Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere

Fangqun Yu\(^1\), Gan Luo\(^1\), Alexey B. Nadyko\(^{1,2}\), and Jason Herb\(^1\)

\(^1\)Atmospheric Sciences Research Center, State University of New York, 251 Fuller Road, Albany, New York 12203, USA

\(^2\)Department of Applied Mathematics, Moscow State University of Technology “Stankin”, Vadkovsky 1, Moscow, Russia
Abstract. Secondary particles formed via new particle formation (NPF) dominate cloud condensation nuclei (CCN) abundance in most parts of the troposphere and are important for aerosol indirect radiative forcing (IRF). Laboratory measurements have shown that certain organic compounds can significantly enhance binary nucleation of sulfuric acid and H$_2$O. According to our recent study comparing particle size distributions measured in nine forest areas in North America with those predicted by a global size-resolved aerosol model, current H$_2$SO$_4$-Organics nucleation parameterizations appear to significantly over-predict NPF and particle number concentrations in summer. The lack of the temperature dependence in the current H$_2$SO$_4$-Organics nucleation parameterization has been suggested to be a possible reason for the observed over-prediction. In this work, H$_2$SO$_4$-Organics clustering thermodynamics from quantum-chemical studies has been employed to develop a scheme to incorporate temperature dependence into H$_2$SO$_4$-Organics nucleation parameterization. We show that temperature has a strong impact on H$_2$SO$_4$-Organics nucleation rates, and may reduce nucleation rate by \sim one order of magnitude per 10 K of the temperature increase. The particle number concentrations in summer over North America based on the revised scheme is a factor of more than two lower, in much better agreement with the observations. With the temperature-dependent H$_2$SO$_4$-Organics nucleation parameterization, the summer month CCN concentrations in the lower troposphere in the northern hemisphere are about 10-30% lower compared to the temperature independent one. This study highlights the importance of the temperature effect and its impacts on NPF in global modeling of aerosol number abundance.
1. Introduction

Atmospheric particles, through acting as cloud condensation nuclei (CCN), modify cloud properties and precipitation and thus, indirectly, affect the hydrological cycle and climate. Aerosol indirect radiative forcing (IRF) remains a major uncertainty in assessing climate change (IPCC, 2013). Secondary particles formed via nucleation dominate particle number concentrations in many parts of troposphere (Spracklen et al., 2008; Pierce and Adams, 2009; Yu and Luo, 2009), and global simulations indicate that nucleation schemes/parameterizations have a strong effect on the aerosol IRF estimations (Wang and Penner, 2009; Kazil et al., 2010; Yu et al., 2012). Different nucleation schemes, with nucleation rates depending on different variables, predict significantly different spatial patterns and seasonal variations of nucleation rates and CCN concentrations (Yu et al., 2010, 2015). Therefore, it is important to understand mechanisms of new particle formation (NPF) and the key parameters controlling the contribution of the NPF to CCN formation under wide range of varying atmospheric conditions and to validate their representation in regional and global climate models.

A number of laboratory chamber studies indicate that certain organic species can significantly enhance NPF (e.g., Zhang et al., 2004; Riccobono et al., 2014). This finding may have important implications for the interactions of anthropogenic and biogenic emissions and the associated climate forcing. To this regard, it is necessary to assess the ability of organics-enhanced nucleation to explain nucleation phenomena observed in the atmosphere and to determine the contribution of organics to atmospheric NPF and climate implications. In several laboratory studies, empirical parameterization of formation rate as a function of the concentrations of sulfuric acid and low-volatility highly oxidized organics has been derived (Metzger et al., 2010; Riccobono et al., 2014). One of the most important limitations of these
empirical parameterizations is that they were derived from the chamber measurements carried out under limited range of well-controlled conditions and, thus, reliably extrapolating these data to a wide range of atmospheric conditions remains a major issue. It should also be noted that empirical activation and kinetic nucleation formulas \(J = k_1[H_2SO_4] \) or \(J = k_2[H_2SO_4]^2 \) derived from limited field measurements (e.g., Riipinen et al., 2007; Kuang et al., 2008) also do not account for the impact of temperature variations on computed nucleation rates. Although these simple empirical temperature independent nucleation parameterizations have been widely used in global aerosol modeling and aerosol IRF studies (e.g., Spracklen et al., 2008; Wang and Penner, 2009; Kazil et al., 2010; Scott et al., 2014; Westervelt et al., 2014; Lupascu et al., 2015), possible impacts of temperature variations were not considered in these studies.

