Validation of OMI, GOME-2A, and GOME-2B tropospheric NO₂, SO₂, and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products

Yang Wang¹, Steffen Beirle¹, Johannes Lampel¹2, Mariliza Koukouli³, Isabelle De Smedt⁴, Nicolas Theys⁴, Ang Li⁵, Dexia Wu⁵, Pinhua Xie⁵67, Cheng Liu⁸65, Michel Van Roozendael⁴, Trissevgeni Stavrakou⁴, Jean-François Müller⁴, and Thomas Wagner¹

¹ Max Planck Institute for Chemistry, Mainz, Germany
² Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
³ Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
⁴ Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
⁵ Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
⁶ CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
⁷ School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, China
⁸ School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

Correspondence to: Yang Wang (y.wang@mpic.de), Ang Li (Angli@aiofm.ac.cn), Cheng Liu (chliu81@ustc.edu.cn)

Abstract.
Tropospheric vertical column densities (VCDs) of NO₂, SO₂, and HCHO derived from Ozone Monitoring Instrument (OMI) on AURA and Global Ozone Monitoring Experiment 2 aboard METOP-A (GOME-2A) and METOP-B (GOME-2B) are widely used to characterize the global distributions, trends, dominating sources of the trace gases and for comparisons with chemical transport models (CTM). We use tropospheric VCDs and vertical profiles of NO₂, SO₂ and HCHO derived from MAX-DOAS measurements from 2011 to 2014 in Wuxi, China, to validate the corresponding products derived from OMI and GOME-2A/B by different scientific teams (daily and bimonthly averaged data). Prior to the comparison, the spatial and temporal coincidence criteria for MAX-DOAS and satellite data are determined by a sensitivity study using different spatial and temporal averaging conditions. Cloud effects on both MAX-DOAS and satellite observations are also investigated. Our results indicate that the discrepancies between satellite and MAX-DOAS results increase with increasing effective cloud fractions and are dominated by the cloud effect on the satellite products. In comparison with MAX-DOAS, we found a systematic underestimation of all SO₂ (40% to 57%) and HCHO products (about 20%), and an overestimation of the GOME-2A/B NO₂ products (about 30%), but well consistent DOMINO version 2 NO₂ product. To better understand the reasons for the differences, we evaluated the a-priori profile shapes used in OMI retrievals (derived from CTM) by comparison with those derived from MAX-DOAS observations. Significant differences are found for SO₂ and HCHO profile shapes derived from the IMAGES model, whereas on average good agreement was found for the NO₂ profile shapes derived from the TM4
model. The modified satellite VCDs based on the profile shapes from MAX-DOAS observations agree better with the MAX-DOAS VCDs than the VCDs from the original data sets by up to 10%, 47% and 35% for NO₂, SO₂ and HCHO, respectively. Furthermore, we investigate the effect of aerosols on the satellite retrievals. For OMI observations of NO₂, a systematic underestimation is found for a large AOD, which is mainly attributed to effect of the aerosols on the cloud retrieval and subsequent application of a cloud correction scheme (implicit aerosol correction). In contrast, the effect of aerosols on the clear sky AMF (explicit aerosol correction) has a smaller effect. For SO₂ and HCHO observations selected in the same way, no clear aerosol effect is found, probably because for the considered data no cloud correction is applied (but also because of the larger scatter). From our findings we conclude that for satellite observations with CTP > 900hPa and eCF<10% the application of a clear sky AMF might be a good option if explicit aerosol information is not available. Another finding of our study is that the ratio of morning to afternoon NO₂ VCDs can be considerably overestimated if results from different sensors and/or retrievals (e.g. OMI and GOME-2) are used, whereas less deviations for HCHO and SO₂ VCDs are found.

1 Introduction

Nitrogen oxides (NOₓ ≡ NO₂ + NO), sulphur dioxide (SO₂), and formaldehyde (HCHO) play critical roles in the tropospheric chemistry through various gas phase and multi-phase chemical reactions (Seinfeld and Pandis, 1998). In an urban and industrialized region, anthropogenic emissions from traffic, domestic heating, factories, power plants and biomass burning significantly elevate the concentrations of these (and other) trace gases (TGs) in the boundary layer (Environmental Protection Agency, 1998; Seinfeld and Pandis, 1998). There is strong evidence that aerosol particles formed through photochemistry of NOₓ, SO₂, and VOCs significantly contribute to haze pollution events occurring frequently around megacities and urban agglomerations in China, like the Jing–Jin–Ji region and the Yangtze River Delta region (Crippa et al., 2014; Huang et al., 2014; Jiang et al., 2015; Fu et al., 2014). The aerosols also impact the local radiative forcing through direct (e.g. McCormic and Ludwig, 1967) and indirect effects (Lohmann and Feichter, 2005). Understanding global and regional distributions and temporal variations of the TGs, and further identifying and quantifying their dominant sources can provide a firm basis for a better understanding of the formation mechanisms of haze pollution and for the development of mitigation strategies.

Since 1995 a series of sun-synchronous satellites, such as ERS-2, ENVISAT, AURA, METOP-A and METOP-B, was launched carrying UV/vis/NIR spectrometers with moderate spectral resolution, which allowed scientists to determine global distributions of several important tropospheric trace gases including NO₂, HCHO and SO₂ for the first time. The first instrument was the Global Ozone Monitoring Experiment (GOME) (Burrows et al., 1999), followed by the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) (e.g. Bovensmann et al., 1999), the Ozone Monitoring Instrument (OMI) (Levelt et al., 2006a, b), and the GOME-2A and GOME-2B instruments (Callies et al., 2000; Munro et al., 2006, 2016). The OMI and GOME-2A/B instruments are still in operation. A large number of studies developed retrieval algorithms to acquire the tropospheric vertical column densities (VCD) of NO₂ (e.g. Boersma et al., 2004,
2007 and 2011; Richter et al., 2005; Beirle et al., 2010 and Valks et al., 2011), SO$_2$ (e.g. Krueger et al., 1995; Eisinger and Burrows, 1998; Carn et al., 2004; Krotkov et al., 2006; Richter et al., 2006 and 2009; Yang et al., 2007; Lee et al., 2009; Nowlan et al., 2011; Rix et al., 2012; Li et al., 2013; Theys et al., 2015), and HCHO (Chance et al., 2000; Palmer et al., 2001; Wittrock et al., 2006a; De Smedt et al., 2008, 2012 and 2015; Kuros, 2008; Millet et al., 2008; Hewson et al., 2013; González Abad et al., 2015) for all the satellite instruments. In this validation study we include several products, which are published recently and widely used: for NO$_2$ the near-real-time OMI DOMINO v2.0 (Boersma et al., 2007 and 2011) and the GOME-2A/B TM4NO2A (Boersma et al., 2004); for SO$_2$ the operational OMSO2 OMI product (Li et al., 2013) published by National Aeronautics and Space Administration (NASA), the O3M-SAF operational GOME-2A product published by the German Aerospace Centre (DLR) (Rix et al., 2012 and Hassinen et al., 2016), and the OMI and GOME-2A/B products developed by BIRA (Theys et al., 2015); for HCHO the OMI and GOME-2A/B products developed by BIRA (De Smedt et al., 2008, 2012 and 2015). Many users already benefit from these products for several applications, e.g. detection and quantification of emissions, identification of transport processes and chemical transformations, and for the comparison with model simulations (e.g. Beirle et al., 2003 and 2011; Martin et al., 2003; Richter et al., 2005; van der A et al., 2008; Herron-Thorpe et al., 2010; Gonzi et al., 2011; Barkley et al., 2012; Koukouli et al., 2016).

Although several studies have paid efforts to improve satellite retrievals, still significant differences compared to ground based measurements were reported by several validation studies, e.g. a systematic underestimation of the tropospheric VCDs of NO$_2$, SO$_2$ and HCHO was obtained for OMI by $>30\%$ in or near Beijing, China (Ma et al., 2013; Theys, et al., 2015 and De Smedt et al., 2015; Jin, et al., 2016). The satellite retrieval errors are mainly attributed to the slant column retrievals, the stratospheric correction (for NO$_2$) and the tropospheric air mass factor (AMF) calculations. The AMF uncertainties are related to several factors, such as the surface albedo, the cloud and aerosol properties, methodological assumptions on how clouds and aerosols should be accounted (Lin et al., 2015), the a-priori profile shape (also referred to as the shape factor (SF) in the following) as well as interpolation errors of the discrete look-up table entries (Lin et al., 2014). Thus validation studies for satellite products using independent ground-based measurements are essential to quantify uncertainties, identify dominant error sources and to further improve the satellite retrieval algorithms.

Since about 15 years ago, the Multi Axis - Differential Optical Absorption Spectroscopy (MAX-DOAS) technique (Hönninger and Platt, 2002; Bobrowski et al., 2003; Van Roozendael et al., 2003; Hönninger et al., 2004; Wagner et al., 2004 and Wittrock et al., 2004), is applied to retrieve tropospheric vertical profiles of TGs and aerosols from spectra of scattered UV/Visible sunlight measured at different elevation angles (e.g. Frieß et al., 2006, 2011 and 2016; Wittrock et al., 2006b; Irie et al., 2008 and 2011; Clemer et al., 2010; Li et al., 2010 and 2012; Vlemmix et al., 2010, 2011 and 2015b; Wagner et al., 2011; Yilmaz, 2012; Hartl and Wenig, 2013 and Wang et al., 2013a and b). MAX-DOAS observations provide valuable information that can be applied for a quantification of air pollutants (e.g. Li et al., 2012; Hendrick et al., 2014; Wang et al., 2014a; Wang et al., 2016), a validation of tropospheric satellite products (e.g. Irie et al., 2012 and 2016; Ma et al., 2013; Kanaya et al., 2014; Theys, et al., 2015 and De Smedt et al., 2015; Jin et al., 2016), and an evaluation of chemical transport model (CTM) simulations (e.g. Vlemmix et al., 2015a). The tropospheric vertical profiles are also
valuable for the evaluation of SFs used in the satellite AMF calculations. Here it is important to note that many studies already investigated the quality and effect of a-priori SFs on satellite retrievals (i.e. Boersma et al., 2004; Hains et al., 2010; Heckel et al., 2011) and demonstrated that the SF effect on the tropospheric AMFs can dominate the systematic errors of tropospheric satellite products especially in highly polluted (especially urban and industrial) regions (Boersma et al., 2011, Theys et al., 2015 and De Smedt et al., 2015). Nevertheless, because profile measurements are rare, the SF effect is still not well understood in many regions. In this study the SF effect on the tropospheric AMF will be investigated using the vertical profiles of the TGs derived from the MAX-DOAS observations in Wuxi, China from 2011 to 2014 (Wang et al., 2016).

