Response to Co-Editor

We greatly appreciate this editor’s critical comments and suggestions, which have helped us improve the paper quality substantially. We have addressed all of the comments carefully as detailed below in our point-by-point responses. Our responses start with “R:”.

Comments to the Author:

Please further revise the paper considering the following comments:

Introduction section is too long. Many materials are not direly related to the topic of this study. Reorganize this section in the following way: First briefly discuss ILAPS roles in climate, especially ILAPS in snow. Then discuss what studies have been conducted on this specific topic, such as available field measurements and modeling treatments of these particles, using summarizing form, not listed by one study after another. Then point out knowledge gaps on this topic and why the present study is needed. And finally point out the goals of the present study.

R: We have simplified the introduction section, which became more related to the topic of this study based on the comments from the editor.

Avoid repetition or redundancy wherever possible. Some materials provided for reviewers’ information (that have been posted as response to reviewers ‘comments) do not necessarily be presented in the final version of the paper if these materials do not add much scientific value to the paper.

R: We have revised the final manuscript avoiding repetition and redundancy based on the comments from the editor.

Several paragraphs are too long to follow easily. Split into short ones for easy reading. Some very long sentences do not have the clean meaning and need to be fixed.

R: We have revised the long paragraphs into short ones.

Conclusion section needs to be polished. Avoid repeating statements that are already in the abstract.

R: We have revised the conclusion section more accurately to better reflect the topic of this study.

Polish the language and remove grammar issues.

R: We have made major revisions to polish the language and remove grammar issues of the manuscript.
Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey anthropogenic dust and carbonaceous aerosols across northern China

Xin Wang¹, Wei Pu¹, Yong Ren¹, Xuelei Zhang², Xueying Zhang¹, Jinsen Shi¹, Hongchun Jin¹, Mingkai Dai¹, Quanliang Chen³

¹ Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
² Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
³ College of Atmospheric Science, Chengdu University of Information Technology, and Plateau Atmospheric and Environment Laboratory of Sichuan Province, Chengdu 610225, China

Correspondence to: X. Wang (wxin@lzu.edu.cn)
Abstract.

A snow survey was carried out to collect 13 surface snow samples (10 for fresh snow, and 3 for aged snow), and 79 sub-surface snow samples in seasonal snow at 13 sites in January 2014 across northeastern China. A spectrophotometer combined with the chemical analysis were used to quantify separate snow particulate absorption by insoluble light-absorbing particles (ILAPs, e.g. black carbon, BC; mineral dust, MD; organic carbon, OC; and organic carbon, OC) in snow, and the snow albedo was measured by using a field spectroradiometer during this period. In this study, a new radiative transfer model (Spectral Albedo Model for Dirty Snow, or SAMDS) was then developed to simulate the spectral albedo reduction due to ILAPs in snow based on the asymptotic radiative transfer theory. The comparison between SAMDS and an existing model - the Snow, Ice, and Aerosol Radiation (SNICAR) model - indicates that good agreements in the model simulated the spectral albedos of pure snow derived from these models agree well, however, there is a slight tendency for the SNICAR model values to be lower than those of SAMDS model values when BC and MD were considered. The results indicate that given the measured BC, MD and OC mixing ratios of 100-5000 ng g\(^{-1}\), 2000-6000 ng g\(^{-1}\), and 1000-30000 ng g\(^{-1}\), respectively, in surface snow across northeastern China, SAMDS model produced a snow albedo in the range of 0.95-0.75 for the snow albedo of fresh snow at 550 nm with a snow grain optical effective radius (\(R_{\text{eff}}\)) of 100 \(\mu m\) is generally in a range of 0.95-0.75 by using SAMDS model. The snow albedo reduction due to spherical snow grains assumed as for aged snow due to spherical aged snow grains is gradually larger than fresh snow for such as Koch snowflake fractal snow grains, and hexagonal plates/columns snow grains associated with the increased BC in snow. For typically...
BC mixing ratios of 100 ng g$^{-1}$ in remote areas and 3000 ng g$^{-1}$ in heavy industrial areas across northern China, an effective radius of 100 μm, the snow albedo reduction caused by 100 ppb of for internal mixed BC mixing of BC and snow is XX, but only XX is lower by 0.005 and 0.036 than that for of external mixed BC mixing for hexagonal plates/columns snow grains with R_{eff} of 100 μm. A comparison between SAMDS and the Snow, Ice, and Aerosol Radiation (SNICAR) model indicated that the spectral albedos of pure snow derived from these models agreed well, however, a slight tendency for the SNICAR model values to become lower than SAMDS model values when BC and MD mixing ratios range from 1 to 5 μg g$^{-1}$ and 4 to 6 μg g$^{-1}$, respectively. The result also shows that the simulated snow albedos by both SAMDS and SNICAR agree well with the observed values at low ILAPs mixing ratios, but tend to be higher compared with surface observations at high ILAPs mixing ratios.

This study offers not only an explanation for the discrepancy of the snow albedo reduction between modeled and observed snow albedo reduction due to ILAPs in snow, but also demonstrates the enhancement of the model simulations of the snow albedo reduction by using the optical effective radii (R_{opt}) of snow grains than that the measured snow grain radii due to SMDAS and SNICAR models, especially in the case of near-infrared wavelengths. A survey was performed to collect 92 seasonal snow samples at 13 sites across northern China in January 2014, and the mixing ratios of Insoluble Light-Absorbing Particles (ILAPs, e.g. black carbon, organic carbon, and mineral dust (MD)) in seasonal snow were measured by using an integrating sphere/integrating sandwich spectrophotometer (ISSW), and the chemical analysis methods. Based on the surface measurements of ILAPs in snow, a new
radiative transfer model (Spectral Albedo Model for Dirty Snow, or SAMDS) is developed to simulate the spectral albedo reduction due to ILAPs in snow based on the asymptotic radiative transfer theory. We calculate that XX-XX %, and XX-XX % of snow albedo reduction in surface snow resides within the concentrations of BC and MD in the ranges of XX ng g, and XX ng g, respectively. A comparison between SAMDS and the SNICAR models indicated that the snow albedo can reduce 1-3%, 2-5%, and 2-4% due to ng g, XXX ng g, and xxx ng g of black carbon (BC), and mineral dust (MD) in snow. We note that the organic carbon (OC) is also another key parameter in affecting snow albedo of 1-5% due to XXX ppb in snow due to SDAMS model simulation. For a given shape (Koch snowflake, hexagonal plates/columns, and spheres), the snow albedo reduction due to spherical snow grains is gradually larger than Koch snowflake, and hexagonal plates/columns with the increased concentration of BC in snow. The internal mixing of BC in snow absorbs substantially higher than the external mixing at the wavelengths of 400 nm–1400 nm.

In addition to the BC and AD parameters in the Snow, Ice, and Aerosol Radiation (SNICAR) model, the OC content in snow is considered an initial parameter for calculating snow albedo through a new radiative transfer model (Spectral Albedo Model for Dirty Snow, or SAMDS). The spectral albedo of snow reduction caused by OC (20 μg g⁻¹) is up to a factor of 3 for a snow grain size of 800 μm compared to 100 μm. We find a larger difference in snow albedo levels between the model simulations and surface measurements for higher insoluble light-absorbing impurities (ILAPs) using the measured snow grain radii. Compared with the observed snow albedo, we also note that the optical effective radii (R_eff) of snow grains can significantly enhance the model simulations of snow albedo reduction than that the measured snow grain radii due to SMDAS and SNICAR models, especially in the case of near-infrared...
wavelengths.
Introduction