In a recent study comparing particle size distributions measured in nine forest areas in North America with those predicted by a global size-resolved (sectional) aerosol model, Yu et al. (2015) showed that \(H_2SO_4 \)-Organics nucleation parameterization of Riccobono et al. (2014) significantly over-predict NPF and particle number concentrations in summer (Yu et al., 2005). The lack of temperature dependence in the \(H_2SO_4 \)-Organics nucleation parameterization has been suggested as a possible reason for the observed over-prediction. The main objectives of the present study are (1) to develop a scheme to incorporate temperature dependence into \(H_2SO_4 \)-Organics nucleation parameterization, (2) to assess the ability of the modified parameterization in explaining the seasonal variations of NPF in NA, and (3) to study the global implications.

2. Methods

2.1. Organics-mediated nucleation parameterization with temperature dependence (Nucl-OrgT)
Based on the CLOUD chamber study of nucleation process involving sulfuric acid and organic compounds of relatively low volatility from the oxidation of pinanediol, Riccobono et al. (2014) derived the following organics-mediated nucleation parameterization (Nucl-Org),

\[
J_{\text{Nucl-Org}} = k_m \times [\text{H}_2\text{SO}_4]^2 \times [\text{BioOxOrg}]
\]

(1)

where \(J_{\text{Nucl-Org}} \) is the formation rate (\# cm\(^{-3}\) s\(^{-1}\)) of particles of \(\sim 1.7 \) nm, \(k_m \) is the fitting pre-factor with a value of 3.27×10\(^{-21}\) cm\(^6\) s\(^{-1}\) (90% confidence interval: 1.73×10\(^{-21}\) to 6.15×10\(^{-21}\) cm\(^6\) s\(^{-1}\)), [\text{H}_2\text{SO}_4] \) and [\text{BioOxOrg}] are the gas-phase concentrations (\# cm\(^{-3}\)) of H\(_2\)SO\(_4\) and biogenic oxidized organic (BioOxOrg) vapors, respectively. In the chamber study reported in Riccobono et al. (2014), BioOxOrg molecules are organic compounds of relatively low volatility from the oxidation of pinanediol (a first-generation oxidation product of \(\alpha \)-pinene) and represent later-generation oxidation products of biogenic monoterpenes.

The Nucl-Org parameterization given in Eq. 1, derived from laboratory chamber studies at T=278 K and RH=39% (Riccobono et al., 2014), does not consider the possible effect of temperature on nucleation rate. According to the nucleation theory, nucleation rates are temperature-dependent unless nucleation is barrierless and limited by collision rates only. However, the value of the pre-factor \(k_m \) of 3.27×10\(^{-21}\) cm\(^6\) s\(^{-1}\) is well below the three-body collision rate corresponding to the formation of a cluster containing two H\(_2\)SO\(_4\) and one BioOxOrg molecules. This indicates that nucleation in the CLOUD chamber under conditions reported in Riccobono et al. (2014) was not barrierless, and, thus, nucleation rates should be temperature-dependent.

Based on the classical homogeneous nucleation theory, the rate of nucleation (\(J \)) can be generally written in the form

\[
J = C_1 \exp(-\Delta G/kT)
\]

(2)
where ΔG is the Gibbs free energy needed to form the critical cluster and C_1 is the pre-factor.

