The effect of adding hydroxyl functional groups and increasing molar mass on the viscosity of organics relevant to secondary organic aerosols

James W. Grayson1, Mijung Song1*, Erin Evoy1, Mary Alice Upshur2, Marzieh Ebrahimi3, Franz M. Geiger2, Regan J. Thomson2, and Allan K. Bertram1

1Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
2Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
3Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada

*Now at: Department of Earth and Environmental Sciences, Chonbuk National University, Jeollabuk-do, Republic of Korea

Correspondence to: Allan Bertram (bertram@chem.ubc.ca)

Abstract. In the following we determine the viscosity of four polyols (2-methyl-1,4-butanediol, 1,2,3-butanetriol, 2-methyl-1,2,3,4-butanetetrol, and 1,2,3,4-butanetetrol) and three saccharides (glucose, raffinose and maltohexaose) mixed with water. The polyol studies were carried out to quantify the relationship between viscosity and the number of hydroxyl (OH) functional groups in organic molecules, whilst the saccharide studies were carried out to quantify the relationship between viscosity and molar mass for highly oxidised organic molecules. Each of the polyols was of viscosity $\leq 6.5e2$ Pa s, and a linear relationship was observed between log(viscosity) and the number of OH functional groups ($R^2 \geq 0.99$) for several carbon backbones. The linear relationship suggests that viscosity increases by 1-2 orders of magnitude with the addition of an OH functional group to a carbon backbone. For saccharide-water particles, studies at 28% RH show an increase in viscosity of 3.6-6.0 orders of magnitude as the molar mass of the saccharide is increased from 180 to 342 g mol$^{-1}$, and studies at 77-80% RH, show an increase in viscosity 4.6-6.2 orders of magnitude as molar mass increases from 180 to 991 g mol$^{-1}$. These results suggest oligomerisation of highly oxidised compounds in atmospheric SOM could lead to large increases in viscosity, and may be at least partially responsible for the high viscosities that are observed in some SOM. Finally, two quantitative structure-property relationship models were used to predict the viscosity of the four polyols studied. The model of Sastri and Rao (1992) was determined to over-predict the viscosity of each of the polyols, with the over-prediction being up to 19 orders of magnitude. The viscosities predicted by the model of Marrero-Morejón and Pardillo-Fontdevila (2000) were much closer to the experimental values, with no values differing by more than 1.3 orders of magnitude.

1 Introduction

Secondary organic material (SOM) is formed in the atmosphere through the oxidation of volatile organic compounds emitted from the Earth’s surface by a range of natural and anthropogenic sources (Hallquist et al., 2009). SOM is estimated to account for 30-70% of the mass of submicrometer atmospheric particulate matter in most regions of the atmosphere (Kanakidou

...
et al., 2005), and directly and indirectly affects the Earth’s climate (Stock et al., 2013), as well as affecting human health (Baltensperger et al., 2008).

Despite its importance, many of the physical properties of SOM, such as its viscosity, remain poorly understood. Information on the viscosity of SOM may be important for several reasons. For example, viscosity may be needed for predicting the mass and size distribution of SOM particles in the atmosphere (Shiraiwa and Seinfeld, 2012; Shiraiwa et al., 2013; Zaveri et al., 2014). Viscosity information may also be needed for predicting heterogeneous chemistry, photochemistry and the long range transport of pollution (Berkemeier et al., 2016; Hinks et al., 2016; Houle et al., 2015; Kuwata and Martin, 2012; Lignell et al., 2014; Shiraiwa et al., 2011; Steimer et al., 2015; Wang et al., 2015; Zelenyuk et al., 2012; Zhou et al., 2012, 2013). Phase transitions and hygroscopic properties of SOM may also be susceptible to particle viscosity (Bodsworth et al., 2010; Bones et al., 2012; Hawkins et al., 2014; Ignatius et al., 2015; Ladino et al., 2014; Lienhard et al., 2015; Lu et al., 2014; Murray and Bertram, 2008; Price et al., 2014, 2015; Schill et al., 2014; Song et al., 2012; Tong et al., 2011; Wang et al., 2012; Wilson et al., 2012). Nevertheless, our understanding of the viscosity of SOM particles remains limited. Methods for predicting the viscosity of SOM from other properties of SOM, such as molar mass, and the organic functional groups, may be especially beneficial.

In the following we determine the viscosity of four polyols (2-methyl-1,4-butanediol, 1,2,3-butanetriol, 1,2,3,4-butanetetrol and 2-methyl-1,2,3,4-butanetetrol). Properties and structures of these polyols are shown in Table 1 and Figure 1. The viscosity of polyols were measured to quantify the relationship between viscosity and the number of hydroxyl (OH) functional groups in organic molecules. Polyols were also chosen for study due to their atmospheric importance, as, for example, tetraols have been observed in ambient particles and particles generated in environmental chambers (Claeys et al., 2004; Edney et al., 2005; Surratt et al., 2006, 2010).