Mineral dust (MD), black carbon (BC) and organic carbon (OC) are three main types of insoluble light-absorbing particles (ILAPs) that play key roles in regional and global climate (Bond et al., 2013; Dang and Hegg Dang et al., 2014; Flanner et al., 2007, 2009; Hansen et al., 2005; IPCC, 2013; Li et al., 2016; McConnell et al., 2007; Pu et al., 2015 Jaffe et al., 1999). Anthropogenic dust (AD) is a major form of mineral dust. ILAPs deposited on snow have been found to shorten the snow cover season by decreasing the snow albedo and accelerating snow melt (Brandt et al., 2011; Flanner et al., 2007, 2009; Hadley and Kirchstetter, 2012). The AD-MD particles content can influence air quality and human health through emission, transport, removal, and deposit processes (Aleksandropoulou et al., 2011; Chen et al., 2013; Huang et al., 2014, 2015a, 2015b; Kim et al., 2009; Li et al., 2009; Mahowald and Luo, 2003; Zhang et al., 2005, 2015). AD-They-MD particles also act as cloud condensation nuclei that affect cloud formation (Coz et al., 2010; Givati and Rosenfeld, 2004; Rosenfeld et al., 2001) and deliver various trace nutrients to terrestrial and marine ecosystems (Acosta et al., 2011; Mahowald et al., 2005; Qiao et al., 2013). The Taklimakan and Gobi desert, and several other deserts are well known to be major dust sources across northern China, and MD particles produced in these deserts can be lifted up in the atmosphere and transported to the downwelling regions via wet and dry depositions (Che et al., 2011, 2013; Chen et al., 2013; Huang et al., 2008; Jaffe, et al., 1999; Wang et al., 2008, 2010a; Zhang et al., 2003). But recent studies indicated that the anthropogenic dust emissions from disrupted soils by human activities, such as deforestation, overgrazing, agricultural and industrial activities, are not well constrained (Aleksandropoulou et al., 2011; Tegen and Fung, 1995; Tegen et al., 2002, 2004; Thompson et al., 1988), which differs from natural MD originating from desert
regions (Che et al., 2011, 2013, 2015a; Goudie and Middleton, 2001; Li et al., 2012; Park and Park, 2014; Pu et al., 2015; Wallach and Fischer, 1970; Wang et al., 2008, 2010b). For instance, Kamani et al. (2015) estimated that MD due to anthropogenic dust activities accounts for 25% of dust aerosols using observational data from MODIS Deep Blue satellite products combined with a land-use fraction dataset (Ginoux et al., 2010). Anthropogenic dust originates primarily from urban and regional sources, especially during the winter. Recent studies indicated that anthropogenic MD dust influenced by anthropogenic activities has already been enriched with heavy metals and other toxic elements (Kamani et al., 2015; Li et al., 2013; Wang et al., 2015; Zhang et al., 2013). Northeastern China and surrounding regions are generally regarded as industrial areas most affected by human activities. Because anthropogenic dust emissions from disturbed soils are not well constrained, we define mineral dust from areas disrupted by human activities, such as deforestation, overgrazing, agricultural and industrial activities, as anthropogenic dust (Aleksandropoulou et al., 2011; Tegen and Fung, 1995; Tegen et al., 2002, 2004; Thompson et al., 1988), which differs from natural mineral dust originating from desert regions (Che et al., 2011, 2013, 2015a; Goudie and Middleton, 2001; Li et al., 2012; Park and Park, 2014; Pu et al., 2015; Wallach and Fischer, 1970; Wang et al., 2008, 2010b). This assumption is consistent with the results of a recent study by Huang et al. (2015a), who found that anthropogenic dust contributions to regional emissions in eastern China are 91.8%, with and 76.1% in India at 76.1% (e.g., Figure 10 in Huang et al., 2015a). This may be due to larger population densities, which are characterized by more intense human activity in eastern China and India (Guan et al., 2016; Huang et al., 2015a; Wang et al., 2013a; Zhang et al., 2013).
Compared to ADMD, carbonaceous aerosols, such as BC and OC, generated from the incomplete combustion of fossil fuels and from biomass burning are also major anthropogenic pollutants. ILAPs deposited on snow have been found to shorten the snow cover season by decreasing the snow albedo and accelerating snow melt (Flanner et al., 2007, 2009). Warren and Wiscombe (1980) found that a mixing ratio of 10 ng g\(^{-1}\) of soot in snow can reduce snow albedo levels by 1%. Light et al. (1998) determined that 150 ng g\(^{-1}\) of BC embedded in sea ice can reduce ice albedo levels by a maximum of 30% (Light et al., 1998). Among its main light-absorbing impurities, 1 ng g\(^{-1}\) of BC has approximately the same effect on the albedo of snow and ice at 500 nm as 50 ng g\(^{-1}\) of dust (Warren, 1982). Doherty et al. (2013) analyzed field measurements of vertical distributions of BC and other ILAPs in snow in the Arctic during the melt season and found significant melt amplification owing to an increased mixing ratio of BC by up to a factor of 5.

It is widely known that small snow albedo changes can have significant effects on global warming patterns, involving changes in snow morphology, sublimation, and melt rates (Brandt et al., 2011; Hadley and Kirchstetter, 2012; Warren and Wiscombe, 1985). Warren and Wiscombe (1980) found that a mixing ratio of 10 ng g\(^{-1}\) of soot in snow can reduce snow albedo levels by 1% (Warren and Wiscombe, 1980). Light et al. (1998) determined that 150 ng g\(^{-1}\) of BC embedded in sea ice can reduce ice albedo levels by a maximum of up to 30% (Light et al., 1998). 1 ng g\(^{-1}\) of BC has approximately the same effect on the albedo of snow and ice at 500 nm as 50 ng g\(^{-1}\) of dust on the albedo of snow and ice at 500 nm (Warren, 1982). Doherty et al. (2013) analyzed field measurements of vertical distributions of BC and other ILAPs in snow in the Arctic during the melt season and found significant melt amplification due to an
increased mixing ratio of BC by up to a factor of 5. Yasunari et al. (2015) suggested that the existence of snow darkening effect in the Earth system associated with dust, BC, and OCILAPs contributes significantly to enhanced surface warming over continents in northern hemisphere midlatitudes during boreal spring, raising the surface skin temperature by approximately 3–6 K near the snowline. Modeling soot in snow as an “external mixture” (impurities particles separated from ice particles), if it is actually located inside the ice grains as an “internal mixture”, may underestimate its true effect on albedo reduction by 50% (Warren and Wiscombe, 1985). Warren and Wiscombe (1985) pointed out that modeling soot in snow as an “external mixture” (impurities particles separated from ice particles), may underestimate the true effect of the impurities as a given reduction of albedo by about half as much soot, if the soot is instead located inside the ice grains as an “internal mixture”. Assuming internal rather than external mixing of BC in snow increases BC absorption coefficient by a factor of two and gained better agreement with empirical data (Cappa et al., 2012; Hansen and Nazarenko, 2004; Hansen et al., 2004; Cappa et al., 2012). Hansen et al. (2004) and Cappa et al. (2012) noted that for a given BC mass on snow albedo, the internal mixing of BC in snow is a better approximation than external mixing, whereas internal mixing increases the BC absorption coefficient by a factor of two, for better agreement with empirical data. Hadley and Kirchstetter (2012) also indicated that increasing the size of snow grains could decrease snow albedo and amplified the radiative perturbation of BC (Hadley and Kirchstetter, 2012). For a snow grain optical effective radius (R_{eff}) of 100 μm, the albedo reduction caused by 100 ng g$^{-1}$ of BC is 0.019 for spherical snow grains but only 0.012 for equidimensional nonspherical snow grains (Dang et al., 2016). Fierce et al. (2016) pointed out that BC that is coated with non-absorbing particles material absorbs more strongly than the
same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement is yet to be quantified (Fierce et al., 2016). A modeling study suggested that He et al. (2014) indicated that BC-snow internal mixing increases the albedo forcing by 40–60% compared with external mixing, and coated BC increases the forcing by 30–50% compared with uncoated BC aggregates, whereas Koch snowflakes reduce the forcing by 20–40% relative to spherical snow grains (He et al., 2014) using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model.

Climate models have indicated that the reduction in surface albedo caused by BC leads to global warming and nearly global melting of snow and ice (Hansen and Nazarenko, 2004). Recent modeling studies have estimated regional and global radiative forcing caused by ILAPs deposited on snow by reducing the surface albedo (Flanner, 2013; Flanner et al., 2007; Hansen and Nazarenko, 2004; Jacobson, 2004; Koch et al., 2009; Qian et al., 2015; Zhao et al., 2014). Flanner et al. (2012) demonstrated that the simulated global-mean fraction of BC residing within ice grains of surface snow increases the global BC/snow radiative forcing by 34–86% relative to paired control simulations that apply external optical properties to all BC. Bond et al. (2013) estimated the industrial-era climate forcing of BC through all forcing mechanisms to be approximately +1.1 W m$^{-2}$, with 90% uncertainty bounds confidence limits of +0.17 to +2.1 W m$^{-2}$. This value includes the net effect of BC on radiation, clouds, and snow albedo, which have been found to heavily impact the earth’s climate (Bond et al., 2013; IPCC, 2013; Li et al., 2016). Recent modeling studies have estimated regional and global radiative forcing caused by ILAPs deposited on snow by reducing the surface albedo (Flanner, 2013; Flanner et al.,
Climate models have indicated that the reduction in surface albedo caused by BC leads to global warming and nearly global melting of snow and ice (Hansen and Nazarenko, 2004). Regional forcing by BC contamination in snow-covered regions, e.g., the Arctic and Himalayas (0.6 and 3.0 W m\(^{-2}\), respectively), is comparable to carbon dioxide levels (1.5 W m\(^{-2}\)) in the atmosphere since the pre-industrial period (Flanner et al., 2007). The efficacy of radiative forcing due to BC deposited on snow has been estimated to be as high as 236\% (Hansen et al., 2005).