With $\Delta G = \Delta H - T \Delta S$, where ΔH and ΔS are associated enthalpy and entropy change, we get

$$J = C_1 \exp(-\Delta H/kT + \Delta S/k) = C_1 \exp(\Delta S/k) \exp(-\Delta H/kT) = C_2 \exp(-\Delta H/kT)$$ (3)

The temperature dependence of nucleation rate is dominated by the exponential term in Eq. (3), although C_2 may also weakly depend on temperature. Assuming that C_2 is independent of temperature and using $J_{\text{Nucl-Org}}$ given in Eq. (1) as the nucleation rate at the reference temperature $T_0=278$ K, we obtain

$$J_{\text{Nucl-Org}}T = J_{\text{Nucl-Org}} f_T$$ (4)

$$f_T = \exp\left[\frac{\Delta H}{k} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$ (5)

where f_T is the correction factor accounting for the temperature dependence.

One challenge here is to obtain enthalpy change (ΔH) associated with the critical cluster formation because it is quite difficult to determine the chemical identities of BioOxOrg molecules involved in atmospheric nucleation (Elm et al, 2014; Riccobono et al., 2014). As a first order approximation, we use 2-Methyl-5-[(1S,2S,3R)-1,2,3,4-tetrahydroxybutyl]-3-furoic acid, a select highly oxidized organic $C_{10}H_{14}O_{7}$ compound, as a proxy for BioOxOrg molecules. The stability of the cluster composed of two H_2SO_4 and one $C_{10}H_{14}O_{7}$ molecules has been investigated using the Density Functional theory (DFT) at PW91PW91/6-311++G(3df,3pd) level. The PW91PW91 is the most common density functional used in atmospheric studies that predicts structure, vibrational spectrums, dipolar properties and thermodynamics of atmospheric molecules and molecular clusters with high degree of confidence and its predictions, which have been systematically validated against experimental and higher level ab initio Gibbs free energies, are in a very good agreement with them for a number of atmospherically relevant molecules and
clusters (e.g. Herb et al., 2013, Elm et al., 2013, Nadykto et al., 2015; DePalma et al., 2015). Computations have been carried out using the Gaussian 09 suite of programs (Frish et al., 2009).

Figure 1 presents the equilibrium geometry of the most stable isomers of heteromolecular trimer composed of \((C_{10}H_{14}O_7)(H_2SO_4)_2\) and Table 1 reports the corresponding the thermodynamic data associated the formation of this cluster. The computational methodology, benchmarks of Gibbs free energy changes and Cartesian geometries of global minima and local minima located within 1 kcal mol\(^{-1}\) of the global minima, along with interactions of \(C_{10}H_{14}O_7\) and \(H_2SO_4\) with some base molecules, will be detailed in a separate manuscript. Here, as a first order of approximation, we use \(\Delta H\) value of -38.30 kcal mol\(^{-1}\) to calculate the temperature-dependent factor \(f_T\) in Eq. (5). Figure 2 shows the calculated value of \(f_T\) as a function of T. It is clear from Fig. 2 that \(f_T\) decreases significantly as T increases, roughly one order of magnitude per 10 K. When \(T < 269\) K, \(f_T\) becomes larger than 10 and increases with decreasing T. \(f_T\) is set to have a maximum value so that \(J_{Nucl-OrgT}\) does not exceed the 3-body kinetic collision rate for forming a cluster containing two \(H_2SO_4\) molecules and one BioOxOrg molecule, which depends on T as well as the mass and sizes of colliding molecules. At \(T=270\) K, the maximum value of \(f_T\) is \(~ 38\). Compared to the original \(J_{Nucl-Org}\) parameterization of Riccobono et al. (2014) (Eq. 1) derived from laboratory chamber studies at \(T=278\) K and not taking into account the temperature dependence of nucleation rates (i.e., \(f_T = 1\), dashed line in Fig. 2), the revised parameterization \(J_{Nucl-OrgT} = f_T J_{Nucl-Org}\) predicts quite different nucleation rate in the atmosphere, especially in the summer season, when both T and VOC emissions are at peak values.