In addition to polyols, we determined the viscosity of three saccharides (glucose, raffinose and maltohexaose). The saccharides were studied mixed with water. Properties and structures of these saccharides are also shown in Table 1 and Figure 1. Although the viscosity of sucrose has been measured over a wide range of relative humidities (RH) (Först et al., 2002; Grayson et al., 2015; Power et al., 2013; Quintas et al., 2006; Swindells et al., 1958; Telis et al., 2007) similar studies for glucose, maltohexaose and raffinose have yet to be carried out. The saccharides were studied to quantify the relationship between viscosity and molar mass for highly oxidised organic molecules. By studying these saccharides, the relationship between viscosity and molar mass was isolated while the O:C ratio and types of functional groups in the molecule remain largely unchanged. Saccharides including levoglucosan, glucose, xylose, sucrose, and maltose have been observed in wood smoke (Nolte et al., 2001), and saccharides may be responsible for the majority of the organic mass in ambient submicron particles in remote marine boundary layers (Russell et al., 2010).

The average O:C ratio of SOM has been determined to range from 0.3-1.1 (Chen et al., 2011; Jimenez et al., 2009; Lambe et al., 2015). The polyols studied ranged in O:C from 0.4-1.0 (Table 1), similar to that of SOM, and the saccharides studied have an O:C of 0.86-1.0 (Table 1), which is similar to that of the more highly oxidised components of SOM.

In addition to measuring the viscosity of the polyol compounds, we compared the measured viscosities of these compounds, as well as literature viscosity values for related alkanes, alcohols, and polyols, with predictions from two structure activity models (Marrero-Morejón and Pardillo-Fontdevila, 2000; Sastri and Rao, 1992). These two models have been derived and val-
idated using organic compounds with viscosities <100 Pa s. As such, their applicability to organic compounds with viscosities >100 Pa s is uncertain.

2 Experimental

2.1 Viscosity measurements

Three different techniques were used to determine viscosity: a rotational rheometer, a bead mobility technique and a poke-and-flow technique. The technique used for each compound is reported in Table 4. In addition, the techniques are described in more detail below.

2.2 Rotational rheometry

The rotational rheometer has been described in detail previously (Collyer and Clegg, 1988). For measurements, a commercial rotational rheometer with a cup and bob fixture was used (MCR 501, Anton Paar, Austria, as described in Behzadfar and Hatzikiriakos (2014)). The amount of material needed for the measurements was ≥5 mL. A temperature-controlled sample compartment on the rheometer was used to perform measurements at 295 K, using a shear rate ranging from 1-100 s\(^{-1}\).

2.3 Bead mobility technique

The bead-mobility technique has been described in detail previously (Renbaum-Wolff et al., 2013b). Briefly, an aqueous solution of the material was nebulized onto a hydrophobic substrate, forming super-micron sized particles (30-70 µm in diameter) on the hydrophobic substrate. A solution containing micron-sized melamine beads was subsequently nebulised over the top of the substrate, resulting in the incorporation of the melamine beads into the particles. The substrate was then fixed inside a flow cell, and the flow cell subsequently mounted to an optical microscope. Particles were allowed to equilibrate at a given relative humidity (RH) using a humidity-controlled flow of N\(_2\) gas through the flow cell, which also imparts a shear stress on the surface of the particles. This shear stress caused the material in the particle to circulate in well-defined patterns. The speeds at which beads were observed to circulate within a particle were determined from images recorded during the experiments, and the bead speeds were converted to viscosities using a calibration curve, which was created using sucrose-water and glycerol-water particles, two systems with well-constrained viscosities. Experiments were performed at room temperature (294-295 K).

2.4 Poke-and-flow technique

The poke-and-flow technique has been described in detail previously (Grayson et al., 2015; Renbaum-Wolff et al., 2013a). The technique builds on the qualitative approach described by Murray et al. (2012). An aqueous solution of the material was nebulized onto a hydrophobic substrate, forming super-micron sized particles (30-70 µm in diameter) on the hydrophobic substrate. The substrate was fixed inside a flow cell, and the flow cell subsequently mounted to an optical microscope. Particles were allowed to equilibrate at a given RH and room temperature (294-295 K). Then the particles were poked using a needle
attached to a micromanipulator. If the viscosity of the material was low, the action of poking the particles with a needle caused the material to form a half torus geometry. When the needle was removed, the material flowed and reformed the energetically favourable hemispherical morphology. Figure 2, Panel a, provides an example of images recorded during an experiment where the material flowed and reformed the hemispherical geometry after poking. From images recorded during the experiments, the experimental flow time, $\tau_{\text{exp, flow}}$, was determined, where $\tau_{\text{exp, flow}}$ is the time taken for the diameter of the hole after poking to decrease to half of its original value.

If the viscosity of the material was high, the action of poking the particles with a needle caused the material to crack with no flow being detected over the period of several hours. See Figure 2, Panel b, for an example of images recorded during an experiment where the material cracked after poking and did not flow over the period of several hours after cracking.