Although AD-MD is a less efficient absorber than BC and OC, in situ field campaigns measurements on collecting of seasonal snow samples across northern China and the Himalayas have shown high AD-MD loadings (Guan et al., 2015; Kang et al., 2016; Wang et al., 2012; Wang et al., 2013a). In some regions, especially areas with thin and patchy snow cover and mountainous regions, soil dust significantly decreases the snow albedo, exceeding the influence of BC. However, models did not capture these potentially large sources of local dust in snowpack and may overestimate BC forcing processes (Painter et al., 2007, 2010, 2012). Recently, several seasonal snow collection campaigns were performed across northern China, the Himalayas, North America, Greenland and the Arctic (Cong et al., 2015; Dang and Hegg, 2014; Doherty et al., 2010, 2014; Huang et al., 2011; Xu et al., 2009, 2012; Zhao et al., 2014). However, determining the effects of light-absorbing impurities (LAPs) on snow albedo reduction continues to involve be challenging present numerous challenges (Huang et al., 2011; Wang et al., 2013a, 2015; Ye et al., 2012; Zhang et al., 2013a).
To date our knowledge, there are only a few studies that compared modeled and observed snow albedo reduction due to ILAPs in snow (Dang et al., 2015; Flanner et al., 2007, 2012; Grenfell et al., 1994; Liou et al., 2014; Warren and Wiscombe Warren et al., 1980Ref). We analyzed observed ILAPs in seasonal snow through a Chinese survey in 2014 following a snow campaign held in 2010 across northern China carried out by Huang et al. (2011). The area is seasonally covered with snow for approximately 3–6 months from late fall to early spring (Wang et al., 2014). Our sampling sites were located across northeastern China and were positioned far from the northern boundaries of desert regions, such as the Gobi Desert in southern Mongolia and the Badain Jaran and Tengger Deserts in northwestern China (Li et al., 2009). Zhang et al. (2013), using a positive matrix factorization (PMF) receptor model, showed that industrial pollution sources are a major factor affecting seasonal snow across northeastern China. Huang et al. (2015a) developed a new technique for distinguishing anthropogenic dust from natural dust based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land-use dataset. The authors found that the annual mean contribution of anthropogenic dust in eastern China is approximately 91.8% owing to recent urbanization and human activity (Huang et al., 2015a). In this paper, To gain some in-depth knowledge on this topic In this study, a 2014 snow survey was first performed across northeastern China to analyze light absorption of ILAPs in seasonal snow, and modeling studies were then conducted to compare snow albedo reduction due to various assumptions of internal/external mixing of BC in snow and different snow grain shapes. This paper is organized as follows. In section 2, we present the experimental procedures, including a new radiative transfer model (Spectral Albedo Model for Dirty Snow, or
SAMDS. After describing our methods (Sect. 2) in section 3, we demonstrate the climatic effects of light absorption by snowpack containing ILAPs (including BC, OC, and AD) on seasonal snow across northeastern China for less snowfall year through a Chinese survey in 2014 following the snow surveys held in 2010 and 2012 across northern China carried out by Huang et al. (2011), and Ye et al. (2012). Then, a comparison of the snow albedo reduction under clear sky conditions measured by using a field spectroradiometer and simulated by collected through surface measurements and the Snow, Ice, and Aerosol Radiation (SNICAR) model and SAMDS model based on two-stream radiative transfer solution is present. The SAMDS model is also used for the computation of light absorption by complex ILAPs in snow for application to analyze the effects of aggregates and snow grain shapes (fractal particle grains, hexagonal plates/columns, and spheres) with the snow albedo reduction due to and internal and/or external mixing structures of BC and snow on snow albedo. Finally, conclusions are given in section 4, across northeastern China, which are highly correlated with industrial pollution resulting from human activity. Therefore, ILAPs in seasonal snow are examined during a snow campaign, and the snow albedo is measured using an HR-1024 field spectroradiometer and simulated using two radiative transfer models (i.e., SNICAR and SAMDS).

2 Experimental procedures

2.1 Snow field campaign in January 2014

In 2014, there was less snowfall in January 2014 than in previous years (e.g., 2010), and thus only 92 snow samples (13 surface snow including 10 fresh and 3 aged ones, and 79 sub-surface snow samples) at 13 sites were collected during this snow survey.
There were 10 fresh snow, and 3 aged snow for surface snow. In 2014, there was less snowfall in January than in previous years (e.g., 2010), and only 92 snow samples at 43 sites were collected. The snow sampling sites in this study were numbered starting at 90 (see Figure 1 and Table 1), following which are numbered in chronological order from followed by Wang et al. (2013a), and Ye et al. (2012). Samples from sites 90-93 were collected from grassland and cropland areas in Inner Mongolia. Sites 94-98 and sites 99-102 were located in the Heilongjiang and Jilin provinces, respectively, which were the most heavily polluted areas in northern China during winter. The snow sampling procedures were similar to those used in the previous survey conducted in 2010 across northern China (Huang et al., 2011). To prevent contamination, the sampling sites were positioned 50 km from cities and at least 1 km upwind of approach roads or railways; the only exception was site 101, which was positioned downwind and close to villages. Two vertical profiles of snow samples (“left” and “right”) were collected through the whole depth of the snowpack at all the sites to reduce the possible contamination by artificial effects during the sampling process, and we note that the dusty or polluted layers were separately collected during the sampling process. We gathered the “left” and “right” snow samples at vertical intervals of snow samples every 5 cm for each layer from the surface to the bottom unless a particularly dusty or polluted layer was present. All of the datasets of $C_{\text{equiv}}^{\text{BC}}$, $C_{\text{equiv}}^{\text{EC}}$, and $C_{\text{est}}^{\text{BC}}$ in seasonal snow listed in Table 1 are the average values from the two adjacent snow samples through the whole depth of the snowpack. Snow grain sizes (R_m) were measured by visual inspection on millimeter-gridded sheets viewed through a magnifying glass. The snow samples were kept frozen until the filtration process was initiated. In a temporary lab based in a hotel, we quickly melted the snow samples in a microwave, let them settle for 3-5
minutes, and then filtered the resulting water samples through a 0.4-μm nuclepore filter to extract particulates. and

2.2 Chemical speciation

The major water-soluble ions and trace elements in surface snow samples during this snow survey have already been investigated by Wang et al. (2015). However, the importance of ILAPs in seasonal snow during this survey has not been discussed shown yet, which will be addressed below. For the importance of the ILAPs in snow, we will present the contribution and discuss the potential the emission sources of the ILAPs together with suites of other corresponding chemical constituents in seasonal snow. For instance, Hegg et al., (2009, 2010) shown that analysed the source attribution of the ILAPs in arctic snow by using a positive matrix factorization (PMF) model consisted with trajectory analysis and satellite fire maps. The chemical analysis of snow samples from the 2014 Chinese survey was described by Wang et al. (2015), and it was similar to the analysis applied for snow samples described by Hegg et al. (2009, 2010). Briefly, major ions (SO$_4^{2-}$, NO$_3^-$, Cl$^-$, Na$^+$, K$^+$, and NH$_4^+$) were analyzed with an ion chromatograph (Dionex, Sunnyvale, CA), and trace elements of Fe and Al were measured by inductively coupled plasma mass spectrometry (ICP-MS). These analytical procedures have been described elsewhere (Yesubabu et al., 2014). In this paper, the major ions are used to retrieve the sea salt components aerosol and biosmoke potassium (K$^+$biosmoke)K$^+$biosmokeK$^+$biosmoke which datasets were not shown by Wang et al. (2015). However, only SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$ were reprinted from Wang et al. (2015) to reveal the mass contribution of the ILAPs and the chemical constituents in seasonal snow during this snow survey. Previous studies have revealed considerable variations in iron (Fe) of
2.5% in dust (Lafon et al., 2006), although Al is more stable than Fe in the earth’s crust. Hence, we retrieved the mass concentration of minerals MD via the Al concentration assuming a fraction of 7% when estimating the MD dust levels (Arhami et al., 2006; Lorenz et al., 2006; Zhang et al., 2003). Sea salt was estimated following the method presented in Pio et al. (2007):

\[
\text{Sea salt} = Na_{SS}^+ + Cl^- + 0.12Na_{SS}^+ + 0.038Na_{SS}^+ + 0.038Na_{SS}^+ + 0.25Na_{SS}^+ ,
\]

where subscript \(Ss \) means sea salt sources, where \(Na_{SS} \) was calculated using the following formula (Hsu et al., 2009):

\[
Na_{SS} = Na_{Total} - Al \times (Na/Al)_{Crust} ,
\]

Following Hsu et al. (2009), the contribution of \(K^+_{\text{Biosmoke}} \) was determined using the following equations:

\[
K^+_{\text{Biosmoke}} = K_{Total} - K_{Dust} - K_{SS},
\]

\[
K_{Dust} = Al \times (K/Al)_{Crust} ,
\]

\[
Na_{SS} = Na_{Total} - Al \times (Na/Al)_{Crust} ,
\]

\[
K_{SS} = Na_{SS} \times 0.038,
\]

where \(K^+_{\text{Biosmoke}} \), \(K^+_{\text{Biosmoke}} \), \(K^+_{\text{Dust}} \), and \(K_{SS} \) refer to biosmoke potassium, dust-derived potassium, and sea-salt-derived potassium, respectively. Equations (4), (5), and (6) were derived from Hsu et al. (2009) and Pio et al. (2007).

2.3 Spectrophotometric analysis

Recent studies indicated that the light absorption by MD should be more sensitive to the presence of strongly absorbing iron oxides such as hematite and goethite than to other minerals (Alfaro et al., 2004; Sokolik and Toon, 1999). As Alfaro et al. (2004) indicated that the light absorption by mineral dust MD should be highly sensitive to
their content in iron oxides (hematite, goethite, etc.) based on Mie theory. Sokolik and Toon, (1999) also pointed out that computations performed with optical models show that the absorbing potential of mineral dust is more sensitive to the presence of strongly absorbing iron oxides such as hematite and goethite than to other minerals (Sokolik and Toon, 1999). Thus, it is now possible to assess the absorption properties of mineral dust by using iron oxide content (Bond et al., 1999). In this study, the iron (Hereinafter simply “Fe” the same as Fe) in seasonal snow is assumed to be originating from mineral dust during this survey, which followed the procedures performed by Wang et al., (2013a). Assuming that iron originated from mineral dust in seasonal snow, we measured the mixing ratios of BC and OC using an integrating sphere/integrating sandwich spectrophotometer (ISSW), which was first described by Grenfell et al. (2011) and used by Doherty et al. (2010, 2014) and Wang et al. (2013a) to measure mixing ratios of BC and OC. The equivalent BC (C^equiv_{BC}), maximum BC (C^max_{BC}), estimated BC (C^est_{BC}), fraction of light absorption by non-BC ILAPs (f^est_{non-BC}), and absorption Ångstrom exponent of all ILAPs –(Â) were described by Doherty et al. (2010). Previous studies have concluded that light-absorbing particles are primarily derived from BC, OC, and Fe. The mass loadings of BC (L_{BC}) and OC (L_{OC}) and OC were calculated using the following equation:

\[\tau_{\text{tot}}(\lambda) = \beta_{\text{BC}}(\lambda) \times L_{\text{BC}} + \beta_{\text{OC}}(\lambda) \times L_{\text{OC}} + \beta_{\text{Fe}}(\lambda) \times L_{\text{Fe}}. \] (7)

Here, \(\tau_{\text{tot}}(\lambda) \) refers to the measured optical depth, \(L_{\text{BC}} \) and \(L_{\text{OC}} \) can be determined from this equation assuming that the mass absorption coefficients mass absorption efficiencies (MACs) for BC, OC, and Fe are 6.3, 0.3, and 0.9 m² g⁻¹, respectively, at 550 nm and that the absorption Ångstrom exponents (Â or AAE) for
BC, OC and Fe are 1.1, 6, and 3, respectively (e.g., Equations (2) and (3) in Wang et al., 2013a).