Wuxi is located about 130 km north-west of Shanghai belonging to the most industrialized part of the Yangtze River delta (YRD) region. YRD including Shanghai City and four nearby provinces is the largest economic region in China and heavy industrialized and can be considered as the largest metropolitan area in Asia with the population of about 150 millions. Several studies already used satellite products of the pollutants to quantify the corresponding emissions (Ding et al., 2015; Han et al., 2015; Bauwens et al., 2016) in this region. However validation studies for the satellite products in this region are still sparse. Chen et al. (2009), Irie et al. (2012), Kanaya et al. (2014), and Chan et al. (2015) validated the satellite NO$_2$ tropospheric VCD products using MAX-DOAS (or zenith-sky DOAS) measurements in Rudong, Hefei, and Shanghai. So far there are no validation reports for SO$_2$ and HCHO products in the YRD region. However several validation studies have been carried out in other regions of China (e.g. Theys et al., 2015; De Smedt et al., 2015; Jin et al., 2016).

In this study we validate daily (2 hours around the satellite overpass time) and bi-monthly averaged tropospheric VCDs of NO$_2$, SO$_2$, and HCHO derived from OMI and GOME-2 using the MAX-DOAS observations in Wuxi. Coincidence criteria of satellite and MAX-DOAS observations are discussed. Previous studies (Ma et al., 2013 and Jin et al., 2016) already presented comparison studies and discussed several aspects limiting the consistency between satellite and MAX-DOAS observations. Concerning the impact of clouds on both MAX-DOAS and satellite retrievals, we separately evaluate the cloud effects on both observations. The weekly cycles observed by satellite instruments and ratios of morning and afternoon values (representing diurnal variations) acquired by combining GOME-2 and OMI observations are also evaluated by comparison with similar ratios calculated from the corresponding MAX-DOAS results.

Aerosol information is not considered in radiative transfer models (RTM) used for the AMF calculations of most tropospheric satellite products (one exception is the OMI NO$_2$ product (POMINO) provided by the Peking University over China (Lin et al., 2014)), but recently such aerosol effects have drawn more and more attention. Shaiganfar et al. (2011), Ma et al. (2013), and Kanaya et al. (2014) found negative biases of the OMI tropospheric NO$_2$ VCDs between 26 and 50 % over areas with high aerosol pollution through the validation by MAX-DOAS observations. But aerosol effects on the satellite retrievals are still not well understood. The aerosols effects can be generally separated into two contributions: a) the effect of aerosols on the satellite AMF compared to AMFs for a pure Rayleigh atmosphere (explicit aerosol correction), and b) the effect of aerosols on the retrieval of cloud products (often referred to as “implicit aerosol correction”, Boersma et al., 2011; Castellanos et al., 2015; Chimot et al., 2016). The two contributions of aerosols on the satellite retrievals are discussed in this
study based on the aerosol and TG profiles of MAX-DOAS in Wuxi and by comparing the satellite TG VCDs to the corresponding results from the MAX-DOAS observations.

The paper is organized as follows: in section 2 we describe MAX-DOAS observations in Wuxi and the satellite products involved in this study. In section 3 we compare NO$_2$, SO$_2$ and HCHO VCDs derived from MAX-DOAS with those from the satellite instruments. We investigate in particular the effects of clouds, SFs, and aerosols on the satellite retrievals. In section 4 the conclusions are given.

2 MAX-DOAS measurements and satellite data sets

2.1 MAX-DOAS instrument and data analysis

A MAX-DOAS instrument developed by Anhui Institute of Optics and Fine Mechanics (AIOFM) (Wang et al., 2015 and 2016) is located on the roof of a 11-story building in Wuxi City (Fig. 1 a), China (31.57°N, 120.31°E, 50 m a.s.l.) and operated by the Wuxi CAS Photonics Co. Ltd from May 2011 to Dec 2014. Wuxi City is located in the YRD region which is typically affected by high loads of NO$_2$, SO$_2$ and HCHO (Fig. 1 b, c, d). The DOAS method (Platt and Stutz, 2008) and the PriAM profile inversion algorithm (Wang et al., 2013a/b and 2016) are applied to derive the vertical profiles of aerosol extinction (AEs) and volume mixing ratios (VMRs) of NO$_2$, SO$_2$ and HCHO from scattered UV-visible sunlight recorded by the MAX-DOAS instrument at five elevation angles (5°, 10°, 20°, 30° and 90°). The telescope of the instrument is pointed to the north. The data analysis and the results derived from the MAX-DOAS measurements are already described in our previous study (Wang et al., 2016). In that study we compared the MAX-DOAS results with collocated independent techniques including an AERONET sun photometer, a visibility meter, and a long path DOAS. The comparisons were done for different cloud conditions as derived from a cloud classification scheme based on the MAX-DOAS observations (Wagner et al., 2014 and Wang et al., 2015). One important conclusion of that study is that meaningful trace gas profiles can be retrieved not only for clear skies, but also for most cloudy conditions (except heavy fog or haze and optically thick clouds). Thus here we use all MAX-DOAS trace gas profiles obtained for these sky conditions (Wang et al., 2016). Here it is important to note that differently from previous studies (e.g. Ma et al., 2013; Jin et al., 2016), we derive the tropospheric VCDs of the TGs by an integration of the vertical profiles, but not by the so-called geometric approximation (e.g. Brinksma et al., 2008). Our previous study (Wang et al., 2016) demonstrated that the tropospheric trace gas VCDs from the full profile inversion are in general much more accurate than those from the geometric approximation. The discrepancy of VCDs between the two methods is systematic and can be mainly attributed to the errors of the geometric approximation, for which the errors can be up to 30% depending on the observation geometry, and the properties of aerosols and TGs.

2.2 NO$_2$, SO$_2$ and HCHO products derived from OMI

The OMI instrument (Levett et al., 2006a, b) aboard the sun-synchronous EOS Aura satellite was launched in July 2004. It achieves daily global coverage with a spatial resolution of 24×13 km$^2$ in nadir and about 150×13 km$^2$ at the swath edges
(Levelt et al., 2006b). The overpass time is around 13:30 LT. In this study, we validate the operational level 2 (Boersma et al., 2007 and 2011) tropospheric NO\textsubscript{2} VCD (DOMINO version 2) obtained from the TEMIS website (http://www.temis.nl). The NO\textsubscript{2} SCDs are retrieved in the 405–465 nm spectral window using a DOAS algorithm and are converted to NO\textsubscript{2} tropospheric VCDs using tropospheric AMFs from a look-up table, which is generated using the DAK radiative transfer model (RTM) (Stammes, 1994), after the stratospheric column was subtracted. SFs of NO\textsubscript{2} for the AMF calculations are obtained from the TM4 CTM (Williams et al., 2009) for individual measurements and can be downloaded from the TEMIS website. TM4 assimilations run at a resolution of 2° × 3° (lat × lon) and 35 vertical levels up to 0.38 hPa and are spatially interpolated to the OMI pixel center (Boersma et al., 2007 and 2011; Dirksen et al., 2011). The effective cloud fraction (eCF) (Stammes et al., 2008; Wang et al., 2008) and cloud top pressure (CTP) (Acarreta et al., 2004) are obtained from the OMCLDO2 cloud product based on the O\textsubscript{4} absorption band at 477 nm assuming a Lambertian cloud with an albedo of 0.8.

The retrieval algorithm for DOMINO v2 forms the basis of NO\textsubscript{2} retrievals for the upcoming TROPOspheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor mission (Veefkind et al., 2012).

Two data sets of tropospheric SO\textsubscript{2} VCDs derived from OMI observations are validated in this study. One is the operational level 2 OMSO2 planetary boundary layer (PBL) SO\textsubscript{2} data set (assuming SO\textsubscript{2} mostly in the PBL) provided via the NASA website (http://avdc.gsfc.nasa.gov). In the following this product is simply referred to as “OMI NASA”. For the PBL SO\textsubscript{2} product, the VCD is derived from the OMI-measured radiances between 310.5 and 340 nm using a principal component analysis (PCA) algorithm (Li et al., 2013). A fixed surface albedo (0.05), surface pressure (1013.25 hPa), solar zenith angle (30°) and viewing zenith angle (0°) as well as a fixed climatological SO\textsubscript{2} profile over the summertime eastern U.S. are assumed in the PCA retrieval (Krotkov et al., 2008). The second product is a data set extracted by a new OMI SO\textsubscript{2} retrieval algorithm developed by BIRA (Theys et al., 2015). In the following this product is simply referred to as “OMI BIRA”. It forms the basis of the algorithm for the operational level-2 SO\textsubscript{2} product to be derived from the upcoming TROPOMI instrument. SO\textsubscript{2} SCDs are first retrieved in a window between 312 –326 nm using the DOAS technique and then a background correction for possible biases is applied. The SO\textsubscript{2} SCDs are converted to VCDs using AMFs from a look-up table, which is generated using the Linearized Discrete Ordinate Radiative Transfer (LIDORT) version 3.3 RTM (Spurr et al., 2001 and 2008). SFs for SO\textsubscript{2} are obtained from the IMAGES CTM (Müller and Brasseur, 1995) for individual measurements at a horizontal resolution of 2° × 2.5° and at 40 vertical unevenly distributed levels extending from the surface to the lower stratosphere (44 hPa) (Stavrakou et al., 2013 and 2015). Like for the OMSO2 data set the cloud information is obtained from the OMCLDO2 cloud product.