To determine viscosities from the poke-and-flow experiments, the behaviours observed in the experiments and described above were subsequently simulated using a multiphysics program (COMSOL multiphysics). For experiments where flow was observed, a half-torus geometry was used in the simulations with dimensions based on the dimensions observed in experiments. For more details of the simulations used when flow was observed see Grayson et al. (2015). Input to the simulations included the slip length (which describes the interaction between the material and the hydrophobic glass slide), the surface tension of the material, the contact angle between the material and hydrophobic glass surface and the density of the material. Physical parameters used in the simulations where flow was observed are listed in Table 2.

For experiments where cracking was observed, lower limits to the viscosity were determined using the COMSOL Multi-physics simulations. In this case, the geometry used in the simulations was a quarter-sphere geometry, with one flat surface in contact with a solid substrate, which represents the hydrophobic glass surface (Renbaum-Wolff et al., 2013a). In these simulations the viscosity of the material was varied until the sharp edge at the top of the quarter-sphere moved by 0.5 μm over the experimental time. A movement of 0.5 μm would be discernible in the microscope experiments, and hence the simulated viscosity represents a lower limit to the viscosity, since no movement was observed in the experiments. The physical properties used for the cases where particles were observed to crack and no flow was observed over the course of the experiment are given in Table 3. Additional details for these types of simulations are given in Renbaum-Wolff et al. (2013a).

2.5 Compounds studied

2-Methyl-1,4-butanediol ($\geq 97\%$ purity), 1,2,3-butanetriol ($\geq 90\%$ purity), 1,2,3,4-butanetetrol ($\geq 99\%$ purity), β-D-Glucose ($\geq 99.5\%$ purity), raffinose ($\geq 98\%$ purity), and maltohexaose ($\geq 65\%$ purity) were obtained from Sigma-Aldrich. Syn-2-methyl-1,2,3,4-butanetetrol was prepared in diastereomerically pure form starting from protected cis-2-methylbut-2-ene-1,4-diol based on the procedure described in Ebben et al. (2014). The purity of the tetraol was determined based on 1H and 13C NMR spectroscopy. In order to test stability, solutions containing 100 mM of the tetraol in 1 M (NH$_4$)$_2$SO$_4$ and D$_2$O were stirred at room temperature for one week and monitored by NMR spectroscopy. No changes in composition were observed during this time. While 2-Methyl-1,2,3,4-butanetetral also exists as the anti diastereomer, preliminary viscosity measurements at room temperature using a method similar to a Cannon-Fenske viscometer indicated that the viscosities of the two tetraol
diastereomers were identical within error (Upshur et al., 2014). As a result, only the syn diastereomer was analyzed in this study.

The RHs at which viscosities were measured for each of the compounds are detailed in Table 4. Glucose was studied only at 28% RH as viscosity measurements at RH values >28% have been reported in the literature and at <28% RH the particles stuck to the needle and were removed from the substrate, meaning their viscosity could not be determined. Raffinose particles were studied at RH values ranging from 40 to 85%. At 40% the particles cracked when poked, and did not flow on a laboratory timescale. The same results were expected as lower RH values, and so lower RH values were not covered. Maltohexaose particles were studied at RH values ranging from 50 to 80%. As the particles cracked and did not flow at either 60% RH or 50% RH, experiments were not carried out at lower RH values. The polyols were only studied under dry conditions.

2.6 Predictions of viscosity using quantitative structure-property relationship models

Two quantitative structure-property relationship (QSPR) models were used to estimate the viscosity of the four polyols studied here. QSPR models relate physical, chemical, or physicochemical properties of compounds to their structures. The first QSPR model used, which was developed by Sastri and Rao (1992), estimates the viscosity of a compound at a given temperature (295 K was used here) based on its vapour pressure at that temperature, along with the number and type of functional groups in the molecule. Where available, literature vapour pressure values at 295 K (Cai et al., 2015; Cammenga et al., 1977; Green and Perry, 2007; Verevkin, 2004) were used to predict the viscosities of the alkanes, alcohols, and the polyols. Experimental measurements of the vapour pressure of the four polyols of main focus in this study (1,2,3-butanetriol, 1,2,3,4-butanetetrol, 2-methyl-1,4-butanediol, and 2-methyl-1,2,3,4-butanetetrol) were not available, and so their vapour pressures were estimated at 295 K using the three QSPR models employed by the E-AIM vapour pressure calculator (http://www.aim.env.uea.ac.uk/aim/ddbst/pcalcmain.php). Each of the QSPR models used to estimate vapour pressure is based on the boiling point of the molecule along with group contributions from the functional groups present in its structure. The first model uses the method of Nannoolal et al. (2004) to predict the boiling point, and the method of Moller et al. (2008) to predict vapour pressure, the second uses the method of Nannoolal et al. (2004) to predict the boiling point and the method of Nannoolal et al. (2008) to predict vapour pressure, and the third uses the method of Stein and Brown (1994) to predict the boiling point and the method of Myrdal and Yalkowsky (1997) to predict vapour pressure. The three models each gave rise to a different estimation of the vapour pressure of each polyol, and the lower and upper estimations of vapour pressure were used to estimate lower and upper limits of viscosity.