2.4 Aerosol optical depth and snow albedo measurements

The Microtops II Sun photometer has been widely used to measure aerosol optical depth (AOD) in recent years (More et al., 2013; Porter et al., 2001; Zawadzka et al., 2014), and is recognized as a very useful tool for validating aerosol retrievals from satellite sensors. We used a portable and reliable Microtops II Sun photometer at wavelengths of 340, 440, 675, 870, and 936 nm instead of the CE318 sun tracking photometer (Holben et al., 2006) to measure the in situ surface aerosol optical depth (AOD). Ichoku et al. (2002b) and Morys et al. (2001) provided a general description of the Microtops II Sun photometer’s design, calibration, and performance. The Microtops II Sun photometer has been widely used in recent years (de Mourgues et al., 1970; Porter et al., 2001; Zawadzka et al., 2014) and is recognized as a very useful tool for validating aerosol retrievals from satellite sensors. A Microtops II Sun photometer was calibrated following the methods presented by Morys et al. (2001) and Ichoku et al. (2002b). To better understand the background weather conditions in the local atmosphere during this snow survey, we used a portable and reliable Microtops II Sun photometer at wavelengths of 340, 440, 675, 870, and 936 nm instead of the CE318 sun tracking photometer to measure the surface AOD in this study. A Microtops II Sun photometer was used during the 2014 Chinese survey in this study. AOD measurements were collected in cloud-free conditions between 11:00 am and 1:00 pm (Beijing local time) to prevent the effects of optical distortions due to large solar zenith angles. We used Then, the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua and Terra satellites was used to retrieve the
AOD and fire spot datasets (Kaufman et al., 1997; Zhang et al., 2013b; Zhao et al., 2014). The retrieved MODIS AOD is reliable and accurate when applied to three visible channels over vegetated land and ocean surfaces (Chu et al., 2002; Ichoku et al., 2002a; Remer et al., 2002). Fire locations are based on data provided by the MODIS FIRMS system from October 2013 to January 2014. The land-cover types (Figures 6 and 7) were obtained from the Collection 5.1 MODIS global land-cover type product (MCD12C1) at a 0.05° spatial resolution and included 17 different surface vegetation types (Friedl et al., 2010; Loveland and Belward, 1997).

Snow albedo plays a key role in affecting the energy balance and climate in the cryosphere (e.g. Hadley and Kirchstetter, 2012; Liou et al., 2014; Warren and Wiscombe, 1985). Wright et al. (2014) indicated that the spectral albedo measured by using an Analytical Spectral Devices (ASD) Spectroradiometers at 350-2200 nm is in agreement with albedo measurements at the baseline Surface Radiation Network (BSRN). Wuttke et al. (2006a) pointed out that the spectroradiometer instrument is considered as the most capable, rapid, and mobile to conduct spectral albedo measurements during short time periods, especially in the very cold regions (e.g. in the Arctic). The major advantage is the more extensive wavelength range, and the cosine error is less than 5% for solar zenith angles below 85° at the wavelength of 320 nm have been used to measure the surface spectral albedo (Kotthaus et al., 2014; Wright et al., 2014; Wuttke et al., 2006a, b). In the 2014 Chinese survey this study, snow albedo measurements were obtained using a HR-1024 field spectroradiometer (SVC, Spectra Vista Corporation, Poughkeepsie, NY, USA). This instrument has a spectral range of 350-2500 nm with resolutions of 3.5 nm (350–1000 nm), 9.5 nm (1000–1850 nm), and 6.5 nm (1850–2500 nm). Normally, the relative position of the
A spectroradiometer is at a distance of 1m from the optical element for the active field of view. According to previously described procedures, we measured the snow albedo 1 m above the ground (Carmagnola et al., 2013). A standard “white” reflectance panel with a VIS–SWIR broadband albedo of 0.98 (Pλ) was used to measure the reflectance spectra along with the target. The reflectance spectra of surface snow (Rs) and the standard panel (Rp) were measured at least ten times. Then, the snow albedo (α) was calculated as follows:

\[\alpha = \left(\frac{R_s}{R_p} \right) \times P_\lambda. \]

The nominal field of view (FOV) lens is 8° to enable the instrument to look at different size targets. In order to receive more direct solar radiation, the direction of the instrument was oriented to the Sun: horizon angles to measure snow albedo in order to receive more direct solar radiation. The small size of the fore optics greatly reduces errors associated with instrument self-shadowing. Even when the area viewed by the fore optic is outside the direct shadow of the instrument, the instrument still blocks some of the illumination (either diffuse skylight or light scattered off surrounding objects) that would normally be striking the surface under observation for measuring full-sky-irradiance throughout the entire 350–2500 nm wavelengths. Further information on HR-1024 field spectroradiometer use and on the calibration procedure can be found in Wright et al. (2014). The measured solar zenith angles and the other parameters datasets used to simulate snow albedo in this study have been labeled in Figure 11.

2.5 Model simulations

BC and dust-MD sensitivity effects on the snow albedo simulated by the Snow, Ice, and Aerosol Radiation (SNICAR) model have been validated through recent
simulations and field measurements (Flanner et al., 2007, 2009; Qian et al., 2014; Zhao et al., 2014). We used the offline SNICAR model to simulate the reduction in surface snow albedo resulting from ILAP S contamination (Flanner et al., 2007), and we compared the results with our spectroradiometer surface measurements. The SNICAR model calculates the snow albedo as the ratio of the upward and downward solar flux at the snow surface. The measured parameters, including the measured snow grain radius (R_m), snow density, snow thickness, solar zenith angle θ, and mixing ratios of BC and ADMID, were used to run the SNICAR model under clear sky conditions. The visible and near-infrared albedos of the underlying ground were 0.2 and 0.4, respectively, as derived from MODIS remote sensing. The mass absorption cross section (MAC) of BC was assumed to be 7.5 m2 g$^{-1}$ at 550 nm.

The Spectral Albedo Model for Dirty Snow (SAMDS) based on asymptotic radiative transfer theory was used for calculating spectral snow albedo as a function of the snow grain radius, the mixing ratios of ILAPs (BC, ADMID, and OC), and mass absorption efficiencies MACs of impurities was used and is based on asymptotic radiative transfer theory. A detailed description of asymptotic analytical radiative transfer theory for snowpackSAMDS was presented by in Zhang et al. (2017). This model explicitly considers (i) mixing states between impurities and snow grains, (ii) the irregular morphology of snow grains and aerosol particles, (iii) specific mineral compositions and size distributions of dust in snow, (iv) aging processes of snow grains and soot aggregates, and (v) multilayers for studying vertical distributions of snow grains and impurities.

Briefly, the surface albedo can be calculated using the following asymptotic approximate analytical solution derived from radiative transfer theory (Kokhanovsk and Zege, 2004; Rozenberg, 1962; Zege et al., 1991):
$$R_d(\lambda) = \exp(-4S(\lambda)\mu(\nu_0)).$$ \hspace{1cm} (9)

Here, $R_d(\lambda)$ is the plane albedo, ν_0--is the solar zenith angle, and $\mu(\nu_0)$ refers to the escape function in radiative transfer theory; and λ--is be parameterized following Kokhanovsky and Zege (2004):

$$\mu(\nu_0) = \frac{3}{\pi}(1+2\cos \nu_0),$$ \hspace{1cm} (10)

where λ is the wavelength, $S(\lambda)$--is the similarity parameter, and

$$S(\lambda) = \sqrt{\frac{\sigma_{abs}}{3\sigma_{ext}(1-g)}}.$$ \hspace{1cm} (11)

Here, σ_{abs} and σ_{ext}--are the absorption and extinction coefficients, respectively, and $1-g$ is the asymmetry parameter (the average cosine of the phase function of the medium).

According to Equations (18) and (25) in Kokhanovsky and Zege (2004), the extinction coefficients of particles can be expressed as follows:

$$\sigma_{ext} = \frac{l_{tr}}{1-g} = \frac{3C_v}{2r_{eff}},$$ \hspace{1cm} (12)

where l_{tr} is the photon transport path length, C_v is the volumetric snow particle concentration, and r_{eff} is the effective grain size, which is equal to the radius of the volume-to-surface equivalent sphere: $r_{eff} = \frac{3V}{4\pi A}$, where V and A--are the average volume and average cross-sectional (geometric shadow) area of snow grains, respectively.