The HCHO data set validated in this study is the OMI HCHO tropospheric VCD level 2 data retrieved by a DOAS algorithm v14 developed at BIRA-IASB (De Smedt et al., 2015). This algorithm will also be applied to the upcoming TROPOMI instrument. HCHO SCDs are retrieved in the spectral window between 328.5–346 nm using the DOAS technique. After applying a background correction, HCHO SCDs are converted to tropospheric VCDs using AMFs from a look-up table generated by LIDORT with HCHO SFs obtained from the IMAGES CTM for individual measurements (Stavrakou et al., 2015). Also for this product the cloud information is obtained from the OMCLDO2 cloud product.
Here one important aspect should be noted: different AMF strategies are used in the DOMINO v2 NO$_2$ product and the BIRA SO$_2$ and HCHO products for eCF < 10%. For the NO$_2$ product the eCF and CTP are explicitly considered in the AMF simulations while for the SO$_2$ and HCHO products the clear sky AMFs are applied. These differences will be especially important for measurements in the presence of high aerosol loads (see section 3.5). For eCF>10%, a cloud correction based on the independent pixel approximation (IPA) (Cahalan et al., 1994) is applied for the three TG retrievals. It should also be noted that observations of the outermost pixels (i.e. pixel numbers 1–5 and 56–60) and pixels affected by the so called “row anomaly” (see http://www.temis.nl/docs/omiwarning.html) were removed before the comparisons.

### 2.3 NO$_2$, SO$_2$ and HCHO products derived from GOME-2

The GOME-2A and B instruments (Callies et al., 2000; Munro et al., 2006, 2016) are aboard the sun-synchronous Meteorological Operational Satellite platforms MetOp-A and MetOp-B, respectively. MetOp-A (launched on 19 October 2006) and MetOp-B (launched on 17 September 2012) operate in parallel with the same equator crossing time of 09:30 LT. Before 15 July 2013 GOME-2A had a swath width of 1920km, corresponding to a ground pixel size of 80 km×40 km and a global coverage within 1.5 days. Since 15 July 2013, the GOME-2A swath width was changed to 960 km with a ground pixel size of 40 km×40 km. The GOME-2A settings before 2013 are also applied to GOME-2B.

In this study, we validate the operational level 2 tropospheric NO$_2$ VCDs derived from the TM4NO2A version 2.3 product (Boersma et al., 2004) for GOME-2A and B obtained from the TEMIS website. The NO$_2$ SCDs are retrieved in the 425-450 nm spectral window at BIRA with QDOAS (http://uv-vis.aeronomie.be/software/QDOAS/). The tropospheric NO$_2$ VCDs are obtained from SCDs using the similar data assimilation procedures as for the DOMINO v2 product. However, for the GOME-2 products the eCF and CTP are retrieved by the improved Fast Retrieval Scheme for Clouds from the Oxygen A-band algorithm (FRESCO+) based on the measurements of the oxygen A-band around 760 nm (Wang et al., 2008) again assuming a Lambertian cloud.

Two SO$_2$ products derived from GOME-2A observations are included in the study. The first one is the operational level 2 O3M-SAF SO$_2$ product derived from GOME-2A observations (Rix et al., 2012 and Hassinen et al., 2016). In the following the product is simply referred to as “GOME-2A DLR”. This product is provided via the EUMETSAT product navigator (http://navigator.eumetsat.int) or the DLR EOWEB system (http://eoweb.dlr.de). The SO$_2$ SCDs are retrieved using the DOAS technique in the wavelength range between 315 and 326 nm. For the conversion of SCDs to VCDs, the AMFs are acquired from a look-up table generated using LIDORT 3.3. For the AMF computation, three types of SFs are assumed as Gaussian distributions with a FWHM of 1.5km around three central heights of 2.5km, 6km and 15km. Because for the SO$_2$ concentrations at Wuxi mostly anthropogenic pollutions are relevant, only the SO$_2$ product corresponding to the central height of 2.5 km is included in the validation study. The cloud information is obtained from GOME-2 measurements by the OCRA and ROCINN algorithms (Loyola et al., 2007) based on oxygen A-band observations at around 760 nm. The second product is provided from BIRA using the same retrieval algorithm as for the OMI BIRA SO$_2$ product, referred to as “GOME-2A
BIRA”. The same algorithm is also used to acquire the SO\textsubscript{2} data from GOME-2B observations. The product is referred to as “GOME-2B BIRA” in the following. The cloud properties used in the two products are derived from GOME-2A/B observations using the FRESCO+ algorithm.

The HCHO tropospheric VCD level 2 products derived from GOME-2A and B observations (De Smedt et al., 2012 and 2015) are validated in this study. The same retrieval approach as for the OMI BIRA HCHO product is applied, but the cloud properties are derived from GOME-2A/B observations using the FRESCO+ algorithm.

### 3 Validation of the satellite data sets

In this section the daily and bi-monthly averaged NO\textsubscript{2}, SO\textsubscript{2}, and HCHO VCDs from OMI and GOME-2 are validated by comparisons with the tropospheric VCDs derived from the MAX-DOAS observations. Here it needs to be clarified that the daily and bi-monthly averaged satellite data are the averaged values of all satellite pixels located in the coincidence area around the measurement site (see below). The averaged MAX-DOAS data are the averaged values for all measurements within 2 hours around the satellite overpass time. Also the diurnal and weekly cycles from satellite observations are compared with those from the corresponding MAX-DOAS observations. Finally the influence of the SF and the effects of aerosols on the OMI products are discussed. The SFs from the CTM used for the OMI AMF calculations are compared to the SFs derived from MAX-DOAS.

Averaging of individual satellite and/or MAX-DOAS observations can be advantageous for several reasons. First, especially for observations with rather large statistical uncertainties (in particular for satellite observations of SO\textsubscript{2} and HCHO), the merging of several observations can substantially reduce these uncertainties. Second, the effect of spatial gradients across satellite pixels can be partly accounted for by averaging MAX-DOAS measurements over a period around the satellite overpass time. However, for the averaging of satellite and MAX-DOAS data reasonable selection criteria need to be determined, can be different for the different TGs and satellite sensors. The effects of the selection criteria, in particular the time period used for the MAX-DOAS measurements and the distance of the selected satellite observations from the measurement site are evaluated and discussed in detail in section S1 in the supplement. On general finding is that the effect of the chosen time period is negligible compared to the effect of the chosen distance. Therefore it is reasonable to arbitrarily use 2 hours around the satellite overpass time, namely 12:30 LT to 14:30 LT for the comparisons with OMI and from 08:30 LT to 10:30 LT for the comparisons with GOME-2A/B. The distances around the measurement site, for which satellite observations are averaged are chosen differently for the different satellite products based on the sensitivity studies in section S1 in the supplement. In the following comparison activities, the OMI NO\textsubscript{2} and SO\textsubscript{2} (HCHO) data are selected for satellite pixels with distances <20km (<50km) from the Wuxi station. The GOME-2A/B data of the three species are selected for distances < 50km. It should be noted that these findings are derived for a polluted site in China. For other locations and conditions, different coincidence criteria might be best suited.
3.1 Daily comparisons

The daily averaged satellite data for measurements within the chosen distances are compared with the daily averaged MAX-DOAS data within 2 hours around the satellite overpass time. To characterize the cloud effect on the comparisons, the comparisons are performed for different eCF bins of 0-10%, 10-20%, 20-30%, 30-40%, 40-50%, and 50-100% for NO₂ and SO₂, and for eCF bins of 0-10%, 10-30%, 30-50%, and 50-100% for HCHO. Note that the cloud effects on the MAX-DOAS results are discussed in detail in section S2 of the supplement. We found the cloud effect on MAX-DOAS results is negligible for the satellite validation activities.

1) NO₂

Figures 2a, b and c display scatter plots (and the parameters from the linear regressions) of the daily averaged NO₂ tropospheric VCDs derived from OMI, GOME-2A, and GOME-2B products versus those derived from the corresponding MAX-DOAS measurements for eCF < 10%. Generally higher correlation coefficients ($R^2$) for OMI than for GOME-2A/B are found. The systematic biases of the satellite data with respect to the MAX-DOAS data are quantified by the mean relative difference (MRD) calculated following Eq. 1:

$$\text{MRD} = \frac{\sum_i (V_{s_i} - V_{M_i})}{\sum_i V_{M_i}}$$

(1)

Here $V_{s_i}$ and $V_{M_i}$ represent the averaged TG VCDs from satellite observations and MAX-DOAS measurements on day $i$, respectively; $n$ is the total number of the available days. The MRD is only 1% for OMI, and 27% and 30% for GOME-2A and B, respectively.

The $R^2$, slopes and intercepts of the linear regressions, and the MRD as well as the number of available days for the three satellite products are shown for the five eCF bins in Fig. 3. For OMI, $R^2$ decreases with increasing eCF; the slopes significantly change for eCF > 50% and the MRD drops to -40% for eCF > 40%. For GOME-2A, a steep decrease of $R^2$ for eCF > 30% is found. For GOME-2B, a generally lower $R^2$ is found for eCF >30%.; the MRD indicates an increasing systematic overestimation for eCF > 30%. Thus we conclude that the cloud effect on OMI and GOME-2A/B NO₂ data becomes significant for eCF >40% and 30%, respectively.