The second QSPR model used to predict viscosity was proposed by Marrero-Morejón and Pardillo-Fontdevila (2000) and estimates a compound’s viscosity only at 293 K based on its molar mass and the type and number of bonds and functional groups within the molecule. Although 293 K is slightly lower than the temperature at which viscosities measurements were made in this study, the small difference in temperature between the model and experiments (1-2 K) should not lead to large discrepancies.
3 Results and discussion

3.1 Viscosity of polyols

The viscosities of four different polyols, containing two to four hydroxyl (OH) functional groups, were determined experimentally using the bead-mobility and the rotational rheometer techniques. The measured viscosities are summarised in Table 4. The mean viscosities of the polyols range from 1.3e-1 to 2.3e2 Pa s, with the tetraols having the highest viscosities. For reference, these viscosities lie between that of water (1e-3 Pa s) and that of peanut butter (1e3 Pa s), whilst the viscosity of honey is approximately 1e1 Pa s (Koop et al., 2011).

The viscosities detailed in Table 4 are also plotted in Figure 3 (open symbols) as a function of the number of OH functional groups in the molecule. Each panel only includes molecules comprised of a specific carbon backbone in order to isolate the effect of adding an OH functional group to a carbon backbone. Panels (a) and (b), correspond to a linear C4 and a branched C5 carbon-backbone, respectively. Also included in Figure 3 (filled symbols) are literature viscosities for compounds with a linear C4 and branched C5 carbon-backbone and having zero to two OH functional groups. Values reported in Figure 3 correspond to a temperature of 294-295 K, the temperature at which measurements were made here. Literature viscosities are determined at 295 K using a polynomial interpolation of available temperature dependent values of log_{10}(viscosity) (Czechowski et al., 2004; Haynes, 2015; Jarosiewicz et al., 2004; Viswanath et al., 2007).

Both of the panels in Figure 3 exhibit a clear relationship between log_{10}(viscosity) and the number of OH functional groups in the compound. Included on each panel is a linear fit to the data, and each line has a coefficient of determination ($R^2 \geq 0.99$). The slopes of the fits were 1.32 and 1.51 for the linear C4 and branched C5 backbones, respectively.

In Figure 4, using literature viscosity data, we show that a linear relationship also exists between log_{10}(viscosity) and the number of OH functional groups for molecules with a linear C3 and a linear C6 carbon backbone and having zero to three OH functional groups. Again, literature viscosities are determined at 295 K using a polynomial interpolation of available temperature dependent values of log_{10}(viscosity) (Czechowski et al., 2004; Haynes, 2015; Sheely, 1932; Sigma-Aldrich, 1996). The slopes of the fits for the C3 and C6 backgrounds are 1.38 and 1.27.

Based on Figure 3 and Figure 4, oxidation reactions in the atmosphere that lead to the incorporation of a single OH functional group in a compound would be expected to form a product with a viscosity of one to two orders of magnitude greater than that of its precursor, assuming no fragmentation.

3.2 Viscosity of saccharides

Mixtures of a saccharide and water were studied using the bead-mobility and poke-and-flow techniques across a range of RHs. The simulated viscosities for each of the saccharide particles are grouped by RH and summarised in Table 4, and shown in Figure 5(a). Also included in Figure 5(a) are literature data for the viscosity of glucose-water mixtures at ≥ 75 % RH (Achard et al., 1992; Barbosa-Canovas, 2007; Haynes, 2015) and sucrose-water mixtures for RH values ≥ 25 % RH (Först et al., 2002; Power et al., 2013; Quintas et al., 2006; Swindells et al., 1958; Telis et al., 2007). The viscosity of each of the saccharides was observed to increase as RH is decreased, with the viscosity at 28 % RH at least four orders of magnitude greater than at
78 % RH. This inverse relationship between viscosity and RH is due to the behaviour of water as a plasticiser (a component that reduces the viscosity of a solution) and the greater water content in particles at higher relative humidities (Renbaum-Wolff et al., 2013a).

Figure 5(b) is a plot of viscosity vs. molar mass of the saccharides at three RHs for saccharide-water mixtures. At 28 % RH, the viscosity increased by 3.6-6.0 orders of magnitude as molar mass of the saccharide increased from 180 to 342 g mol$^{-1}$, and at 77-80 % RH the viscosity increased by 4.6-6.2 orders of magnitude as the molar mass of the saccharide increased from 180 to 991 g mol$^{-1}$. These observations are consistent with prior studies that suggest viscosity and molar mass are related through a power function (Hiemenz and Lodge, 2007; Pachaiyappan et al., 1967). These observations are also consistent with prior studies that have shown a relationship between glass transition temperature and molar mass (Koop et al., 2011; Zobrist et al., 2008) and a relationship between bounce of particles off of surfaces and molar mass (Li et al., 2015; Saukko et al., 2012).

