \(4-8 \)
- Sky blue: \(0-4 \)
Figure 4. Box and whisker plots depicting the 90th, 75th, 50th, 25th, and 10th percentiles for normalized diel variability in O3 (upper panels) and BC (lower panels) at JSM_STA during April 2013 (pre-monsoon), August 2014 (monsoon), and November 2014 (post-monsoon). Scale for August 2014 is from 0 to 0.1.
Figure 5. Box and whisker plots depicting the 90th, 75th, 50th, 25th, and 10th percentiles for monthly concentrations of BC (upper panel) and O_3 (lower panel) between January 2013 and August 2015 at JSM_STA. Orange shaded areas indicate the post-monsoon season (Post-mon), green shaded area indicates the pre-monsoon (Pre-mon) and blue are indicates the monsoon (Mon) season.
Table 2. Comparison of BC and O$_3$ concentrations (mean ± standard deviation) between high elevation Himalayan site NCO-P CNR and JSM_1.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Altitude (m)</th>
<th>Co-ordinates</th>
<th>Season</th>
<th>BC (µg m$^{-3}$)</th>
<th>O$_3$ (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCO-P CNR</td>
<td>5079</td>
<td>27.95° N, 86.81° E</td>
<td>Pre-monsoon</td>
<td>0.317 (±0.34)</td>
<td>60.9 (±8.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Monsoon</td>
<td>0.049 (±0.06)</td>
<td>38.9 (±9.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post-monsoon</td>
<td>0.135 (±0.08)</td>
<td>46.3 (±5.0)</td>
</tr>
<tr>
<td>JSM_1</td>
<td>2800</td>
<td>28.87° N, 83.73° E</td>
<td>Pre-monsoon</td>
<td>0.891 (±0.45)</td>
<td>39.5 (±8.23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Monsoon</td>
<td>0.207 (±0.24)</td>
<td>25.1 (±6.48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post-monsoon</td>
<td>0.714 (±0.42)</td>
<td>31.4 (±4.5)</td>
</tr>
</tbody>
</table>
Figure 6. Variation in O$_3$, BC, and associated wind speed and direction at JSM_STA during (a) April 2013 (pre-monsoon), (b) July 2015 (monsoon), and (c) November 2014 (post monsoon). The grey shaded area denotes night.
Figure 7. (a) BC concentration distribution with down-valley (Dv) and up-valley (Uv) flows in Jomsom, (b) calculated Dv and Uv flux for each season, (c) Net daily flux per season. The dotted line is panel c marks 0 mg m\(^{-2}\) day\(^{-1}\). The red line represents 50\(^{th}\) percentile, the edge of the box 25\(^{th}\) and 75\(^{th}\) percentile while the whiskers show maximum and minimum values.
Figure 8. (I) Examples of extended periods with relatively high BC and \(O_3 \) concentrations at JSM_STA during November 2014 (Pattern A) and May 2014 (Pattern B) and May 2013 (Pattern C). The dashed black and green lines depict two-year averages for BC and \(O_3 \), respectively. (II) Corresponding wind direction and wind speed during the high BC and \(O_3 \) episodes. The orange dots represent wind speed, and the blue dots represent wind direction.
Table 3. List of enhanced BC episodes observed at JSM_STA and the concurring regional sources from MODIS (* Data is from January-July; + Incomplete O₃ data)

<table>
<thead>
<tr>
<th>Month</th>
<th>Episode Length</th>
<th>Episode type</th>
<th>Days with O₃ mixing ratio above 90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>6th – 15th</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>28th – 31st</td>
<td>C</td>
<td>1+</td>
</tr>
<tr>
<td>Feb</td>
<td>Jan 28th – Feb 2nd</td>
<td>C</td>
<td>1+</td>
</tr>
<tr>
<td>Mar</td>
<td>1st – 3rd</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6th – 9th</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11th – 13th</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18th – 27th</td>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>Apr</td>
<td>6th – 10th</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12th – 14th</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>27th – 30th</td>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>May</td>
<td>3rd – 11th</td>
<td>B</td>
<td>9</td>
</tr>
<tr>
<td>Oct</td>
<td>28th – 30th</td>
<td>A</td>
<td>No data</td>
</tr>
<tr>
<td>Nov</td>
<td>1st – 5th</td>
<td>A</td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td>23rd – 30th</td>
<td>A</td>
<td>0+</td>
</tr>
<tr>
<td>Dec</td>
<td>17th – 24th</td>
<td>C</td>
<td>0+</td>
</tr>
</tbody>
</table>

2014 (90th percentile: BC = 1.60 µg m⁻³ and O₃ = 56.8 ppbv)

<table>
<thead>
<tr>
<th>Month</th>
<th>Episode Length</th>
<th>Episode type</th>
<th>Days with O₃ mixing ratio above 90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>13th – 15th</td>
<td>A</td>
<td>No data</td>
</tr>
<tr>
<td>Feb</td>
<td>Jan 31st – Feb 1st</td>
<td>A</td>
<td>No data</td>
</tr>
<tr>
<td>Mar</td>
<td>14th – 16th</td>
<td>A</td>
<td>No data</td>
</tr>
<tr>
<td>Apr</td>
<td>5th – 8th</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10th – 30th</td>
<td>C</td>
<td>15+</td>
</tr>
<tr>
<td>May</td>
<td>Apr 10th – May 1st</td>
<td>C</td>
<td>15+</td>
</tr>
<tr>
<td></td>
<td>8th – 13th</td>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>Month</td>
<td>Episode Length</td>
<td>Episode type</td>
<td>Days with O$_3$ mixing ratio above 90th percentile</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Jun</td>
<td>17th – 23rd</td>
<td>C</td>
<td>5$^+$</td>
</tr>
<tr>
<td></td>
<td>5th – 8th</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>10th – 17th</td>
<td>B</td>
<td>8</td>
</tr>
<tr>
<td>Nov</td>
<td>15th – 30th</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>Dec</td>
<td>Nov 15th – Dec 8th</td>
<td>A</td>
<td>0</td>
</tr>
</tbody>
</table>

2015 (90th percentile: BC = 1.47 µg m$^{-3}$ and O$_3$ = 49.7 ppbv)