2) SO₂:

Figures 4a, b, c, d, and e display scatter plots of the daily averaged SO₂ tropospheric VCDs derived from the OMI NASA, OMI BIRA, GOME-2A DLR, GOME-2A and B BIRA products versus those derived from the corresponding MAX-DOAS measurements for eCF < 10%. $R^2$ and slopes are more close to unity for the OMI BIRA product than for the other products. The MRDs indicate a similar systematic underestimation (-40% to -52%) by all products. There are fewer negative values in the OMI BIRA product than in other satellite products. It needs to be noted that the significantly worse $R^2$ for the OMI NASA product compared to the OMI BIRA product could partly be attributed to the assumed fixed measurement condition (and thus the fixed AMF) in the NASA PCA retrievals. However the similar slopes and MRDs between the two OMI...
products indicate that the simplification of the NASA PCA retrieval only slightly contributes to the systematic bias of the averaged values.

The $R^2$, slopes and intercepts of the linear regressions, the MRD as well as the number of the available days obtained for the five satellite SO$_2$ products are shown for the five eCF bins in Fig. 5. For the OMI BIRA product, a significant decrease of $R^2$ occurs for eCF > 10% together with a decrease of the slopes and the MRD. A steep increase of the MRD is found for eCF > 40%. Therefore cloud effects on the OMI BIRA SO$_2$ data become considerable for eCF > 10%. For the OMI SO$_2$ NASA data, $R^2$, slope, and MRD significantly decrease for eCF > 20%. $R^2$ for both GOME-2A data are low (< 0.09) for all eCF bins, thus from the linear regressions no meaningful information on the cloud effect can be derived. Almost constant MRDs are found for both GOME-2A SO$_2$ products for eCF<30%. For eCF>30% largely varying MRD are found, especially for the GOME-2A BIRA products. Thus we conclude that the cloud effects on both GOME-2A products are appreciable for eCF > 30%. For the GOME-2B BIRA data, an obvious decrease of $R^2$ and slope is found for eCF > 10%, while for eCF>30% largely variable MRDs are found. Thus clouds can considerably impact the GOME-2B BIRA product for eCF > 10%, and more significantly for eCF > 30%.

3) HCHO:

Because of the rather small atmospheric absorption of HCHO, the DOAS fit errors often dominate the total uncertainty of the HCHO satellite data (De Smedt et al., 2015). Thus systematic effects, e.g. caused by clouds, are more difficult to identify and quantify than for NO$_2$ and SO$_2$. The scatter plot of OMI HCHO VCDs for individual pixels versus those derived from MAX-DOAS observations for eCF < 30% is shown in Fig. 6. One important finding is that the $R^2$ for data with a fit error < 7 $\times$ 10$^{15}$ molecules cm$^{-2}$ is better than the $R^2$ for all data (see Fig. 6b). A similar result is obtained for the daily averaged OMI HCHO VCDs (see Fig. S12 in the supplement) indicating that the fit error dominates the random uncertainty of satellite HCHO tropospheric VCDs. In contrast, the slopes of the linear regressions for the OMI data before and after the filtering are quite similar as shown in Fig. 6b and supplementary Fig. S12. Thus the data screening has no considerably impact on the analysis of the systematic bias of OMI HCHO products. Considering that the mean fit error of the HCHO VCDs is 7 $\times$ 10$^{15}$ molecules cm$^{-2}$ for OMI data, for further comparisons, we exclude the HCHO VCDs with the fit error > 7$\times$ 10$^{16}$ molecules cm$^{-2}$ for OMI. However for the GOME-2A/B products, the filter for the fit error is not applied because in contrast to the OMI HCHO data we find a systematic dependence of the fit error on the retrieved HCHO tropospheric VCD (see Fig. S13 in the supplement). The different findings with respect to the HCHO fit error for OMI and GOME-2 are not clearly understood and should be addressed in further investigations.

If the additional filter of the fit error for the OMI product is applied, 48% of the total number of HCHO data is left for comparisons. In order to still include sufficient numbers of data, we use broader eCF bins (0-10%, 10%-30%, 30%-50% and 50%-100%). Figures 7a, c and d display scatter plots of the satellite daily averaged data versus the MAX-DOAS data for eCF < 10% for OMI, GOME-2A, and GOME-2B data, respectively. We found the best consistency for the GOME-2B product probably because of the weaker degradation of GOME-2B during the short time after launch compared to OMI and
GOME-2A. Nevertheless also other unknown reasons might play a role. One interesting finding is the better correlation of the OMI products for the eCF bin of 10% to 30% (see Fig. 7b) compared to the eCF < 10%. However, for eCF of 10% to 30% also a larger MRD of -34% (see Fig. 8) is found, which might be attributed to the special effect of clouds, namely the clear sky AMFs used in the retrievals for eCF < 10% (see the last paragraph of section 2.2).

The dependencies of the results of the linear regressions and the MRDs on the eCFs are shown in Fig. 8 for the three satellite instruments. For OMI, a decrease of $R^2$ occurs for eCF > 30%, while for GOME-2A and GOME-2B, low $R^2$ are already found for eCF > 10%. Gradually increasing absolute values of the MRDs for all satellite instruments are found for increasing eCF. In general cloud effects on the HCHO products become substantial for eCF > 30% for the three satellite instruments. However it needs to be noted that our findings are derived for one location (Wuxi) and might not be fully representative for other locations. The use of the HCHO products with eCF < 40% is recommended by the retrieval algorithm developer (De Smedt et al., 2015).

### 3.2 Errors of shape factors from CTM and the effect on satellite VCD products

The SF is an input for the calculation of satellite AMF, which is needed to convert the SCD to VCD (Palmer et al., 2001). Different retrieval algorithms acquire the SFs in different ways, mostly from a CTM for individual measurements or assuming a fixed SF (see section 2.2 and 2.3). The MAX-DOAS measurements acquire the vertical profiles of NO$_2$, SO$_2$ and HCHO from the ground up to the altitude of about 4km (depending on the measurement conditions), in which the tropospheric amounts of the TGs is mostly concentrated. Thus the profiles derived from MAX-DOAS observations are valuable to evaluate the SFs used in the satellite retrievals and their effect on the AMFs and VCDs. Because the averaging kernels and SFs for individual satellite measurements are available only for the DOMINO NO$_2$, BIRA SO$_2$, and BIRA HCHO products derived from OMI observations, the three products are used to evaluate the effect of the SF in this section.

For the three selected products, the calculation of satellite tropospheric AMFs follows the same way introduced in Palmer et al. (2001) as Eq. 2:

$$\text{AMF} = \int_{\text{ground}}^{\text{tropopause}} \text{BAMF}(z)SF(z)dz$$  \hspace{1cm} (2)

Here BAMF(z) is the box AMF, which characterizes the measurement sensitivity as a function of altitude (z). The integration is done from the ground to the tropopause. The SFs of the TGs are obtained from different CTM (TM4 for NO$_2$, IMAGES for SO$_2$ and HCHO, see section 2.2). The profiles ($\text{profile}_M$) derived from MAX-DOAS can be converted to SF ($\text{SF}_M$) using Eq. 3:

$$\text{SF}_M(z) = \frac{\text{profile}_M(z)}{\text{VCD}_M}$$  \hspace{1cm} (3)

where $\text{VCD}_M$ is the tropospheric VCD derived by an integration of the corresponding $\text{profile}_M$. It needs to be noted that only the profiles below 4km can be reliably drawn from MAX-DOAS observations. Thus the $\text{profile}_M$ between 4km and the tropopause (a fixed value of 16 km is used in this study) are derived from the corresponding CTM profiles of the individual satellite data sets. Therefore the $\text{SF}_M$ is derived from the combined $\text{profile}_M$ using Eq.3.
A similar relationship connects the BAMFs and averaging kernels (Eskes and Boersma, 2003):

\[
AK(z) = \frac{BAMF(z)}{AMF}
\]  

(4)

This finding can be explained by the partial AMF above 4km (see supplementary Fig. S14c). The partial \(AMF_{CTM}\) is always larger than the partial \(AMF_{MAX-DOAS}\) above 4km due to the larger \(SF_C\) compared to \(SF_M\). And the difference increases substantially with increasing eCF. Meanwhile the contribution of the partial AMF above 4km to the total tropospheric AMF increases with increasing eCF due to the strong decrease of the partial AMF below. Overall the overestimation of the partial \(AMF_{CTM}\) compared to the partial \(AMF_{MAX-DOAS}\) above 4km become critical under cloudy conditions.

In general the TM4 \(NO_2\) a-priori profile shapes agree well with the MAX-DOAS profiles, and the agreement with MAX-DOAS VCDs by replacing \(SF_C\) with \(SF_M\) in the AMF calculation is only slightly improved for a small eCF. For a large eCF, VCD\(_{SM}\) is systematically larger than VCD\(_{CTM}\) by 20% on average (see Fig. 3), consistent with the AMF differences shown in Fig. 9e.

2) \(SO_2\)

The results shown in Figures 10a and b indicate that in the layer below 4km for eCF < 10%, the \(SO_2\) \(SF_C\) is considerably smaller than \(SF_M\) below 1 km and larger above 1 km, respectively. As can be seen in the supplementary Fig. S15a, \(SF_C\) is in
general slightly larger than SF_M in the altitude range above 4km. Since the BAMFs increase with altitude (Fig. 10d) SO_2 AMF_{CTM} are on average larger than AMF_{MAX-DOAS} by 18% (Fig. 10e). In contrast to NO_2, the SO_2 VCD_SM agree better with the MAX-DOAS VCDs than VCD_{CTM}, i.e. R^2 and slope increase from 0.47 to 0.60 and from 0.55 to 0.90, respectively (see Fig. 10c). Also the systematic bias of VCD_SM is smaller than that of VCD_{CTM}, i.e. the MRD is -26% for VCD_SM and -40% for VCD_{CTM} (see black and red curves in Fig. 5).