3.3 Comparison of measured and predicted viscosities

As discussed in Section 2.6, two QSPR models have been used to predict the viscosities of the polyols studied here. The first QSPR model (Sastri and Rao, 1992) relates viscosity to the molecular structure and vapor pressure of a compound, whilst the second QSPR model (Marrero-Morejón and Pardillo-Fontdevila, 2000) relates viscosity to the molecular structure and molar mass of a compound.

Figure 6 is a plot of measured vs. predicted viscosity for the polyols measured here. The QSPR model of Sastri and Rao (1992) (Figure 6(a)) over-predicts the viscosity of 2-methyl-1,4-butanediol by 2.7-3.0 orders of magnitude, the viscosity of 1,2,3-butanetriol by 6.5-7.8 orders of magnitude, the viscosity of 2-methyl-1,2,3,4-butanetetrol by 14.7-18.7 orders of magnitude, and the viscosity of 1,2,3,4-butanetetrol by 7.2-10.3 orders of magnitude.

Shown in Figure 6(b) are predicted viscosities using the QSPR model of Marrero-Morejón and Pardillo-Fontdevila (2000). The model provides more accurate predictions than that of Sastri and Rao (1992), with the predicted viscosities of 2-methyl-1,4-butanediol and 1,2,3,4-butanetetrol being in agreement with those predicted, while the predicted viscosity of 1,2,3-butanetriol is lower than the measured viscosity by 0.1-0.2 orders of magnitude, and the predicted viscosity of 2-methyl-1,2,3,4-butanetetrol is lower than the measured viscosity by 0.6-1.3 orders of magnitude.

Shown in Figure 7 is a comparison of measured and predicted viscosities for all the alkanes, alcohols and polyols shown in Figure 3 and Figure 4. In Figure 7 the number of OH functional groups in each molecule are identified using different symbols. The QSPR model of Sastri and Rao (1992) predicts well the viscosities of molecules containing zero and one OH functional groups, but the model increasingly over-predicts the viscosity as the number of OH functional groups increases above one. On the other hand, the QSPR model of Marrero-Morejón and Pardillo-Fontdevila (2000) predicts well the literature viscosity values of molecules containing up to two OH functional groups, and the viscosities of 2-methyl-1,4-butanediol and 1,2,3,4-butanetetrol. The model of Marrero-Morejón and Pardillo-Fontdevila (2000) under-predicts the viscosities of 1,2,3-butanetriol and 2-methyl-1,2,3,4-butanetetrol by 0.1-0.2 and 0.6-1.3 orders of magnitude, respectively. This under-prediction may be explained in part by the lower temperature used in the model (293 K) compared to the experimental temperature of
294-295 K used here. If an Arrhenius type relationship exists between viscosity and temperature for these compounds, an increase in temperature of 2 K would be expected to cause viscosity to decrease by 0.1 orders of magnitude.

4 Atmospheric implications

An estimated 500-750 Tg of isoprene is emitted annually from the Earth’s surface (Guenther et al., 2006). Once in the atmosphere, isoprene molecules react predominantly with hydroxyl (OH) radicals (Worton et al., 2013), leading to products containing oxygen functional group(s). Previous characterisation studies of SOM produced via the oxidation of isoprene by OH radicals have identified the presence of triols and tetraols (Claeys et al., 2004; Edney et al., 2005), including 2-methyl-1,2,3,4-butanetetrol, which has been studied here. Recently, Song et al. (2015) measured the viscosity of SOM produced via the oxidation of isoprene in the absence of NO\textsubscript{x}, and determined it to range between 2e4 and 4e6 Pa s at <1 % RH. The viscosity of 2-methyl-1,2,3,4-butanetetrol has been measured here to be 2.3e2 Pa s (95 % confidence limits of 1.4e2-6.5e2 Pa s), which implies there are individual components in the SOM studied by Song et al. with higher viscosity than 2-methyl-1,2,3,4-butanetetrol.

The results from the experiments with polyols, along with literature data for alkanes, alcohols, and polyols suggest that adding a hydroxyl (OH) functional group to a carbon backbone can increase the viscosity of the organic compound by 1-2 orders of magnitude. These results may be useful for estimating the viscosity of some components of SOM.

The results with the saccharides illustrate the strong dependence of molar mass on the viscosity of highly oxidised organic compounds. Oligomerisation reactions are known to occur in secondary organic aerosol, and efficiently increase the molar mass of a compound whilst keeping its O:C ratio roughly constant. Oligomers have been estimated to account for up to 50 % of the mass of SOM (Baltensperger et al., 2005; Gao et al., 2004; Hallquist et al., 2009; Tolocka et al., 2006). The formation of oligomer products may proceed via a mechanism, such as dehydration (Muller et al., 2009) or the elimination of oxygen or carbon dioxide (Zhang et al., 2015). Consistent with previous suggestions (Kidd et al., 2014; Virtanen et al., 2010), our results with saccharides suggest that these types of reactions may play an important role in producing the high viscosities observed in SOM (Booth et al., 2014; Grayson et al., 2016; Pajunoja et al., 2014; Renbaum-Wolff et al., 2013a; Song et al., 2015; Zhang et al., 2015).