It should be noted that \(f_T\) shown in Fig. 2 is subject to large uncertainty because of the potential difference between the molecules involved in the nucleation and the proxy molecule shown in Figure 1. The thermodynamic data for the formation of \((H_2SO_4)_2\)(BioOxOrg) clusters is
Elm et al. (2014) investigated the molecular interactions between the α-pinene oxidation product pinic acid and sulfuric acid using computational methods and reported a ΔH value of -42.5 kcal/mol for the formation of \((\text{H}_2\text{SO}_4)_2\) (Pinic Acid). More negative ΔH implies stronger temperature dependence. The sensitivity of \(f_T\) values to ΔH can be readily calculated from Eq. (4). For example, a fairly large uncertainty of 5 kcal mol\(^{-1}\) in ΔH leads to the uncertainty in \(f_T\) of a factor of ~ 1.4 at \(T=288\) K, while the extremely large 20 kcal mol\(^{-1}\) variation in ΔH alters \(f_T\) at \(T=288\) K by a factor of ~ 3.5. The sensitivity of predicted nucleation rates and particle number concentrations to ΔH values is presented in Section 3. Despite possible uncertainties in \(f_T\), the temperature dependent \(J_{\text{Nucl-Org}T}\) is likely to be more realistic than \(J_{\text{Nucl-Org}}\), in which the temperature dependence is neglected.

2.2. GEOS-Chem model and global simulations

This work represents a major global modeling attempt in studying the effect of temperature on organics-mediated nucleation in the atmosphere. This study is built upon the work reported in Yu et al. (2015) and, thus, we use the same global model (GEOS-Chem) and configurations as that described in Yu et al. (2015). GEOS-Chem is a global 3-D model of atmospheric composition driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO) (e.g., Bey et al., 2001). More detailed information about GEOS-Chem and updates can be found at the model website (http://geos-chem.org/). The aerosol simulation is based on a size-resolved (sectional) advanced particle microphysics (APM) model incorporated into GEOS-Chem by Yu and Luo (2009) and considers the successive oxidation aging of the oxidation products of various VOCs (Yu, 2011). In GEOS-Chem v8-03-02, on which this study and previous work (Yu et al.,
2015) are based, the concentration of highly oxidized low volatile secondary organic gas from the oxidation products of α-pinenes (LV-SOG$_{\alpha$-pinene}) is explicitly simulated and used in Eqs. (1) and (4) to calculate organics-mediated nucleation rates. The horizontal resolution of GEOS-Chem employed in this study is $2^\circ \times 2.5^\circ$ and there are 47 vertical model layers (with 14 layers from surface to \sim 2 km above the surface). Other relevant model configurations (including emission inventories and various schemes) can be found in Yu et al. (2015).

The main difference between the present study and the previous one reported by Yu et al. (2015) is that the present study employs the T-dependent Nucl-Org parameterization given in Eq. (4) instead of T-independent parameterization of Riccobono et al. (2014). In addition, study of Yu et al. (2015) focuses only on the NA region, while in this work, the discussion on organics-mediated nucleation is expanded to the whole globe.

3. Results

Figure 3 shows the effect of T-dependent correction factor on simulated global distributions of monthly mean (July, 2006) nucleation rates, particle number and CCN concentrations in the boundary layer (0-1 km above the surface). The high biogenic VOC emissions in the summer coupled with strong photochemistry lead to higher concentrations of LV-SOG$_{\alpha$-pinene} or BioOxOrg (Yu et al., 2015) and hence, according to the parameterization of Riccobono et al. (2014) (i.e., Eq. 1), significant organics-mediated nucleation (Fig. 3a) and higher particle number concentrations (Figs. 3c and 3e). However, the high temperature in the summer substantially lower nucleation rates (Fig. 3b), and reduce the global monthly mean nucleation rate in the boundary layer from 0.17 cm$^{-3}$s$^{-1}$ (Fig. 3a) to 0.02 cm$^{-3}$s$^{-1}$, with stronger effect in the northern
hemisphere (Fig. 3b). As a result, the global monthly mean CN10 and CCN0.4 in the boundary layer decrease by 40% and 30%, respectively.