For different eCF bins, the differences between SO_2 SF_C and SF_M (Fig. 10b) as well as BAMFs (Fig. 10d) are slightly different from each other in the altitude range below 4km. However an obvious dependence of both quantities above 4km on eCF can be seen in supplementary Fig. S15a and b. The overestimation of SF_C compared to SF_M above 4km increases with increasing eCF, and the BAMF above 4km also increases with increasing eCF. Therefore the dependences of both quantities on eCF dominates the different levels of agreement of the partial AMF_{CTM} and partial AMF_{MAX-DOAS} above 4km for different cloud conditions as shown in supplementary Fig. S15c. Furthermore, the partial AMF above 4km dominates the total tropospheric AMF for large eCF due to the decrease of the lower partial AMF with increasing eCF (see supplementary Fig. S15c). These dependencies of partial AMF_{CTM} and partial AMF_{MAX-DOAS} above 4km on eCF also explain the dependencies of differences between the total tropospheric AMF_{CTM} and AMF_{MAX-DOAS} on eCF as shown in Fig. 10e. However, in general the dependences on eCF is smaller than that for NO_2. In addition a better consistency between the SO_2 VCD_SM and the MAX-DOAS VCDs than for the VCD_{CTM} can be seen in Fig. 5 for all the eCF bins.

3) HCHO

The results shown in Fig. 11a and b indicate that in the altitude range below 4km for eCF < 10% the HCHO SF_C is considerably smaller below 1.7 km and larger than SF_M above 1.7 km, respectively. As can be seen in the supplementary Fig. S16a the SF_C almost equals the SF_M above 4km for eCF<10%. Since the BAMF increases with altitude (Fig. 11d) the HCHO AMF_{CTM} is on average larger than AMF_{MAX-DOAS} by 11% (Fig. 11e). Like for SO_2 the VCD_SM agree better with the MAX-DOAS VCD than VCD_{CTM}, i.e. R^2 and slope increase from 0.15 to 0.21 and from 0.44 to 0.61, respectively (see Fig. 11c). Also the systematic bias of VCD_SM is smaller than that of VCD_{CTM}, i.e. the MRD is -10% for VCD_SM and -18% for VCD_{CTM} (see Fig. 5).

For different eCF bins, larger differences between AMF_{CTM} and AMF_{MAX-DOAS} are found towards larger eCF (see Fig. 11e). Similar to NO_2 and SO_2, this finding is caused by the partial AMFs above 4km. The dependences of differences between HCHO SF_C and SF_M (Fig. 11b) as well as BAMFs (Fig. 11d) in the altitude range below 4km on eCF are insignificant. However both quantities above 4km obviously depend on eCF (see supplementary Fig. S16a and b). The overestimation of SF_C compared to SF_M above 4km increases with increasing eCF, and the BAMF above 4km also increases with increasing eCF. Therefore the dependences of both quantities on eCF dominates the different levels of agreement of the partial AMF_{CTM} and partial AMF_{MAX-DOAS} above 4km for different cloud conditions as shown in supplementary Fig. S16c. Furthermore, the partial AMF above 4km dominates the total tropospheric AMF for large eCF due to the decrease of the partial below 4km AMF with increasing eCF (see supplementary Fig. S16c). These dependencies of partial AMF_{CTM} and partial AMF_{MAX-DOAS}
above 4km on eCF also explain the dependencies of differences between the total tropospheric $AMF_{CTM}$ and $AMF_{MAX-DOAS}$ on eCF as shown in Fig. 11e. In addition, figure 8 shows that for all the eCF bins the consistency between VCD$_{SM}$ and the MAX-DOAS VCD is better than for VCD$_{CTM}$.

4) Uncertainties of the SF from MAX-DOAS

The previous study on Wuxi MAX-DOAS observations (Wang et al., 2016) demonstrated that the profile retrievals are not sensitive to altitudes above 1-2km, where the retrieved profiles are strongly constrained to the a-priori profiles. Thus the SFs at high altitudes could be underestimated by MAX-DOAS retrievals. This effect could be considerable especially for SO$_2$ and HCHO, because they typically extend to higher altitudes than NO$_2$ (Xue et al., 2010, Junkermann, 2009 and Wagner et al., 2011). Because BAMFs of satellite observations are normally larger at high altitudes, the uncertainties of SFs from MAX-DOAS could cause an underestimation of $AMF_{MAX-DOAS}$, which further could cause an overestimation of VCD$_{SM}$. Since the profiles above 4km are not available from MAX-DOAS observation, they are taken from the corresponding CTM simulations for the different satellite data sets in this study. This procedure can contribute to an unknown error in the analysis of SF effects on satellite AMF and VCD calculations.

3.3 Comparisons of the bimonthly mean VCD

We calculate bi-monthly averaged tropospheric VCDs for eCF<30% for the coincident observations of the satellite instruments and MAX-DOAS (and also from the CTM simulations for the OMI products) from 2011 to 2014. The results for NO$_2$, SO$_2$ and HCHO are shown in Fig. 12. The numbers of available days for each satellite products are also shown in the bottom panels of each subfigure.

1) NO$_2$

For OMI good agreements with the MAX-DOAS VCDs are found both for the DOMINO and the improved VCDs using SFs from MAX-DOAS observations with a slightly better agreement for the improved VCDs. GOME-2A and B VCDs are systematically larger than the MAX-DOAS VCDs by about 5×10$^{15}$ molecules cm$^{-2}$ on average. The overestimation could be attributed to the errors of the NO$_2$ SFs from TM4 (Pinardi et al., 2013). Systematic differences between the GOME2-A and B VCDs are found, which can be partly explained by the different swath widths of both sensors after 15 July 2013. For the same reason also better agreement between GOME-2A and MAX-DOAS VCDs is found after summer 2013. The NO$_2$ VCDs simulated by TM4 for the OMI DOMINO v2 product are much smaller than those observed by satellite and MAX-DOAS. However the model data show a similar seasonality as the observational data. The significant underestimation of the TM4 NO$_2$ VCDs could be due to many factors, most importantly the limited spatial model resolution, which is especially relevant for species with strong horizontal gradients such as NO$_2$ and SO$_2$ (see Fig. 1), but also possible errors in the emissions, transport and/or chemical mechanism. The determination of the specific contributions of the different error sources should be the subject of future studies.
2) **SO$_2$**

For SO$_2$ large differences between the absolute values of the satellite and MAX-DOAS results are found, but all data sets show a similar seasonality with minima in summer and maxima in winter. The best agreement with MAX-DOAS results is found for the OMI BIRA VCD$_{SM}$, which displays an almost identical magnitude of the SO$_2$ annual variation (while still showing a large bias). Interestingly, a much better agreement is found for the modified OMI SO$_2$ than for the OMI BIRA using the SF from the CTM. However the MAX-DOAS results are still significantly higher than the modified OMI products by about $1 \times 10^{16}$ molecules cm$^{-2}$ on average. Several reasons could contribute to the differences: 1) the horizontal gradient of SO$_2$ (see Fig. 1) and the MAX-DOAS pointing direction to the North can contribute to the differences of about $3 \times 10^{15}$ molecules cm$^{-2}$. 2) The SO$_2$ cross section at 203K is applied in the current version of the OMI BIRA product. It was found that the temperature dependence of the SO$_2$ cross sections (Bogumil et al. 2003) should also be considered using e.g. a post-correction method (BIRA-IASB, 2016). The correction can increase SO$_2$ VCDs by up to $1 \times 10^{16}$ molecules cm$^{-2}$ with the highest absolute changes in winter. 3) The surface albedo used in the retrieval of the OMI BIRA product is taken from the climatological monthly minLER data from Kleipool et al. (2008) at 328 nm. We expect an uncertainty of the albedo of about 0.02. This will translate to an error of 15-20% of the SO$_2$ VCDs. 4) some unknown local emissions near the station might be underestimated by the satellites, but seen by the MAX-DOAS.

The BIRA GOME-2A/B and DLR GOME-2A data are well consistent with each other, but show large differences to the corresponding MAX-DOAS results. The SO$_2$ VCDs simulated by IMAGES are systematically lower than the MAX-DOAS observations and show only a low amplitude of the seasonal variation. Same as for TM4 NO$_2$, the discrepancy of the IMAGES SO$_2$ VCDs needs a further investigation in future studies.

3) **HCHO**

Relatively good agreements between the satellite and MAX-DOAS observations of HCHO are found for all data sets (except GOME-2A before summer 2013). For OMI a better agreement is found for the modified VCDs than for the original product, with a larger improvement in summer. GOME-2A/B products are consistent with each other but strongly underestimate the HCHO VCDs, especially in summer. It is interesting to note that the CTM results have a better consistency with the MAX-DOAS results than the OMI data. The much better consistency of the IMAGES HCHO VCDs compared to the SO$_2$ VCDs with MAX-DOAS measurements is also worth a further investigation in the future. It should be noted that GOME-2A data before summer 2013 show the largest disagreement with the MAX-DOAS data. The reason for this phenomenon is not clear, but might be related to the different swath width in that period.