Two QSPR models were tested for their ability to predict the viscosity of alkanes, alcohols and polyols. The model of Sastri and Rao (1992) over-predicted the viscosities of compounds containing multiple oxygen-containing functional groups by up to 19 orders of magnitude and hence this model, in the current form, is not recommended for predicting the viscosity of components of SOM. On the other hand the model of Marrero-Morejón and Pardillo-Fortdevila (2000) shows reasonably good agreement with measured viscosities for alkanes, alcohols, and polyols. As such, this model shows potential for predicting the viscosity of SOM components. However, only a limited number of organic functional groups are included in the model. Some of the functional groups observed in extremely low volatility SOM, such as hydroperoxides, are not currently incorporated into the model. Expansion of the model by Marero-Morejón and Pardillo-Fortdevila to include these functional groups would be beneficial.
Acknowledgements. This work was supported by the Natural Sciences and Engineering Research Council of Canada. R.J.T. and F.M.G. gratefully acknowledge support from the National Science Foundation (CHE 1212692). M.A.U. gratefully acknowledges support from a National Aeronautics and Space Administration Earth and Space (NASA ESS) Fellowship and a National Science Foundation (NSF) Graduate Research Fellowship (NSF GRFP).
References

Bath. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-672, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 4 August 2016
© Author(s) 2016. CC-BY 3.0 License.

Figures and Tables

Figure 1. The structure of the polyols and saccharides studied experimentally in this work.
Figure 2. Optical images recorded during poke-and-flow experiments using particles of a) raffinose-water and b) maltohexaose-water mixtures. Images a1 and b1 correspond to the particles prior to being poked, with the white haloes being an optical effect. Images a2 and b2 correspond to the first frame after the needle has been removed. The particle comprised of raffinose and studied at 54 % RH exhibited flow, and image a3 corresponds to an image of the particle at its experimental flow time, $\tau_{exp,flow}$, the point at which the diameter of the hole at the centre of the torus has decreased to 50 % of its original size. The particle composed of maltohexaose and studied at 50 % RH exhibited cracking behaviour and, as shown in image b3, no change in the size or shape of the cracks can be observed 3 h after the particle has been poked. The scale bars in images a1 and b1 correspond to 20 µm.
Figure 3. A plot of log(viscosity / Pa s) vs. the number of OH functional groups for (a) linear C4 and (b) branched C5 carbon backbones. Literature values (Czechowski et al., 2004; Haynes, 2015; Viswanath et al., 2007) are represented using filled symbols, and values measured experimentally in this study are represented using open symbols. Each solid line is a linear fit to the data in the panel, and values of the slope (m) are reported at the bottom right corner of the relevant plot, along with the corresponding coefficient of determination (R^2). The structures of the relevant carbon backbones are shown in the top left corner of each plot.
Figure 4. A plot of log(viscosity / Pa s) vs. the number of OH functional groups for (a) linear C3 and (b) linear C6 carbon backbones using literature values (Czechowski et al., 2004; Haynes, 2015; Sheely, 1932; Sigma-Aldrich, n.d.). Each solid line is a linear fit to the data in the panel, and values of the slope (m) are reported at the bottom right corner of the relevant plot, along with the corresponding coefficient of determination (R^2). The structures of the relevant carbon backbones are shown in the top left corner of each plot.
Figure 5. Plots of $\log_{10}(\text{viscosity})$ vs. (a) relative humidity and (b) molar mass for glucose, sucrose, raffinose, and maltohexaose. Values determined experimentally here were measured at 294-295 K. Results determined in the current study using the bead-mobility technique are shown using circle symbols, and those determined using the poke-and-flow technique are shown using squares, with filled squares representing upper limits of viscosity and open squares representing lower limits of viscosity, with y-error bars representing 95% confidence intervals for both techniques, as detailed in Table 4. Also included are literature viscosity values (measured at 293 or 298 K) for sucrose (Först et al., 2002; Power et al., 2013; Quintas et al., 2006; Swindells et al., 1958; Telis et al., 2007) and glucose (Achard et al., 1992; Barbosa-Canovas, 2007; Haynes, 2015). The viscosity of glucose at 47% shown in (b) was determined using a polynomial fit to the data shown in (a). The viscosity of water is also added to (a). Shaded regions are added to (a) and (b) to guide the readers eye.
Figure 6. Plot of measured vs. predicted $\log_{10}(\text{viscosity})$ for the polyols measured in the current study: 2-methyl-1,4-butanediol, 1,2,3-butanetriol, 2-methyl-1,2,3,4-butanetetrol, and 1,2,3,4-butanetetrol. a) Predictions using the model of Sastri and Rao (1992) and b) predictions using the model of Marrero-Morejon and Padillo-Fontdevila (2000). Dashed 1:1 lines are shown on each plot. Error bars on the x-axis represent uncertainty in viscosities for compounds measured experimentally here, whilst error bars on the y-axis observed in (a) are due to the range of predicted vapour pressures using the QSPR models discussed in the text.