A ΔH value of -38.3 kcal mol\(^{-1}\) was used in calculating \(J_{\text{Nucl-OrgT}}\) in Fig. 3b. The impact of ΔH values (from 0 to 58.3 kcal mol\(^{-1}\)) on \(J_{\text{Nucl-OrgT}}\), CN10 and CCN0.4 averaged in the boundary layer over the whole globe for the same summer month is presented in Figure 4. A zero value of ΔH corresponds to the case of no T-dependent correction (i.e., \(J_{\text{Nucl-Org}}\), Fig. 3a). \(J_{\text{Nucl-OrgT}}\), CN10 and CCN0.4 are more sensitive to ΔH when ΔH is small (<~ 30 kcal mol\(^{-1}\)), with \(J_{\text{Nucl-OrgT}}\) decreasing by a factor of 5, CN10 by 33% and CCN0.4 by 28% as ΔH increases from 0 to 28.3 kcal mol\(^{-1}\). Further increase of ΔH from 28.3 to 58.3 kcal mol\(^{-1}\) reduces \(J_{\text{Nucl-OrgT}}\), CN10 and CCN0.4 by 100%, 25%, and 10%, respectively. It can be seen from Figure 4 that the T-dependent correction, even with a smaller value of ΔH, is important. On the other hand, the effect of potential uncertainty in ΔH around the values derived from quantum calculation (~ 40 kcal mol\(^{-1}\), see Section 2.1) is relatively weaker.

As we have pointed out earlier, the previous comparisons of simulated and observed particle size distributions measured in nine forest areas in North America (NA) (Yu et al., 2005) showed that \(J_{\text{Nucl-Org}}\) parameterization (Eq. 1) over-predicts condensation nuclei number concentrations in the size range of 10 and 100 nm (CN\textsubscript{10-100}) at these sites in summer by a factor of around two on average (Yu et al., 2005). To examine the extent, at which the revised parameterization considering T-dependence (Eq. 4) can improve the agreement of simulations with measurements, we present the monthly mean horizontal distributions of CN10 zoomed into the NA region in Fig. 5 and observed and simulated CN\textsubscript{10-100} averaged over the nine forest sites in Fig. 6. It can be clearly seen from Fig. 5 that the simulated monthly mean CN10 values in the NA boundary layer based on \(J_{\text{Nucl-OrgT}}\) (Eq. 4) are about a factor of two lower than those based on \(J_{\text{Nucl-Org}}\) (Eq. 1),
with larger difference in the lower latitude part of the domain, where T is higher. In the case, when the effect of T on Nucl-Org is taken into account, the domain-wide average CN10 value decreases from 4600 to 2200 #/cm³ and Figure 6 shows that the simulated CN_{10-100} averaged over the nine forest sites (with locations marked on Fig. 5, see Yu et al. (2015) for details) agrees much better with that of observed. It can also be seen from Fig. 6 that CN_{10-100} over the NA forest sites is more sensitive to ΔH values than the global mean CN10 shown in Fig. 4, and ΔH of ~35 kcal mol^{-1} agrees best with the observations.