### 3.4 Diurnal variations characterized by combining the GOME-2A/B and OMI observations and the weekly cycle

Because of the morning and afternoon overpass time of GOME-2 and OMI, respectively, several studies (e.g. Boersma et al., 2008; Lin et al., 2010; De Smedt et al., 2015) investigated the differences of both data sets to characterize the diurnal variations of the TGs. The diurnal variations can be attributed to the complex interaction of the primary and secondary
emission sources, depositions, atmospheric chemical reactions, and transport processes. In this section we perform a similar study, but include also MAX-DOAS data coincident to the satellite observations. We calculate the ratios between the bi-monthly mean tropospheric VCDs from GOME-2A/B and OMI (RatioSat) for each species and the corresponding ratios from the MAX-DOAS observations (RatioM-D). The results are shown in Fig. 13. The averaged RatioSat and RatioM-D over the whole period are listed in Table 1. For NO₂, the RatioSat for both GOME-2 instruments show good agreement. Good agreement is also found for the seasonal variation with the MAX-DOAS results, but the absolute values differ. The systematic difference of RatioSat and RatioM-D can be attributed to the known overestimation of the GOME-2 A/B tropospheric VCD compared to the MAX-DOAS results (see Fig. 12a). This finding also indicates that using GOME-2 and OMI data can lead to wrong conclusions about the diurnal cycles of NO₂. Also for the other trace gases we investigated the ratios between the different data sets. However, because of the larger uncertainties compared to NO₂, the conclusions for SO₂ and HCHO should be treated with care. For SO₂, although RatioSat shows several deviations from RatioM-D, RatioM-D and RatioSat are consistent on average and close to unity during a whole year indicating similar SO₂ VCDs around the overpass times of GOME-2 and OMI. For HCHO, on average good agreement between RatioSat and RatioM-D is found for GOME-2A and GOME-2B (except some outliers of RatioSat). Interestingly, both RatioSat and RatioM-D are below unity indicating lower HCHO VCDs in the morning than in the afternoon.

We evaluate the weekly cycles of the VCDs of the TGs observed by satellite instruments and the corresponding MAX-DOAS. The weekly cycles are shown in the Fig. S17 in the supplement. In general only both GOME-2 instruments and corresponding MAX-DOAS measurements observed considerable weekly cycles for NO₂.

3.5 Aerosol effects on the satellite results

In this section the aerosol effects on the satellite products are investigated. The OMI products (for SO₂ the OMI BIRA product is used) are used for this study because of their better consistency with the MAX-DOAS results compared to the products of the other satellite instruments. In Fig. 14 the absolute (top) and relative (bottom) differences of the TG VCDs between OMI and MAX-DOAS observations for individual OMI pixels are plotted against the AODs at 360nm derived from the MAX-DOAS observations (Wang et al. 2016). It needs to be noted that the OMI VCDs used in Fig. 14 are the modified values using the SFs derived from MAX-DOAS observations in order to isolate the aerosol effects. The left subfigures show the comparisons for the data with eCF<10%, for which a potential cloud contamination is minimised. However the eCF filter can not exclude all clouds, and thus observations with thin cirrus clouds or other clouds with small geometric cloud fraction might still be included in the comparison, Therefore CTP > 900 hPa is used to further exclude residual clouds from the comparisons. The comparisons for the data with eCF <10% and CTP>900 hPa are shown in the center part of Fig. 14. Finally also observations with small TG VCDs (NO₂ < 2×10¹⁶ molecules cm⁻², SO₂ < 2×10¹⁶ molecules cm⁻², and HCHO < 1×10¹⁶ molecules cm⁻²) are skipped to minimise the influence of non-polluted observations on the comparison. The results after applying all three filters are shown in the right part of Fig. 14.
A systematically increasing underestimation of the OMI VCDs compared to MAX-DOAS VCDs with increasing AOD can be seen for NO₂ and SO₂. This indicates the effects of aerosols on the satellite products. However, here one aspect needs to be considered here. Besides aerosols, also residual (low altitude) clouds might still have an effect on the comparison results. In order to quantify their potential effect, we performed RTM simulations (for details see section 3 in the supplement) to evaluate the difference of TG AMFs with either aerosols or residual clouds. As residual clouds we chose either homogeneous optically thin clouds covering the whole satellite pixel or optically thick clouds covering only a small geometric fraction of the satellite pixel. For both types of clouds the extinction profiles were chosen to match the radiance and O₄ SCDs at 477nm of the aerosol cases. We found that the differences of the AMFs for aerosols and residual clouds are generally smaller than 10% for NO₂ and 5% for SO₂ and HCHO. It should be noted that the actual effect of residual clouds is in general much smaller, because usually aerosols and clouds are present at the same time. Thus we conclude that residual clouds have an negligible effect on the comparison results shown in Fig. 14.

The dependence on AOD shown in Fig. 14 is strongest for NO₂. Besides the larger uncertainties of the HCHO and SO₂ retrievals, this is probably mainly related to the fact that in contrast to the DOMINO NO₂ product, for the OMI BIRA SO₂ and HCHO products no cloud correction is performed, i.e. a clear-sky AMF (for a Rayleigh scattering atmosphere) is applied in cases of eCF<10%.

Aerosols affect the satellite TG retrievals in two ways: First they affect the cloud retrievals of eCF and CTP and thus the TG AMFs if a cloud correction is applied in the satellite retrievals. If a Lambertian cloud model is used the effect of this implicit aerosol correction depends systematically on the aerosol properties. (Boersma et. al., 2011; Lin et al., 2014; Wang et al., 2015; Chimot et al., 2016). For mostly scattering aerosols at high altitudes the implicit aerosol correction can largely account for the aerosol effect on the TG products (Boersma et al., 2011). However in some important cases (for low altitude aerosols with high AOD and small SSA) the implicit correction might even increase the errors of the AMF Castellanos et al. (2015).

Besides the aerosol effect on the cloud retrievals and cloud correction schemes, aerosols also directly affect the AMF compared to AMFs for pure Rayleigh scattering conditions. Leitão et al. (2010) and Chimot et al., 2016 found that the influence of aerosols on the satellite retrievals mainly depends on the relative vertical distributions of aerosols and TGs. To further quantify both aerosol effects on the satellite retrievals we performed RTM simulations for typical scenarios of aerosols and TGs in Wuxi.

In Fig. 15 the OMI eCF and CTP (for eCF<10% and CTP>900hPa) are plotted against the AOD at 360nm derived from MAX-DOAS observation (similar plots for the AOD at 340nm derived from the nearby Taihu AERONET station (Holben et al. 1998, 2001) are shown in the supplementary Fig. S18). The results indicate a systematic increase of eCF and CTP with increasing AOD, but also a large scatter, especially for AOD <1. The systematic increase of eCF and CTP with AOD is consistent with the model simulations in Chimot et al., 2016. The variability of eCF and CTP can be attributed to different observation geometries as well as uncertainties of the cloud retrievals (e.g. related to measurement uncertainties and/or the variability of surface properties). Also the frequency distributions of eCF and CTP are shown in Fig. 15. Considering the variability and frequency distribution of eCF and CTP, eCF of 5% and 10% as well as CTP of 900hPa and 1000hPa are used
in the following for the RTM simulations to estimate the errors caused by aerosols. As aerosol properties we chose AOD values of 0.8 and 1.5, which represent typical and high aerosol loads at Wuxi, respectively. As vertical profile we chose an average profile derived from MAX-DOAS measurements under clear sky conditions (Wang et al., 2016), which is shown in supplementary Fig. S19. The aerosol optical properties (single scattering albedo of 0.9, asymmetry parameter of 0.72, and Angstroem parameter of 0.85) are taken from the AERONET observations at the nearby Taihu station (Holben et al. 1998, 2001). We use either shape factors (SFs) derived from the Wuxi MAX-DOAS observations or from the CTM simulations, which are also used for the satellite retrievals. The SFs of the TGs are shown in the supplementary Fig. S19. The surface albedo is set to 0.1 for NO$_2$ and 0.05 for SO$_2$ and HCHO simulations based on the averaged value of the surface reflectivity data base derived from OMI by Kleipool et al. (2008) over Wuxi station. Temperature and pressure profiles are derived from US standard atmosphere data base. The RTM simulations are performed for five typical satellite observation geometries shown in Table 2. The TG BAMFs and AMFs were simulated for NO$_2$ at 435 nm, HCHO at 337 nm and SO$_2$ at 319 nm using the RTM McArtim 3 (Deutschmann et al., 2011).

The simulations are performed for four scenarios: 1) pure Rayleigh scattering conditions (BAMF$_{clear-sky}$ and AMF$_{clear-sky}$); 2) aerosol profiles with the AOD of 0.8 and 1.5 (BAMF$_{explicit}$ and AMF$_{explicit}$); 3) Lambertian clouds at the surface (CTP of about 1000 hPa) with an eCF of 10% and 5% (BAMF$_{low-cloud}$ and AMF$_{low-cloud}$); 4) Lambertian clouds at 1 km (CTP of about 900 hPa) with an eCF of 10% and 5% (BAMF$_{high-cloud}$ and AMF$_{high-cloud}$). The case 3 and 4 represent the implicit aerosol correction. Note that we use the same cloud model (Lambertian reflector with an albedo of 0.8) as in the official OMI cloud and TG retrievals.

The BAMFs for the different TGs simulated for the four scenarios at the gl observation geometry ($40^\circ$ SZA, $180^\circ$ RAA and $30^\circ$ VZA) are shown in Fig. 16a. Note that the results of scenario 3 and 4 with eCF of 10% are shown. And the relative differences of the BAMFs of clear sky and clouds compared to those with the explicit aerosols of AOD of either 0.8 or 1.5 are shown in Fig. 16b and c, respectively. For all TGs, the clear sky BAMFs are higher close to the surface and lower for higher altitudes than the explicit aerosol BAMFs, which is caused by the additional aerosol scattering. The BAMFs near the surface for the cloud scenarios are either larger (‘low cloud scenario’) or smaller (‘high cloud scenario’) than the aerosol AMFs. For both cloud scenarios the BAMFs are higher than the aerosol BAMFs at higher altitudes. Overall the differences of the BAMFs for the cloud scenarios compared to the aerosol BAMFs are larger than the differences between the clear sky BAMFs and aerosol BAMFs. Larger differences are found for the comparisons with a high AOD.