Figure 7. Plot of measured vs. predicted $\log_{10}(\text{viscosity})$ of C3-C6 alkanes, alcohols, and polyols. a) Predictions using the model of Sastri and Rao (1992) and b) predictions using the model of Marrero-Morejon and Padillo-Fontdevila (2000). In this figure measured data includes that taken from literature. Dashed 1:1 lines are shown on each plot. Error bars on the x-axis represent uncertainty in viscosities for compounds measured experimentally here, whilst error bars on the y-axis observed in (a) are due to the range of predicted vapour pressures using the QSPR models discussed in the text.
Table 1. Properties of polyol and saccharide compounds studied experimentally.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical formula</th>
<th>O:C</th>
<th>Molar mass (g mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methyl-1,4-butanediol</td>
<td>C(5)H({12})O(_2)</td>
<td>0.40</td>
<td>104</td>
</tr>
<tr>
<td>1,2,3-Butanetriol</td>
<td>C(4)H({10})O(_3)</td>
<td>0.75</td>
<td>106</td>
</tr>
<tr>
<td>1,2,3,4-Butanetetrol</td>
<td>C(4)H({10})O(_4)</td>
<td>1.00</td>
<td>122</td>
</tr>
<tr>
<td>2-Methyl-1,2,3,4-butanetetrol</td>
<td>C(5)H({12})O(_4)</td>
<td>0.80</td>
<td>136</td>
</tr>
<tr>
<td>Glucose</td>
<td>C(6)H({12})O(_6)</td>
<td>1.00</td>
<td>180</td>
</tr>
<tr>
<td>Raffinose</td>
<td>C({18})H({32})O(_{16})</td>
<td>0.89</td>
<td>504</td>
</tr>
<tr>
<td>Maltohexaose</td>
<td>C({36})H({62})O(_{31})</td>
<td>0.86</td>
<td>991</td>
</tr>
</tbody>
</table>

Table 2. Physical parameters used in the COMSOL Multiphysics simulations for cases where flow was observed in the poke-and-flow experiments. R and r indicate the radius of a tube and the radius of an inner hole, respectively, of the half-torus geometry used in the simulations.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Slip length (nm)</th>
<th>Surface tension (mN m(^{-1}))</th>
<th>Density (g cm(^{-3}))</th>
<th>Contact angle (°)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>Lower limit</td>
<td>5(^b)</td>
<td>72.0(^c)</td>
<td>1.0(^d)</td>
</tr>
<tr>
<td></td>
<td>Upper limit</td>
<td>10,000(^b)</td>
<td>95.1(^e)</td>
<td>1.7(^f)</td>
</tr>
<tr>
<td>Raffinose</td>
<td>Lower limit</td>
<td>5(^b)</td>
<td>72.0(^c)</td>
<td>1.0(^d)</td>
</tr>
<tr>
<td></td>
<td>Upper limit</td>
<td>10,000(^b)</td>
<td>125.8(^e)</td>
<td>1.9(^f)</td>
</tr>
<tr>
<td>Maltohexaose</td>
<td>Lower limit</td>
<td>5(^b)</td>
<td>72.0(^c)</td>
<td>1.0(^d)</td>
</tr>
<tr>
<td></td>
<td>Upper limit</td>
<td>10,000(^b)</td>
<td>138.2(^e)</td>
<td>2.0(^f)</td>
</tr>
</tbody>
</table>

\(^a\)Contact angles were determined from optical images of millimeter sized droplets deposited on hydrophobic substrates. Millimeter sized droplets were deposited onto hydrophobic substrates and allowed to equilibrate for 30 minutes. Then digital photographs were taken. Contact angles at the particle-substrate interface were determined from the acquired images using ImageJ software.

\(^b\)This slip length range is based on experimental measurements of the slip length for organic-water compounds on hydrophobic surfaces (Baudry et al., 2001; Cheng and Giordano, 2002; Choi and Kim, 2006; Churaev et al., 1984; Craig et al., 2001; Jin and Padula, 2004; Joly et al., 2006; Joseph and Tabeling, 2005; Li et al., 2014; Neto et al., 2005; Schnell, 1956; Tretheway and Meinhart, 2002; Watanabe et al., 1999; Zhu et al., 2012).

\(^c\)The lower limit of the surface tension used in the simulations corresponds to the surface tension of pure water at 293 K. Experimental measurements have determined glucose-water and sucrose-water solutions at 293 K to have a greater surface tension than that of pure water (Lee and Hildemann, 2013; MacDonald et al., 1996). It is assumed that the same is true for raffinose-water and maltohexaose-water solutions.