The absorption coefficient σ_{abs} in Equation (11) for arbitrarily shaped and weakly absorbing large grains is proportional to the volume concentration $(Kokhanovsky and Zege, 2004)$:
\[\sigma_{\text{abs}} = B \cdot \frac{4\pi k(\lambda)}{\lambda} \cdot C_v, \]

(13)

where \(k(\lambda) \) is the imaginary component of the complex refractive index for ice, and \(B \) is a factor that is only dependent on the particle shape. The theory based on the ray-optics approach shows that \(g \) in Equation (11) and \(B \) in Equation (13) are 0.89 and 1.27 for spheres, 0.84 and 1.50 for hexagonal plates/columns, and 0.75 and 1.84 for fractal grains, respectively.

The total absorption coefficient, \(\sigma_{\text{abs}} \), can be derived from the absorption by snow, \(\sigma_{\text{abs}}^{\text{snow}} \), and the absorption by light-absorbing impurities (LAPs) such as dust and OC (organic carbon):

\[\sigma_{\text{abs}} = \sigma_{\text{abs}}^{\text{snow}} + \sigma_{\text{abs}}^{\text{dust}} + \sigma_{\text{abs}}^{\text{BC}} + \sigma_{\text{abs}}^{\text{MD dust}} + \sigma_{\text{abs}}^{\text{OC}}. \]

(14)
The hemispherical reflectance with a zenith angle ν_0 can be expressed as follows:

$$R_d(\lambda) = \exp(- \frac{4B}{9(1-g)} \cdot \frac{2\pi r_{\text{eff}}}{\lambda} \cdot k(\lambda) + \frac{p_{\text{Ice}} - 2r_{\text{eff}}}{9(1-g)} \cdot \text{MAC}_{\text{abs}}^{\text{BC}} \cdot C_{\text{BC}}^* + \frac{p_{\text{Ice}} - 2r_{\text{eff}}}{9(1-g)} \cdot \text{MAC}_{\text{abs}}^{\text{dustMD}} \cdot C_{\text{dustMD}}^* + \frac{p_{\text{Ice}} - 2r_{\text{eff}}}{9(1-g)} \cdot \text{MAC}_{\text{abs}}^{\text{BC}} \cdot C_{\text{BC}}^* + \frac{p_{\text{Ice}} - 2r_{\text{eff}}}{9(1-g)} \cdot \text{MAC}_{\text{abs}}^{\text{OC}} \cdot C_{\text{OC}}^* \cdot \frac{3}{7} (1+2 \cos \nu_0))$$

$$\exp(- \sqrt{94.746 \cdot \frac{r_{\text{eff}}}{\lambda} \cdot k(\lambda) + 5.163 \cdot \sqrt{94.746 \cdot \frac{r_{\text{eff}}}{\lambda} \cdot k(\lambda) + 5.163} \cdot \text{MAC}_{\text{abs}}^{\text{BC}} \cdot C_{\text{BC}}^* + \text{MAC}_{\text{abs}}^{\text{dustMD}} \cdot C_{\text{dustMD}}^* + \text{MAC}_{\text{abs}}^{\text{OC}} \cdot C_{\text{OC}}^* \cdot (1+2 \cos \nu_0))$$

, for spherical grains;

$$\exp(-4.95 \cdot \sqrt{\pi \cdot r_{\text{eff}} \cdot k(\lambda) + \alpha \cdot C_{\text{dustBC}}^* + \beta \cdot C_{\text{dustMD}}^* + \chi \cdot C_{\text{OC}}^* \cdot (1+2 \cos \nu_0))$$

, for hexagonal grains;

$$(15)$$

$$\exp(-4.38 \cdot \sqrt{\pi \cdot r_{\text{eff}} \cdot k(\lambda) + \alpha \cdot C_{\text{dustBC}}^* + \beta \cdot C_{\text{dustMD}}^* + \chi \cdot C_{\text{OC}}^* \cdot (1+2 \cos \nu_0))$$

, for fractal grains.
A detailed description of asymptotic analytical radiative transfer theory for snowpack was presented by Zhang et al. (2016). Previous studies have also shown that the spectral snow albedo is more sensitive to snow grain size and light conditions than BC contamination and snow depths at near-infrared wavelengths (Warren, 1982). Therefore, the snow grain optical effective radius (R_{eff}) was retrieved based on the spectral albedo measured at $\lambda=1.3$ μm (Table 4), where snow grain size dominates the snow albedo variations and the effects of light-absorbing particles (ILAPs) at this wavelength are negligible (Warren and Wiscombe, 1980).

3 Results

3.1 The spatial distribution of AOD

The AOD is a major optical parameter for aerosol particles and a key factor affecting global climate (Holben et al., 1991, 2001, 2006; Smith et al., 2014; Srivastava and Bhardwaj, 2014). Most of the snow samples were collected in the afternoon at the Aqua-MODIS (13:30 LT) overpass time in order to compare the local AODs at the sampling sites by using a spectroradiometer with the satellite remote sensing. The AODs spatial distribution derived from the Aqua-MODIS satellite over northern China from October to January associated with sampling site numbers is shown in Figure 1 during this snow survey. For most of the snow samples collected in the afternoon at the Aqua-MODIS (13:30 LT) overpass time, the averaged spatial AOD distribution was derived from the Aqua-MODIS satellite “Aerosol” product during the sampling period across northern China. The AOD spatial distribution over northern China is shown in Figure 1 for the period from October to January. The average AOD in the studied area ranged from 0.1 to 1.0 and exhibited strong spatial inhomogeneity. The largest AOD values (up to approximately 1.0) retrieved from the MODIS...
satellite were associated with anthropogenic pollution over northeastern China during the 2014 sampling period. These large values, which exceeded 0.6, were related to local air pollution from industrial areas (Che et al., 2015b; Wang et al., 2010b). In contrast, the MODIS-Aqua results indicate that the smallest AODs values (as low as 0.1) at 550 nm were found over the Gobi Desert in Inner Mongolia and were related to strong winter winds. Similar patterns in the retrieved MODIS AOD were found by Zhao et al. (2014) and Zhang et al. (2013b). Although previous studies have indicated that AODs values in northeastern China are among the highest in East Asia (Ax et al., 1970; Bi et al., 2014; Che et al., 2009; Routray et al., 2013; Wang et al., 2013b; Xia et al., 2005, 2007), field experiments of aerosol optical properties across northeastern China have been limited. Compared with the retrieved AOD by the remote sensing, the surface measurements of AOD were also conducted during this snow survey. Generally, the measured AOD were gradually increased higher from Inner Mongolia regions moved to the industrial areas across northeastern China. To evaluate the accuracy of the AODs, in situ AOD measurements were collected during the snow sampling period in January 2014. The in situ AOD measurements were generally consistent with the spatial AOD distribution retrieved from MODIS across northern China, although the retrieved AOD was slightly higher than that retrieved from the in situ measurements in the study area. In Inner Mongolia, the average AOD was less than 0.25 for sites 1-XX90 to 6-XX93 under clear sky conditions. We found large discrepancy variations of 40-50% in the same area within the 1-hour measurements collected from sites 6a-95aXX and 6bXX95b, which could be possibly these variations were correlated with regional biomass burning processes. However, AODs exceeded 0.3 at sites 9-XX98 and 42XX101, which were significantly influenced by anthropogenic air pollution from industrial areas across
northern China. MODIS active fires are often spatially distributed over northeastern China and mainly resulted from human activities during colder seasons.

3.2 Sampling statistics—Contributions to light absorption by ILAPs

Generally, we only collected the aged surface snow samples were collected at in three sites, while fresh surface snow samples were collected in the other sites during this snow survey conducted in January 2014. C_{BC}^{est}, C_{BC}^{max}, C_{BC}^{equiv}, $C_{\text{non-BC}}^{\text{est}}$, $f^{\text{est}}_{\text{non-BC}}$, $f^{\text{est}}_{\text{non-BC}}$, A_{tot} and snow parameters, such as snow depth, snow density, measured snow grain radius (R_m), and snow temperature, are given in Table 1 and Figure 3 for each snow layer following Wang et al. (2013a). Average C_{BC}^{est}, C_{BC}^{max}, C_{BC}^{equiv}, and $C_{\text{non-BC}}^{\text{est}}$ values were calculated using “left” and “right” samples for each layer. In Inner Mongolia, the snow cover was thin and patchy in Inner Mongolia, and the average snow depth at sites 90, 91, 93, and 94 was less than 10 cm, which was significantly smaller than those (13 to 20 cm) at sites 95-97 near the northern border of China. The average snow depth was less than 10 cm from sites 90, 91, 93, and 94, which are significantly lower than that near the northern border of China, ranging from 13 to 20 cm at sites 95-97. The snow samples were collected from drifted snow in Inner Mongolia, and the mass loadings of ILAPs in seasonal snow are mainly due to blowing soil dust. Therefore, the vertical profiles of snow samples mixed with blowing soil from these sites are insufficient to represent the seasonal evolution of wet and dry deposition to snow (Wang et al., 2013a). However, the light absorption of ILAPs is still dominated by OC in these regions, which will be has been illustrated in the following section, which are slightly lower than that near the northern border of China, ranging from 13 to 20 cm at sites 95-97. The snow cover
was thin and patchy in Inner Mongolia, and the average snow depth was less than 10 cm from sites 90, 91, 93, and 94, which slightly higher values near the northern border of China, ranging from 13 to 20 cm at sites 95-97. The maximum snow depth was found to be 46 cm at site 102 inside a forest near the Changbai Mountains. Snow depth varied from 13 to 46 cm at sites 98 to 102 with an average of 27 cm. The maximum snow depth of 46 cm at site 102 was found in a forest near the Changbai Mountains, averaging 27 cm and varying from 13 to 46 cm at sites 98 to 102. Because less snow fell during the 2014 snow survey period than that in 2010, the surface snow samples grain radius varied considerably from 0.07 to 1.3 mm. The snow grain size increased with the snow depth from the surface to the bottom and was larger than that previously recorded in previous studies because of snow melting by solar radiation and the ILAPs (Hadley and Kirchstetter, 2012; Motoyoshi et al., 2005; Painter et al., 2013; Pedersen et al., 2015). The snow density exhibited little geographical variation across northern China at 0.13 to 0.38 g cm⁻³. High snow densities were resulted from melting or snow aging. Similar snow densities have been found in the Xinjiang region in northern China (Ye et al., 2012).