The AMFs of NO$_2$, SO$_2$ and HCHO for the four scenarios are calculated using the corresponding BAMFs and typical SFs (shown in supplementary Fig. S19) derived from MAX-DOAS measurements and CTM simulations by Eq. 2. The relative differences of the AMFs for clear sky and for two cloud scenarios compared to the AMFs for explicit aerosol simulations for five different satellite observation geometries (listed in Table 2) are shown in Fig. 17. Fig. 17a and b show the results for AOD of 0.8 and 1.5, respectively. It can be seen that the implicit aerosol correction can lead to large deviations, especially for the ‘low cloud scenario’. The deviation for ‘high cloud scenario’ is close to the deviation of clear sky AMF, and even smaller in some cases, due to the compensation of the partial AMF below and above the cloud plane. Here it should be noted
that for aerosol layers reaching to higher altitudes the errors of the high cloud scenario will in general increase. For the ‘low cloud scenario’ the deviation increases with increasing eCF. As already seen for the BAMFs, also for the AMFs the deviations of the clear sky AMFs and Lambertian cloud AMFs increase with AOD. Overall the biases introduced by the implicit aerosol correction (3% to 85% for NO2, -4% to 26% for HCHO, and -2% to 45% for SO2) are significantly larger than those for the clear sky AMFs (5% to 50% for NO2, -12% to -5% for HCHO, and -9% to 1% for SO2). One important finding is that the stronger overestimation of the NO2 AMF for the ‘high cloud scenario’ than for the ‘low cloud scenario’ as well as for eCF of 10% than 5% can well explain the observed dependence of the magnitude of the underestimation of the OMI NO2 VCD on the CTP and eCF as shown in Fig. 14. Therefore we conclude that for measurements with strong aerosol loads at Wuxi, the implicit aerosol correction in general leads to larger biases of TG VCDs than the use of a clear sky AMF.

4 Conclusions

Tropospheric VCDs of NO2, SO2, and HCHO derived from OMI, GOME-2A/B observations are validated using MAX-DOAS measurements in Wuxi, China from May 2011 to Dec 2014. The tropospheric VCDs and vertical profiles of aerosols and trace gases derived from the Wuxi MAX-DOAS observations using the PriAM OE-based algorithm are applied in this validation study.

We compare the daily averaged tropospheric VCDs from the satellite products with the corresponding MAX-DOAS results under clear sky conditions (eCF<10%). For NO2: good agreement (R² of 0.73 and systematic bias of 1%) is found for the DOMINO v2 product. For both GOME-2 products (TM4NO2A) much weaker correlation (R² of 0.33 for GOME-2A and 0.2 for GOME-2B) is found with the same systematic bias of about 30%. For SO2: the OMI BIRA product has a much better correlation coefficient (R² of 0.47) than the OMI NASA product (R²=0.12), the GOME-2A BIRA product (R²=0.07), the GOME-2A DLR product (R²=0.09) and the GOME-2B BIRA product (r²=0.28). All of these products systematically underestimate the SO2 tropospheric VCDs by about 40% to 60%. For HCHO: the best agreement is found for the GOME-2B product with R² of 0.53 and a systematic bias of -12%. The OMI and GOME-2A products have lower R² of 0.17 and 0.18 with the same systematic bias of about -20%, respectively.

In general, we expect that the VCDs from MAX-DOAS observations have much lower uncertainties than those from satellite observations. However we should also consider the total uncertainties of the MAX-DOAS VCDs of NO2, SO2, and HCHO of about 25%, 31% and 54%, respectively (Wang et al., 2016). Moreover, MAX-DOAS has low sensitivity to high altitudes, above about 1-2km. This can cause an underestimation of the VCDs retrieved from MAX-DOAS. The strength of this effect depends on the vertical distribution of the species, the atmospheric visibility, and the observation geometry of the MAX-DOAS measurement. In this study we do not discuss these issues in more detail. This should be done in further studies.

Nevertheless, the sensitivity of MAX-DOAS observations to the boundary layer is much larger than for satellite observations. This is the altitude range in which the pollutants are usually accumulated. Thus it is reasonable to assume that the systematic differences between both data sets are mainly attributed to the errors of the satellite observations.
The cloud effects on the MAX-DOAS results and satellite products are discussed. The consistency (correlations and systematic bias) of satellite data with MAX-DOAS results deteriorates with increasing eCF. The cloud effects become significant for eCF > 40% for the OMI DOMINO NO\textsubscript{2} product, >30% for the GOME-2A\textupit{B} NO\textsubscript{2} products, > 10% for the OMI BIRA SO\textsubscript{2} product, >20% for the OMI NASA SO\textsubscript{2} product, >30% for the GOME-2A/B BIRA SO\textsubscript{2} products and >30% for all HCHO products. Here it should be noted that except optically thick clouds and fog, the cloud effects on the MAX-DOAS results are negligible. It should also be noted that these findings are obtained for the original satellite products, namely using SF from CTM or assumed fixed SF. In addition, the different thresholds of eCF could also be related to the properties of the different cloud products. This effect is not discussed in this paper, and is valuable to be further studied. In general, it should be noted that these results are representative for conditions like in Wuxi, and might be different for other locations.

In the OMI DOMINO NO\textsubscript{2}, OMI BIRA SO\textsubscript{2} and HCHO products, the a-priori SFs of the trace gases are obtained from CTM. We compare these SFs (derived from TM4 for NO\textsubscript{2}, and IMAGES for SO\textsubscript{2} and HCHO) with those derived from MAX-DOAS observation and find substantial differences. We investigate the effect of using the MAX-DOAS SFs in the satellite retrievals. Under clear sky conditions, including the SFs from MAX-DOAS changes the SO\textsubscript{2} and HCHO AMFs by about 18% and 11%, respectively, but has almost no impact on the NO\textsubscript{2} AMFs. We find that the modified satellite VCDs show much better agreement with the MAX-DOAS results (showing considerably higher correlation coefficients $R^2$ and smaller systematic biases) than the original satellite data. The improvement is the strongest for periods with large trace gas VCDs, namely NO\textsubscript{2} and SO\textsubscript{2} in winter and HCHO in summer. In that period, NO\textsubscript{2}, SO\textsubscript{2} and HCHO VCD change by up to 10%, 47% and 35%, respectively. We also found that the effect of using the MAX-DOAS SFs in the satellite retrievals increases for increasing eCF. This finding is mainly caused by the partial satellite AMF above 4km and the significant reduction of the partial satellite AMF below 4km. In addition, the low sensitivity of MAX-DOAS above about 1 - 2 km could cause an underestimation of the MAX-DOAS SFs of the trace gases at higher altitudes, especially for SO\textsubscript{2} and HCHO. This effect could cause the underestimation of the AMFs and an overestimation of the VCDs by using the MAX-DOAS SFs.

We also compare the bi-monthly mean satellite products to the corresponding MAX-DOAS results. The relative seasonal variations of the NO\textsubscript{2}, SO\textsubscript{2}, HCHO tropospheric VCDs from the different satellite products agree well with the corresponding MAX-DOAS results. From the comparison of the absolute VCDs we obtain the following results: The best consistency is found for the OMI DOMINO NO\textsubscript{2} product. A systematic overestimation of the NO\textsubscript{2} VCDs is found for GOME-2A\textupit{B} NO\textsubscript{2} products. All SO\textsubscript{2} satellite products show similar SO\textsubscript{2} VCDs and a systematic underestimation of about 2×10\textsuperscript{16} molecules cm\textsuperscript{2}. Based on the studies on the OMI BIRA product, the systematic underestimation could attribute to a combined effect of errors of SFs, horizontal gradients of the SO\textsubscript{2} distribution, the temperature dependence of the SO\textsubscript{2} cross section, and uncertainties from the surface albedo and local emissions. The OMI NASA, and the GOME-2A BIRA and DLR SO\textsubscript{2} products show a larger random variability than the OMI and GOME-2B BIRA SO\textsubscript{2} products. All OMI and GOME-2A/B products systematically underestimate the tropospheric HCHO VCDs by about 5×10\textsuperscript{15} molecules cm\textsuperscript{2}, while showing a
similar seasonality as the MAX-DOAS results. The biases found for the bimonthly averaged satellite TG VCDs are consistent with those found for the daily comparisons.

We compared the diurnal variations (ratios of morning and afternoon values) of TGs by combining GOME-2A/B (morning overpass) with OMI (afternoon overpass) observations with the corresponding MAX-DOAS observations. Generally higher NO$_2$ values and lower HCHO values in the morning are acquired. And no significant diurnal cycle was found for SO$_2$. Well consistent diurnal variations of HCHO and SO$_2$ between satellite and MAX-DOAS observations were derived. The combined satellite observations systematically overestimate the magnitude of the NO$_2$ diurnal variation compared to MAX-DOAS due to the overestimation of the NO$_2$ VCDs by GOME-2. In addition no significant weekly cycle was found for the three TGs in the satellite and MAX-DOAS data.

Finally we studied aerosol effects on the OMI products over Wuxi station based on the MAX-DOAS observations. We find that the underestimation of the TG VCDs derived from satellite observations for mainly cloud-free observations compared to the MAX-DOAS observations systematically increases with AOD. We also investigate the aerosol effect based on RTM simulations. Here it is also possible to separate the aerosol effect into two contributions: a) the effect of using a clear sky AMF instead of an AMF taking explicitly into account the aerosol effects, and b) the effect of aerosols on the cloud retrievals, which are used in the satellite TG retrievals (implicit aerosol correction). We find that for the measurements affected by high aerosol loads in Wuxi, in general the effect of the implicit cloud correction on the retrieved TG VCDs is much stronger than the difference of a clear sky AMF compared to an AMF taking explicitly into account the aerosol extinction. We also showed that for eCF <10% and CTP >900hPa the effect of residual clouds can be neglected if aerosol extinction is explicitly taken into account. Moreover, the observed underestimation of the OMI NO$_2$ VCD for large AOD can be well explained by the error caused by the implicit aerosol correction. Therefore it could be reasonable to apply the clear-sky AMFs in the satellite retrievals of TG tropospheric VCDs in case of CTP > 900hPa and eCF<10% if explicit aerosol information is not available.