\(^d\)The lower limit of density corresponds to the density of water.

\(^e\)For upper limits to the surface tension of saccharide-water solutions we use the surface tensions predicted for each of the pure saccharides by ACD/Labs. Values obtained from www.chemspider.com.

\(^f\)The upper limits of density for glucose, raffinose, and maltohexaose are the upper limits of density predicted for each of the pure compounds by ACD/Labs. Values obtained from www.chemspider.com.
Table 3. Physical parameters used to simulate a lower limit of viscosity for poke-and-flow experiments where particles were observed to crack when impacted by the needle, and no observable flow of material was observed over the course of the experiment.

<table>
<thead>
<tr>
<th>Slip length (nm)</th>
<th>Surface tension (mN m(^{-1}))</th>
<th>Density (g cm(^{-3}))</th>
<th>Contact angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-17(^a)</td>
<td>72.0(^b)</td>
<td>1.8(^c)</td>
<td>90(^d)</td>
</tr>
</tbody>
</table>

\(^a\) In the simulations a slip length of 0.01*k was used, where k is the grid spacing of the mesh used in the simulation. Since a grid spacing of 1 to 1.7 \(µm\) was used in the simulations, the slip length ranged from 10 nm to 17 nm. Further details are available in Renbaum-Wolff et al. (2013b).

\(^b\) The surface tension corresponds to the surface tension of pure water at 293 K, which is the estimated lower limit of surface tension for raffinose-water and maltohexaose-water solutions. The viscosity determined in simulations increases with surface tension, so the lower limit of surface tension gives rise to the simulated lower limit of viscosity.

\(^c\) The predicted densities of raffinose and maltohexaose based on ACD/Labs are 1.8±0.1 and 1.9±0.1 g cm\(^{-3}\), respectively.

\(^d\) In cases where particles cracked and did not flow, the calculated lower limit of viscosity is independent of the contact angle between 20° and 100° (Renbaum-Wolff et al., 2013b). For the current study we used a contact angle of 90°, which falls within this range.

Table 4. Measured viscosities for the polyol and the saccharide-water mixtures studied here, with results from individual particles grouped by RH. The error associated with the rotational rheometer was not available, and so an error of 5 % has been used, greater than the stated error of 0.1 % reported for a similar rotational rheometer (Viscotester 550, Haake, Austria). For experiments using the bead-mobility technique, the mean is reported along with the 95 % confidence intervals. For experiments using the poke-and-flow technique, lower and upper limits of viscosity are reported, taking account of the 95 % confidence limits of the simulated lower and upper limits of viscosity for the group of particles studied at each RH. N/A represents not applicable.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Relative humidity (%)</th>
<th>Viscosity measurements</th>
<th>Technique</th>
<th>Mean</th>
<th>Lower limit</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methyl-1,4-butanediol</td>
<td><0.5</td>
<td>Bead-mobility</td>
<td>1.3e-1</td>
<td>8.7e-2</td>
<td>2.9e-1</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Butanetriol</td>
<td><0.5</td>
<td>Rotational rheometer</td>
<td>1.6e0</td>
<td>1.5e0</td>
<td>1.7e0</td>
<td></td>
</tr>
<tr>
<td>1,2,3,4-Butanetetrol</td>
<td><0.5</td>
<td>Bead-mobility</td>
<td>2.1e1</td>
<td>1.3e1</td>
<td>5.5e1</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-1,2,3,4-butaneetetrol</td>
<td><0.5</td>
<td>Bead-mobility</td>
<td>2.3e2</td>
<td>1.4e2</td>
<td>6.5e2</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>28</td>
<td>Poke-and-flow</td>
<td>N/A</td>
<td>1.3e3</td>
<td>7.7e4</td>
<td></td>
</tr>
<tr>
<td>Raffinose</td>
<td>85</td>
<td>Bead-mobility</td>
<td>1.9e-1</td>
<td>0.8e-1</td>
<td>5.2e-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Bead-mobility</td>
<td>4.3e0</td>
<td>1.7e0</td>
<td>1.2e1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>Poke-and-flow</td>
<td>N/A</td>
<td>7.4e2</td>
<td>4.7e4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>Poke-and-flow</td>
<td>N/A</td>
<td>1.4e4</td>
<td>1.0e6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Poke-and-flow</td>
<td>N/A</td>
<td>3.4e5</td>
<td>2.4e7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Poke-and-flow</td>
<td>N/A</td>
<td>6.0e8</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Maltohexaose</td>
<td>77</td>
<td>Poke-and-flow</td>
<td>N/A</td>
<td>4.3e3</td>
<td>1.9e5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>Poke-and-flow</td>
<td>N/A</td>
<td>7.6e3</td>
<td>3.7e6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Poke-and-flow</td>
<td>N/A</td>
<td>4.0e8</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Poke-and-flow</td>
<td>N/A</td>
<td>3.0e8</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>