In this study site 90, we only collected one layer of snow samples from central Inner Mongolia, and the BC mixing ratio was 3304 ng g⁻¹ from aged snow. Along the northern Chinese border at sites 91-95, contamination in the cleanest snow ranged from 3027 to 260 ng g⁻¹, with only a few values exceeded 200 ng g⁻¹. The non-BC value varied remarkably from 29 to 78%, although BC was still a major absorber in this region. Heavily polluted sites were located in industrial regions across northeastern China (sites 99-102). The surface snow BC contamination in this region ranged from 51008 to 3654700 ng g⁻¹, and the
highest $C_{\text{BC}}^{\text{est}}$ in the sub-surface layer of the four sites (also check the sites and the values) was 2900882 ng g$^{-1}$ (in Table 1). In addition, the fraction of total particulate solar absorption due to $f_{\text{non-BC}}^{\text{est}}$ was typically 35-74%, indicating significant light-absorbing contributions by that light absorption in snow is mainly attributable to OC and ADMD from human activity in the heavily polluted areas. \tilde{A}_{tot} ranged from 2.1 to 4.8. A higher \tilde{A}_{tot} is a good indicator of soil dust, which is primarily driven by the composition of mineral or soil dust. In contrast, a lower \tilde{A}_{tot} of 0.8-1.2 indicates that ILAPs light-absorbing particulates in the snow are dominated by BC (Bergstrom et al., 2002; Bond et al., 1999).

To better understand the BC distribution in seasonal snow across northern China, an the spatial distribution of interannual comparison of $C_{\text{BC}}^{\text{est}}$ in the surface and average snow measured during this snow 2010 and 2014 Chinese surveys was performed, and the results are shown in Figure 4 and Table 2. The spatial distributions of $C_{\text{BC}}^{\text{est}}$ in the surface and average snow measured using an the ISSW spectrophotometer during the 2014 survey generally ranged from 502 to 3651-3700 ng g$^{-1}$ and 602 to 160035 ng g$^{-1}$, with the medium values of 260 ng g$^{-1}$ and 260 ng g$^{-1}$, respectively. These variations of $C_{\text{BC}}^{\text{est}}$ were very similar to those of the previous snow campaign as shown in Figure 4 (Wang et al., 2013a), although they were much higher than those in the Xinjiang region of northwestern China (Ye et al., 2012), along the southern edge of the Tibetan Plateau (Cong et al., 2015), and across North America (Doherty et al., 2014). In the 2014 Chinese survey, we only collected one layer of snow samples from central Inner Mongolia, and the BC mixing ratio was 334 ng g$^{-1}$ in aged snow.
Along the northern Chinese border at sites 91-95, BC contamination in the cleanest snow ranged from 27 to 260 ng g\(^{-1}\), only a few values exceeded 200 ng g\(^{-1}\). The \(f_{\text{nonBC}}\) value varied remarkably from 29 to 78\%, although BC was still a major absorber in this region. Heavily polluted sites were located in industrial regions across northeastern China (sites 99-102). The surface snow BC in this region ranged from 508 to 3651 ng g\(^{-1}\), and the highest BC in the sub-surface layer of the four sites was 2882 ng g\(^{-1}\). In addition, the fraction of total particulate solar absorption due to BC was typically 35-74\%, indicating that light absorption in snow is mainly attributable to OC and AD from human activity.

Figure 5 compares \(C_{\text{BC}}\) values measured via the ISSW method with the calculations during 2010 (Wang et al., 2013a) and 2014 snow surveys. Ideally, the \(C_{\text{BC}}\) content calculated using Equation (7) should be equal to that measured via the ISSW method. The two results agreed very well \((R^2=0.99)\), indicating that Equation (7) worked well for this measurement in Figure 5. Thus, the \(C_{\text{BC}}\) content measured via the ISSW method was found to be reasonable and reliable. To compare with the mixing ratio of OC calculated from Equation (7), we used the calculated \(C_{\text{BC}}\) mixing ratios listed in Figures 6-78 and Table 23 in the following sections.

3.3 Emission factors

Typically, chemical components in seasonal snow originate from different emission sources. For example, OC and BC are emitted from the incomplete combustion of fossil fuels and biofuels. K\(^{+}\) is a good tracer of biomass burning (Cachier et al., 1995), whereas NO\(_3^-\) and SO\(_4^{2-}\) originate primarily from diesel oil and gasoline combustion and from coal burning with sulfur. NH\(_4^+\) is an important indicator of fertilizer used in
agricultural processes. OC/BC ratios are used to represent possible emission sources of biomass burning (Bond et al., 2013; Cao et al., 2007; Cong et al., 2015; Novakov et al., 2005). The OC/BC ratio in the sampled surface snow ranged from 1.4 to 17.6 (Figure 6); a very high OC/BC ratio (17.6) was found at site 90, suggesting that biomass burning may have been a major contributor of OC through photochemical reactions during the 2014 Chinese survey. A relatively high correlation ($R^2=0.87, n=13$) was observed between OC and BC, indicating similar emission sources at all sampling sites except for those in central Inner Mongolia, as shown in Figure 6a. These results are consistent with those of previous studies (Ming et al., 2010). The strong correlations between $\text{NH}_4^+/\text{SO}_4^{2-}$ and $\text{NH}_4^+/\text{NO}_3^-$ shown in Figures 6b and 6c ($R^2=0.91$ and $R^2=0.94$, respectively; $n=12$) suggest that fine particles characterized as $(\text{NH}_4)_2\text{SO}_4$ and NH_4NO_3 were derived from more intense agricultural and human activities occurring near farmland areas (Ianniello et al., 2011). It is widely accepted that crustal Al originates from mineral or soil dust (Wedepohl, 1995). Therefore, the weak correlation between K^+ and Al could be explained by different emission sources of K^+ and Al (Figure 6d) often attributed to biomass burning and mineral or soil dust, respectively, in local or remote regions. Sampling site 101 (red dot in Figure 6d) is positioned very close to a village. As a result, we found a much higher K^+ than Al value owing to high biomass burning via human activity in winter.

3.4 Mass contributions of chemical components

In Figure 6, the sampling areas were located in grasslands, croplands, and urban and built-up regions across northern China that were likely influenced by human activity (Huang et al., 2015a). The land-cover types (Figure 7) were obtained from the Collection 5.1 MODIS global land-cover type product (MCD12C1) at a 0.05° spatial resolution and included 17 different surface vegetation types (Friedl et al., 2010;
Loveland and Belward, 1997). The sampling areas were located in grasslands, croplands, and urban and built-up regions across northern China that are likely influenced by human activity (Huang et al., 2015a). According to Table 23 and Figure 67, the \(\text{NH}_4^+ \text{NH}_4^+ \) concentrations emitted from agricultural sources at all sites accounted for less than 2.8% because the sites were positioned 50 km from cities. However, large fractions of both \(\text{SO}_4^{2-} \text{and} \text{NO}_3^- \text{SO}_4^{2-} \text{and} \text{NO}_3^- \) were observed, varying from 14.8 to 42.8% at all sites, with the highest fraction of 24.2-42.8% found in industrial areas. These results show that \(\text{SO}_4^{2-} \text{and} \text{NO}_3^- \text{SO}_4^{2-} \text{and} \text{NO}_3^- \) made the greatest contributions to the total chemical concentration in the surface snow as a result of and are significant anthropogenic emissions sources of fossil-fuel combustion in heavy industrial areas. More specifically, the largest AD–MD contribution ranged from 35.3 to 46% at sites 91 to 95 owing due to strong winds during winter; while the AD–MD fractions were only 5.7 to 31% at the other sites. Fractions of BC and OC were similar to those above, showing that biomass burning was a major source during winter in the sampling region. Zhang et al. (2013b) showed that OC and BC fractions vary more widely in the winter than other seasons owing due to industrial activity in China. Sulfate peaks were found in summer (15.4%), whereas nitrate peaks were observed in spring (11.1%). Potassium (\(\text{K}^+ \text{K}^+ \text{Biosmoke} \)) was found to be a good tracer of biomass burning, ranging from 1.3 to 5.1% along the northern Chinese border compared to lower values found at lower latitudes (1.5-2.3%), and it exhibited much higher contributions in Inner Mongolia and along the northern Chinese border owing due to increased emissions from cooking, open fires, and agricultural activities. The fraction of sea salt aerosol was found to range from 6.3 to 20.9%. Wang et al. (2015) showed that higher Cl⁻/Na⁺ ratios in seasonal snow found in the 2014 Chinese
survey were 1–2 times greater than those of seawater, implying that they constituted a significant source of anthropogenic Cl\(^-\) (Wang et al., 2015).