To further illustrate the difference and improvement for the cases with and without T-dependent correction, we present in Fig. 7 a set of detailed comparisons of simulated and observed evolution of particle size distributions during two ten-day periods in March and July of 2006 in Duke Forest (Pillai et al., 2013), along with time series of CN_{10-100} (integrated from PSDs), which give a good overall representation of particle nucleation and growth. The observed PSDs and simulated PSDs based on J_{Nucl-Org} has been discussed in Yu et al. (2015) and are repeated here for comparison with J_{Nucl-OrgT} scheme in order to demonstrate the impact of temperature on nucleation and particle number concentrations. Although the present work focuses on the summer month, when the largest difference between J_{Nucl-Org} prediction and observation is observed, we also show in Fig. 7 simulations for a 10-day period in March as well for the comparison purpose. NPF events observed in Duke Forest are much more frequent and concentrations of nucleation mode particles are much higher in the spring than in the summer (Figs. 7a & 7b). The temperature correction (Eq. 4) has small effect in the spring (Figs. 7c, 7e, and 7g) but significantly reduces nucleation rate and particle number concentration in summer (Figs. 7d, 7e, and 7f). J_{Nucl-Org} scheme (Eq. 1) predicts strong nucleation events (Fig. 7d) and significant diurnal variations in CN_{10-100} (Fig. 7h) almost every day in the summer period that
obviously contradicts to observations (Fig. 7b). The high nucleation rates in the summer based on $J_{\text{Nucl-Org}}$ scheme can be easily explained by the much higher BioOxOrg concentrations as a result of high VOC emissions and stronger photochemistry. Nevertheless, the high T in the summer inhibits nucleation (Eq. 4) and the temperature correction factor substantially improves the agreement of the simulated evolution of PSDs (Figs. 7b, 7d, 7f) and CN_{10-100} (Fig. 7h) with observations.

Figure 8 shows the ratios of the CCN concentration in the lower troposphere (0-3 km) based on Nucl-Org to the CCN concentration based on Nucl-OrgT. The CCN concentrations are calculated at a water supersaturation ratio of 0.2% (CCN0.2) from simulated PSDs. As a result of higher nucleation rates, CCN0.2 based on Nucl-Org are about 10-20% higher than those based on Nucl-OrgT in July over most parts of northern hemisphere (Fig. 6a), with the largest difference up to 30-70% reached over part of NA, Europe, and Asia.

4. Summary and discussion

Simple empirical nucleation parameterizations, which were derived from laboratory or field measurements under limited conditions and do not consider any temperature dependence of nucleation rates, have been widely used in global aerosol modeling and aerosol indirect radiative forcing studies. Based on the classical nucleation theory, temperature should be one of key parameters controlling nucleation rates, unless nucleation is barrierless. A recent study indicates (Yu et al., 2015) that the empirical parameterization of H_2SO_4-Organics nucleation of Riccobono et al. (2014) significantly over-predicts NPF and particle number concentrations in North America in summer. The lack of temperature dependence in the parameterization has been suggested as a likely reason for the observed over-prediction. In the present study, H_2SO_4-Organics clustering thermodynamics from quantum-chemical studies has been employed to
develop a scheme for incorporating the temperature dependence into H$_2$SO$_4$-Organics nucleation parameterization, which reduces global mean nucleation rate in the boundary layer in a summer month by a factor of ~ 8 and improves the agreement of predicted particle number concentrations over North America with observations. With temperature-dependent H$_2$SO$_4$-Organics nucleation parameterization, the summer month CCN concentrations in the lower troposphere in the northern hemisphere are about 10-30% lower. In view of the potential effects of changes in CCN concentrations on precipitation (second indirect impact) and cloud cover, it is important to reduce uncertainties in NPF calculation in regional and global climate models.

The study highlights the importance of including the temperature dependence of nucleation rates in global modeling of NPF and aerosol indirect radiative forcing. In a recent study, Dunne et al. (2016) also showed a substantial impact of the temperature dependence on the contribution of organic nucleation to overall nucleation. The temperature dependence factor derived under this study can be applied to study the temperature effect on organics-mediated nucleation in the global atmosphere and improve the agreement of simulated particle number concentrations with observations. Although it may subject to uncertainties due to the possible difference between the molecules involved in the nucleation and the proxy molecule, temperature dependent $J_{\text{Nucl-OrgT}}$, likely more realistic than $J_{\text{Nucl-Org}}$, in which the temperature dependence is neglected. Further laboratory measurements and theoretical studies are needed to better understand the effect of temperature on organics-mediated nucleation in the atmosphere.

Acknowledgments. This study was supported by NASA under grant NNX13AK20G and the National Science Foundation (NSF) under grant 1550816. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the NSF. The GEOS-Chem
model is managed by the Atmospheric Chemistry Modeling Group at Harvard University with support from NASA’s Atmospheric Chemistry Modeling and Analysis Program.