**Acknowledgements:** We thank Wuxi CAS Photonics Co. Ltd for their contributions in operating the MAX-DOAS instrument. We thank the Institute of Remote Sensing / Institute of Environmental Physics, University of Bremen, Bremen, Germany for their freely accessible RTM SCIATRAN program. We thank Goddard Space Flight Center, NASA for their freely accessible archive of AERONET and MODIS data. We thank Prof. Ma Ronghua in Nanjing Institute of Geography & Limnology Chinese Academy of Sciences for his effort to operate the Taihu AERONET station. We thank the Royal Netherlands Meteorological Institute for their freely accessible archive of OMI tropospheric NO$_2$ data. This work was supported by Max Planck Society-Chinese Academy of Sciences Joint Doctoral Promotion Programme, and Monitoring and Assessment of Regional air quality in China using space Observations, Project Of Long-term sino-european co-Operation (MarcoPolo), FP7 (Grant No: 606953) and National Natural Science Foundation of China (Grant No.: 41275038).
References


Figure 1: Wuxi city, in which the MAX-DOAS instrument is operated, is marked by the red dot in subfigure (a). Subfigures (b), (c) and (d) show maps of the averaged tropospheric VCDs of NO2 from DOMINO 2, SO2 and HCHO from BIRA derived from OMI observations over eastern China in the period from 2011 to 2014, respectively. The black dots indicate the location of Wuxi.

Figure 2: Daily average NO2 tropospheric VCDs derived from OMI (a), GOME-2A (b) and GOME-2B (c) compared with the corresponding MAX-DOAS data for eCF<10%. The colors indicate the eCF.
Figure 3: $R^2$, slopes, intercepts, mean relative differences (and the number of available days) derived from the comparisons of the NO$_2$ VCDs from different satellite instruments to the MAX-DOAS results for the different eCF bins. Note that the black and red curves represent the improved OMI VCDs with the a-priori shape factors derived from Wuxi MAX-DOAS observations (see section 3.2) and for the DOMINO 2 product, respectively.
Figure 4: Daily averaged OMI $\text{SO}_2$ tropospheric VCDs from BIRA (a) and NASA (b), GOME-2A $\text{SO}_2$ tropospheric VCDs from BIRA (c) and DLR (d) and GOME-2B $\text{SO}_2$ tropospheric VCDs from BIRA (e) for eCF < 10% plotted versus the coincident MAX-DOAS results. The colors indicate the eCF.
Figure 5: Same as Fig. 3 but for SO₂.
Figure 6: (a) HCHO tropospheric VCDs for eCF<30% are plotted against those derived from MAX-DOAS observations with the color map of eCF; the linear regression parameters are acquired for eCF<30% and for eCF<10%, respectively. (b) Scattered plots are same as in (a), but with the color map of VCD fit error; linear regression parameters are acquired for all data and for VCD fit error <7×10^{15} molecules cm^{-2}.

Figure 7: Same as Fig.2, but for HCHO.
Figure 8: Same as Fig. 3 but for HCHO.
Figure 9: (a) Average NO₂ SFs and standard deviations derived from the MAX-DOAS observations and from the TM4 CTM (for the DOMINO product) for eCF < 10%. (b) Averaged differences between the NO₂ SFs from CTM (SFₐ) and from MAX-DOAS (SFₚ) for different eCF bins. (c) Daily averages of the original DOMINO NO₂ product and modified NO₂ product (based on MAX-DOAS SF) plotted against those from MAX-DOAS for eCF < 10%. (d) Averaged BAMF for satellite observation for different eCF bins. (e) Relative difference (RD) of satellite AMF using SFₐ AMFₜₐₚ and SFₚ AMF_MAX-DOAS for different eCF bins. The error bars indicate the standard deviation of the RDs for each eCF bin. Black columns denote the RDs derived from the averaged SFₐ, SFₚ and BAMF (shown in subfigure (b) and (d)); red columns denote the averaged RDs for individual SFₐ, SFₚ and BAMF of each satellite observation.
Figure 10: Similar as Fig. 9 but for the OMI BIRA SO$_2$ product. Note that the SF for the OMI BIRA product is obtained from the IMAGES CTM.
Figure 11: Same as Fig. 9 but for the OMI BIRA HCHO product and eCF bins of 0-10%, 10%-30%, 30%-50% and 50%-100%. Note that the SF for the OMI BIRA product is obtained from the IMAGES CTM.
Figure 12: Bi-monthly averaged tropospheric VCDs of \( \text{NO}_2 \) (a), \( \text{SO}_2 \) (b), and \( \text{HCHO} \) (c) derived from coincident satellite and MAX-DOAS observations for eCF <30%. Also shown are the corresponding CTM results (TM4 for \( \text{NO}_2 \), IMAGES for \( \text{SO}_2 \) and \( \text{HCHO} \)). In all subfigures
the red and light red lines indicate the improved OMI tropospheric VCDs using the SFs from MAX-DOAS and the VCDs from the original OMI products, respectively. The numbers of the available days are shown in the bottom panel of each subfigure.

Figure 13: Ratios between the bi-monthly mean tropospheric VCDs from GOME-2A\B and OMI (\textit{Ratio}_{\text{Sat}}) as well as the ratios between the corresponding MAX-DOAS observations (\textit{Ratio}_{\text{M-D}}) for \textit{NO}_2 (a), \textit{SO}_2 (b), and HCHO (c), respectively. The light red (dark red) and light blue (dark blue) curves are corresponding to GOME-2A and GOME-2B results (coincident MAX-DOAS results with GOME-2A and GOME-2B), respectively. Note that for \textit{SO}_2 the OMI and GOME-2A data from BIRA are used for the ratio calculations. The mean ratios for the shown data sets are presented in Table 1.
Figure 14: absolute differences (a) and relative differences (b) of tropospheric VCDs of NO$_2$, SO$_2$ and HCHO between individual OMI observations and MAX-DOAS observations plotted against the AODs derived from the MAX-DOAS observations. The data are differently screened in the left, center and right panels: eCF < 10% for the left; eCF <10% and CTP > 900hPa for the center; and eCF < 10%, CTP > 900hPa, and VCD > a specific threshold for the right (see text). Note that the OMI VCDs are the modified values using SFs derived from MAX-DOAS observations.

Figure 15: eCF and CTP from the OMI cloud algorithm for individual OMI observations are plotted against AOD at 360nm derived from MAX-DOAS observation (for eCF<10% and CTP > 900hPa). The red bars on the right and bottom indicate the frequency of eCF, CTP, and AOD in different value intervals. The red lines are the linear regressions of the scatter plots. The correlation coefficients are shown in the figure. The color of the dots in (a) and (b) indicates CTP and eCF, respectively.
Figure 16: (a) simulated $\text{BAMF}_{\text{clear-sky}}$, $\text{BAMF}_{\text{explicit}}$ for AOD of 0.8 and 1.5, $\text{BAMF}_{\text{low-cloud}}$ (cloud at surface) and $\text{BAMF}_{\text{high-cloud}}$ (cloud at 1km) of $\text{NO}_2$ at 435nm, HCHO at 337nm and $\text{SO}_2$ at 319nm for one typical satellite observation (SZA of 40°, RAA of 180° and VZA of 30°). An effective cloud fraction of 10% is used in the calculations. (b) Relative differences of $\text{BAMF}_{\text{clear-sky}}$, $\text{BAMF}_{\text{low-cloud}}$ and $\text{BAMF}_{\text{high-cloud}}$ compared to $\text{BAMF}_{\text{explicit}}$ for AOD of 0.8. (c) Same with (b) but $\text{BAMF}_{\text{explicit}}$ for AOD of 1.5.
AOD of 0.8

- clear sky
- low Lambertian clouds with eCF of 10%
- high Lambertian clouds with eCF of 10%
- low Lambertian clouds with eCF of 5%
- high Lambertian clouds with eCF of 5%

NO$_2$ MAX-DOAS SF

NO$_2$ CTM SF

HCHO MAX-DOAS SF

HCHO CTM SF

SO$_2$ MAX-DOAS SF

SO$_2$ CTM SF

Relative difference of AMF

(geometry)

\[
\text{relative difference of AMF} = \left( \text{AMF}_{\text{explicit}} - \text{AMF}_{\text{explicit}} \right)
\]
Figure 17: Relative differences between AMFs calculated for different cloud assumptions (for detail see text) and AMFs for explicit aerosol profiles for three trace gases. The labels at the x-axis indicate five different observation geometries (see Table 2). The MAX-DOAS and CTM SFs are used for the calculations shown in the left and right column. Explicit aerosol profiles of AOD of 0.8 and 1.5 are used in subfigure (a) and (b), respectively.
Table 1 Mean ratios for the data presented in Fig. 13.

<table>
<thead>
<tr>
<th></th>
<th>Ratio\textsubscript{M-D} (G-2A / OMI)</th>
<th>Ratio\textsubscript{Sat} (G-2A / OMI)</th>
<th>Ratio\textsubscript{M-D} (G-2B / OMI)</th>
<th>Ratio\textsubscript{Sat} (G-2B / OMI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{2}</td>
<td>1.25</td>
<td>1.62</td>
<td>1.20</td>
<td>1.61</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>1.02</td>
<td>1.02</td>
<td>1.01</td>
<td>1.09</td>
</tr>
<tr>
<td>HCHO</td>
<td>0.78</td>
<td>0.88</td>
<td>0.76</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table 2 Observation geometry scenarios for BAMF and AMF calculations with different aerosol and cloud assumptions.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Solar zenith angle [$^\circ$]</th>
<th>View zenith angle [$^\circ$]</th>
<th>Relative azimuth angle [$^\circ$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>40</td>
<td>30</td>
<td>180</td>
</tr>
<tr>
<td>g2</td>
<td>10</td>
<td>30</td>
<td>180</td>
</tr>
<tr>
<td>g3</td>
<td>70</td>
<td>30</td>
<td>180</td>
</tr>
<tr>
<td>g4</td>
<td>40</td>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>g5</td>
<td>40</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>