3.5 BC, OC and AD contributions to light absorption

As described by Wang et al. (2013a), light absorption by ILAPs can be determined from ISSW measurements combined with a chemical analysis of iron–Fe concentrations by assuming that the light absorption of dust is dominated by iron–Fe (Wang et al., 2013a). However, iron–Fe can also be originated from industrial emissions, such as the metal and steel industries (Hegg et al., 2010; Ofosu et al., 2012). Doherty et al. (2014) used a similar method to distinguish between contributions of ILAPs light-absorbing impurities in snow in central North America. Although heavy ADMD loading was observed in 2014 snow survey the study region, the fraction of light absorption due to ADMD (assumed to exist as goethite) was generally less than 10% across northeastern China (Figure 78), which was much smaller than that observed in the Qilian Mountains (e.g., Figure 11 of Wang et al., 2013a). Here, light absorption was mainly dominated by BC and OC in snow in January 2014. By contrast, the fraction of light absorption due to BC varied from 48.3 to 88.3% at all sites, with only one site dominated by OC (site 90 in central Inner Mongolia). Compared to the light absorption patterns in the Qilian Mountains, iron MD played a less significant role in particulate light absorption in snow across the northeastern China sampling areas.

3.6 Simulations of snow albedo reduction

Snow albedo reduction due to BC has been examined in previous studies (Brandt et al., 2011; Hadley and Kirchstetter, 2012; Yasunari et al., 2010). Here, a new radiative
transfer model (SAMDS) based on the asymptotic radiative transfer theory is
developed to assess the effects of various factors on snow albedo, including ILAPs in
snow, the snow grain shapes, and the internal/external mixing of BC and snow–am
snow albedo based on the asymptotic radiative transfer theory. However, few
observations of the BC, OC, and AD mixing effects on snow albedo reduction in
seasonal snow at middle latitudes exist. In this study, we measured the snow albedo at
six sites under clear conditions. A comparison of the snow albedos derived from the
SNICAR and SAMDS models are presented in Figure 8. Spectral snow albedos
measured in our experiments and simulated through the SNICAR and SAMDS
models are shown in Figure 12. We ran the models at a solar zenith angle θ of 60°C,
which is consistent with our experimental method for measuring snow albedo and with ILAP–light absorbing impurities across northeastern China. The BC
MAC used in the two models was 7.5 m2 g$^{-1}$ at 550 nm, which was assumed in the
most recent climate assessment and is appropriate for freshly emitted BC (Bond and
Bergstrom, 2006; Bond et al., 2013; Warren, 1982). Mixing ratios of BC, OCMD, and
OC dust were chosen to vary in exhibit the following ranges: 0.1–5 μg g$^{-1}$, 2–6 μg g$^{-1}$,
and 1–30 μg g$^{-1}$, 0.5–5 μg g$^{-1}$, 0.3–30 μg g$^{-1}$, and 0.6–6 μg g$^{-4}$, respectively, encompassing the
values measured in snow surfaces across northeastern China in this study and in
previous studies research (Doherty et al., 2010, 2014; Wang et al., 2013a, 2014;
Warren and Wiscombe, 1980; Ye et al., 2012). Results showed that
the albedo of fresh snow at 550 nm with R_{eff} of 100 μm– simulated by SAMDS is
generally in the range of 0.95–0.75 for ILAPs-contaminated snow across northeastern
China (Figure 8). The visible and near-infrared albedos of underlying ground surfaces were 0.2 and 0.4, respectively, according to the MODIS data. The spectral albedos of pure snow derived from the SNICAR (dash lines) and SAMDS (solid lines) models agreed well. However, there was a slight tendency for the SNICAR model values to become lower than SAMDS model values when BC and dust mixing ratios \(MD \) range from 1 to 5 \(\mu g \cdot g^{-1} \) and 4 to 6 \(\mu g \cdot g^{-1} \), respectively. The deviation between the SNICAR and SAMDS modeled snow albedos at 550 nm for higher BC mixing ratios of 1-5 \(\mu g \cdot g^{-1} \) indicates that albedo reduction by ILAPs (light-absorbing impurities) in the SNICAR model was greater than that in the SAMDS model. This deviation is in part due to the different parameterization of snow grain shapes, mixing states of snow and BC, and physical-chemical properties of impurities between the two models (Zhang et al., 2017).

More notably, snow albedos decreased significantly within the UV-visible wavelength, especially for the higher OC (dotted lines) contents-mixing ratios in Figure 8. This may be attributed to the fact that OC strongly absorbs UV-visible radiation and masks BC absorption for high AAE of OC, which decreases remarkably with increasing wavelengths (Warren and Wiscombe, 1980).

As is shown in Figure 9, we also estimated the reduction in the spectrally weighted snow albedo for different \(R_{eff} \) values using the SNICAR and SAMDS models. There was a larger reduction in snow albedo by both BC and MD-contaminated snow was found for larger snow grains. Higher degrees of snow albedo reduction by both BC and dust-contaminated snow were generally found for larger snow grains (Figure 9a-b). For example, snow albedo reduction attributable to 1 \(\mu g \cdot g^{-1} \) to 100 \(ng \cdot g^{-1} \), 1 \(\mu g \cdot g^{-1} \), and 10 \(\mu g \cdot g^{-1} \) for BC, dustMD, and OC, respectively, was 37%, 41%, and 38% greater in 200 \(\mu m \) snow grains (0.081, 0.0019, and 0.047) than that in 100 \(\mu m \) snow.
grains (0.059, 0.0013, and 0.034). Both the SNICAR and SAMDS models indicated that the snow albedo is more sensitive to BC, especially during lower ILAP–S mixing ratios periods. For example, 200 ng g\(^{-1}\) of BC decreased the snow albedo by 3.4% for an optical effective radius \(R_{\text{eff}}\) of 200 \(\mu\)m, which is much larger than the snow albedo reduction of 0.003 and 0.018 of 2000 ng g\(^{-1}\) for dust–MD and OC at \(R_{\text{eff}}\) of 200 \(\mu\)m. As Hadley and Kirchstetter (2012) noted, compared with pure 55 \(\mu\)m snow grains, 300 ng g\(^{-1}\) of BC contamination and growth of \(R_{\text{eff}}\) to 110 \(\mu\)m caused a net albedo reduction of 0.11 (from 0.82 to 0.71), causing snow to absorb 61% more solar energy absorption by snow. The difference in snow albedo reductions between SNICAR and SAMDS models increased with increasing BC mixing ratio as well as \(R_{\text{eff}}\) increases (Figure 9a). However, the snow albedo reduction simulated by SNICAR is not always larger than that by SAMDS when the input contaminant is MD instead of BC (Figure 9b). For example, for \(R_{\text{eff}}\) of 100 \(\mu\)m, the snow albedo reduction from SNICAR is higher than that from SNICAR at MD mixing ratio < 2600 ng g\(^{-1}\), but lower than that for SNICAR at MD mixing ratio > 2600 ng g\(^{-1}\). The turning point of MD mixing ratio is not constant and depends on the value of \(R_{\text{eff}}\). This phenomenon may be a result of the different input optical properties of MD between SAMDS and SNICAR models (Flanner et al., 2007; Zhang et al., 2017). SAMDS model also considers the effect of OC on snow albedo while SNICAR model does not, which is not included in SNICAR model. The albedo reduction by OC is nonnegligible due to its high loading. As is shown, 5000 ng g\(^{-1}\) of OC was found to reduce the snow albedo by 0.016-0.059 depending on the snow grain size (50-800 \(\mu\)m).
As Hadley and Kirchstetter (2012) noted, compared with pure 55 µm snow, 300 ng g\(^{-1}\) of BC contamination and growth to 110 µm causes a net albedo reduction of 0.11 (from 0.82 to 0.71), causing snow to absorb 61% more solar energy (Hadley and Kirchstetter, 2012).