References

Herb, J., Y. Xu, F. Yu, and A. B. Nadykto, Large hydrogen-bonded pre-nucleation (HSO$_4^-$) $\text{(H}_2\text{SO}_4)_m(\text{H}_2\text{O})_k$ and (HSO$_4^-$)(NH$_3$)(H$_2$SO$_4$)$_m$(H$_2$O)$_k$ Clusters in the Earth’s Atmosphere, The Journal of Physical Chemistry A, 117 (1), 133–152, 2013.

Table 1. Changes of enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) for the formation of \((\text{C}_{10}\text{H}_{14}\text{O}_7\text{(H}_2\text{SO}_4\text{)}_2\) cluster under the standard condition (P= 1 atm, T=298 K).

<table>
<thead>
<tr>
<th>C({10})H({14})O(_7) + H(_2)SO(_4) + H(2)SO(4) \rightleftharpoons (C({10})H({14})O(_7))(H(_2)SO(_4))(_2)</th>
<th>ΔH (kcal mol(^{-1}))</th>
<th>ΔS (cal mol(^{-1})K(^{-1}))</th>
<th>ΔG (kcal mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-38.30</td>
<td>-75.45</td>
<td>-15.81</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Equilibrium geometry of the most stable isomers of heteromolecular trimer composed of \((C_{10}H_{14}O_7)(H_2SO_4)_2\) obtained at PW91PW91/6-311++G(3df,3pd) level of theory. Bonding lengths are in angstroms.

Figure 2. Calculated temperature dependence correction factor for Nucl-Org parameterization \((f_T)\) as a function of \(T\).

Figure 3. Horizontal distributions of monthly mean nucleation rates \((J)\) (a, b), concentrations of condensation nuclei larger than 10 nm (CN10) (c, d), and concentrations of cloud condensation nuclei at water supersaturation ratio of 0.4% (CCN0.4) (e, f) in the boundary layer (0-1 km above the surface) in July of 2006 based on two organics-mediated nucleation schemes: \(J_{\text{Nucl-Org}}\) (left panels) and \(J_{\text{Nucl-OrgT}}\) (right panels).

Figure 4. Dependence of organics-mediated nucleation rates (left axis), CN10 and CCN0.4 (right-axis) averaged in the boundary layer (0-1 km) over the whole globe for July 2006 on \(\Delta H\) values assumed in calculating temperature dependence correction factor for Nucl-Org parameterization \((f_T)\).

Figure 5. Horizontal distributions of monthly mean CN10 in the boundary layer (0-1 km above surface) in July of 2006 based on two organics-mediated nucleation schemes: (a) \(J_{\text{Nucl-Org}}\) and (b) \(J_{\text{Nucl-OrgT}}\). The locations of 9 forest sites where observed particle size distributions measurements have been used for comparisons in Yu et al. (2015) are marked.

Figure 6. Effect of \(\Delta H\) values on simulated number concentrations of condensation nuclei in the size range of 10 and 100 nm (CN_{10-100}) in the boundary layer (0-1 km) for July 2006 averaged over nine forest sites in North America (NA) (locations marked on Fig. 5). The horizontal dashed line shows the average of CN_{10-100} observed in a summer month at the 9 sites.
Figure 7. Particle size distributions (PSDs) observed (a, b) and simulated based on Nucl-Org (c, d) and Nucl-OrgT (e, f) schemes during two ten-day periods in March (a, c, e) and July (b, d, f) of 2006 in Duke Forest (DUK), along with time series of the concentration of condensation nuclei between 10 and 100 nm (CN_{10-100}) (g, h).

Figure 8. Ratios of the concentration of CCN (at water supersaturation ratio of 0.2%) in the lower troposphere (0-3 km) based on Nucl-Org scheme to those based on Nucl-OrgT scheme.
Figure 1.

Figure 2.
Figure 3.
Figure 4.

Figure 5.
Figure 6.

Figure 7.
Figure 8.