Previous studies have also indicated that the mixing ratio of BC (10-100 ng g\(^{-1}\)) in snow may decrease its albedo by 1-5% depending on its aging process (Hadley and Kirchstetter, 2012; Warren and Wiscombe, 1980; Hadley and Kirchstetter, 2012). Liou et al. (2011) demonstrated that a small BC particle on the order of 1 µm internally mixed with snow grains could effectively reduce visible snow albedo by as much as 5-10% using a geometric-optics surface-wave approach for the computation of light absorption and scattering by complex and inhomogeneous particles for application to aggregates and snow grains with external and internal mixing structures. They also found that internal mixing of BC in snow reduces snow albedo substantially more than external mixing, and the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength by modeling the positions of BC internally mixed with different snow grain types (Liou et al., 2014). Figure 1 illustrates the snow albedo reduction due to three shapes of snow grains (fractal particles, hexagonal plates/columns, and spheres) and the internal/external mixing of BC-snow for a solar zenith angle \(\theta\) of 60° as a function of BC mixing ratios computed by SMDAS model. The top panel of Figure 1a illustrates the effect of snow shape (fractal grains, hexagonal plates/columns, and spheres) on the snow albedo reduction at the spectral wavelengths of 400 nm-1400 nm with \(R_{\text{eff}}\) of 10070 µm simulated by SAMDS model. As is shown, the differences of snow albedo caused by three snow shapes are remarkable. The snow albedo for spherical snow grains is higher than that for the other two shapes, which is because that, the scattering by spherical snow...
grains is more in forward direction and less to the sides, resulting in a larger g and a smaller B as discussed in section 2.5. In addition, the snow albedo reduction for aged snow such as spherical snow grains is gradually larger than fresh snow such as fractal snow grains, and hexagonal plates/columns snow grains with the increased BC in snow. It shows that snow albedo by spherical snow grains is typically decreased lower by 0.0175-0.0763 than the fractal snow grains, and by 0.008-0.036 than the and 0.0087-0.0361 as a function of BC mixing ratios (0-5000 ng g⁻¹), which is compared than that with by the fractal snow grains and hexagonal plates/columns snow grains as a function of BC mixing ratios (0-5000 ng g⁻¹). Dang et al. (2016) assessed the effects of snow grain shape on snow albedo using the asymmetry factors g of nonspherical ice crystal developed by Fu (2007). They obtained similar result that the albedo reduction caused by 100 ng g⁻¹ of BC for spherical snow grains is larger by 0.007 than nonspherical snow grains with the same area-to-mass ratio for R_eff of 100 μm. Figure 10b shows the spectral albedo of snow for the internal/external mixing of BC and snow with R_eff of 100 μm for a solar zenith angle θ of 60° as a function of BC mixing ratio. For a given shape (hexagonal plates/columns), we found that snow albedo as a function of BC mixing ratios calculated from this study decreases as the fraction of the internal mixing increases (Figure 10b). In previous studies, the BC mixing ratios in seasonal snow were up to 3000 ng g⁻¹ ppb due to heavy industrial activities across northern China, but the lowest concentrations mixing ratios of BC were found in the remote northeastern on the border of Siberia, with a median concentration value in surface snow of 100 ng g⁻¹ ppb (Huang et al., 2011; Wang et al., 2013a, 2014; Ye et al., 2012). As a result, snow albedo by internal mixing of BC and snow is lower than external mixing by up to 0.036 for 3000 ng g⁻¹ ppb BC in snow in the heavy industrial regions across northeastern China.
whereas by low to 0.0054 for 100 ng g$^{-1}$ppb BC in snow in the further north China near the border of Siberia and the northern part Xinjiang province. We indicated that the snow grain shape effect on snow albedo reduction between spherical snow grains and fractal particles for snow grains on absorption is relatively larger than the effect of the internal and/external mixing states of BC in snow as a function of the BC concentration mixing ratios. However, He et al. (2014) also pointed out that the snow albedo reductions computed by previous models under assorted assumptions vary by a factor of 2 to 5."

3.4 Comparisons between the observed and modeled snow albedo

Although the snow albedo reduction due to ILAPs has been investigated by model simulations in recent studies (Brandt et al., 2011; Flanner et al., 2007; Hadley and Kirchstetter, 2012; Liou et al., 2011, 2014; Warren and Wiscombe, 1980), we noted that there were still limited field campaigns on collecting snow samples and measuring ILAPs in seasonal snow associated with the snow albedo reduction at the middle latitudes in northern hemisphere (Doherty et al., 2010, 2014; Wang et al., 2013a; Ye et al., 2012). In this study, we measured the snow albedo under clear sky conditions was measured at six sites, which was compared to under clear sky conditions during this snow survey, and the comparison of snow albedo reduction between surface measurements and the SNICAR and SAMDS models simulations based on Toon et al.’s (1989) two-stream radiative transfer solution was investigated in (Figure 11). Previous studies have also indicated that the mixing ratio of BC (10-100 ng g$^{-1}$) in snow may decrease its albedo by 1-5% depending on its aging process (Warren and Wiscombe, 1980; Hadley and Kirchstetter, 2012; Hansen and Nazarenko, 2004). [Warren, 1985 #2053]
Figure 121 compares snow albedo values under clear sky conditions collected through surface measurements and the SNICAR and SAMDS models based on Toon et al.’s (1989) two-stream radiative transfer solution. The model input parameters including θ, R_m, R_{eff}, and the mixing ratios of BC (C_{BC}^{est}), MD (C_{MD}) and OC (C_{OC}) were also listed in Table 1 and 4. The MAC of BC used in the ISSW was 6.3 m2 g$^{-1}$ at 550 nm, although a value of 7.5 was used in the SNICAR and SAMDS models. Thus, the mixing ratio of BC C_{BC}^{est} was corrected by dividing it by 1.19 (see Figure 11) when BC was used as the input parameter to the snow albedo models (Wang et al., 2013a). The snow albedos measured at 550 nm varied considerably from 0.99 to 0.61 owing to different mixing ratios of ILAPs and snow parameters, such as snow grain size. The snow albedos predicted by the SNICAR and SAMDS models agreed well at each site based on the same input parameters. The snow albedos of the SNICAR and SAMDS models retrieved from measured snow grain sizes R_{m} complemented the surface measurements for lower mixing ratios of C_{BC}^{est}, C_{MD}, and C_{OC} (Figure 11a-d). The highest C_{BC}^{est} mixing ratios were 1461–1500 ng g$^{-1}$ (corrected value of 1200 ng g$^{-1}$) and 3651–3700 ng g$^{-1}$ (corrected value of 3100 ng g$^{-1}$) at sites 98 and 101, respectively, across industrial regions, with median values found in integrated layers of 264 and 1635 ng g$^{-1}$, respectively. The OC and dust MD mixing ratios were as high as 320000–3,300 μg ng$^{-1}$ and 3200–3900 μg ng$^{-1}$, respectively, in this region. Therefore, the higher ADMD mixing ratios are consistent with previous studies conducted by Zhang et al. (2013) and Huang et al. (2015a), who indicated that ADMD is highly correlated with anthropogenic air pollution originating from human activity across northeastern China. Thus, we found a larger difference in snow albedo of up to 0.2 at higher C_{BC}^{est}, C_{MD}, and C_{OC}.
values contents—between the surface measurements and the modeled albedos by both SAMDS and SNICAR models for with the measured snow grain sizes the input of R_m (red and blue solid lines in Figure 11e-f) at sites 91, 98, and 101. When the snow albedo reduction in albedo caused by ILAPs light absorbing impurities at the inferred wavelength simulated by by using R_m measured snow grain size was not accounted for, we also calculated the snow albedos from by using the SAMDS and SNICAR and SAMDS models by with using the optical effective size R_{eff} as shown in Figure 121† (light red and blue blue and red shaded bands), and. Results showed that, compared with the snow albedos simulated by using R_m, these values were more approximate to the surface measurements consistent with, especially at near-infrared wavelengths, although still a slightly higher than the surface measurements (gray shaded bands), especially at near infrared wavelengths. This may be attributed to the fact that the R_{eff} optical effective size at these three two sampling sites was much larger than R_m the measured grain size. We innovatively suppose, indicating that, for the same snow grains, the radiative perturbation of ILAPs light absorbing impurities was are amplified able to enhance with the R_{eff} in spite of the same R_m snow grain optical effective size, which should. Nevertheless, due to the limited measurements of snow albedo, this supposition is quite uncertain and needed to be verified by future numerous field measurements of measured snow albedos.

As indicated in Figure 1 Results shown in Figures 9 and 11 confirm Combinations of the results of Figure 9 and Figure 121, that BC, OC, and ADM are three main types of ILAPs found in snow that can reduce spectral snow albedo. The magnitudes of levels and Reduced snow albedo reduction due to ILAPs found in our measurements were generally comparable to the modeled effects those produced by that found in the commonly used SAMDS SNICAR and commonly used SNICAR
SAMDS models (Flanner et al., 2007; Zhang et al., 2017). When the mixing ratios of ILAPs are not quite high, we indicate that 100-500 ng g\(^{-1}\) of BC can lower the snow albedo by 0.0142-0.0396\% relative to pure snow with a snow grain size of 1200 μm according to our snow field campaign, and ADMD was found to be a weak absorber owing due to its lower ADMD MAC, supporting previous observations made by Warren and Wiscombe (1980). The OC MAC was also lower and comparable to that of the ADMD. A clear decreasing trend in the surface snow albedo owing due to the high ambient mixing ratios of OC from Inner Mongolia to northeastern China was found. The radiative transfer modelling results presented by Zhang et al. (2016) and measurement results of this study show that the spectral albedo of snow reduction due to the increased OC mixing ratios concentration (above 20 μg g\(^{-1}\)) is larger by a factor of 3 if assuming the snow grain size of 800 μm compared to 100 μm.

The radiative transfer modeling results presented by Zhang et al. (2016) and measurement results of this study show that the spectral albedo of snow reduction caused by OC levels (above 20 μg g\(^{-1}\)) to increase by a factor of 3 for a snow grain size of 800 μm compared to 100 μm.

Discussion and Conclusions

High AODs measured using a sun photometer and remote sensing devices showed continued heavy pollution in industrial regions across northern China. In this study, a snow survey was performed in January 2014, and 92 snow samples were collected at 13 sites across northern China. We found that higher AODs measured using a sun photometer and remote sensing devices showed that heavily polluted areas remain in industrial regions across northern China. The measured \(C_{\text{BC}}^{\text{est}}\) through the 2014...
survey via the ISSW spectrophotometer in surface and average snow of 503 to 3651700 and 602 to 163500 ng g⁻¹, with the medium values of 260 ng g⁻¹ and 260 ng g⁻¹, respectively, were much larger than those of previous snow field campaigns. Light absorption was likely dominated by BC and OC in seasonal snow during the entire campaign, as demonstrated with reasonably assumed values of MACs for BC, OC, and Fe. The chemical composition analysis on BC fraction showed that the mass contributions ILAPs in seasonal snow were dominated by OC and MD. However, assuming the MACs for BC, OC, and Fe are 6.3, 0.3, and 0.9 m² g⁻¹, Assumption of BC and OC mass absorption efficiencies are 6.3 and 0.3 m² g⁻¹, respectively, at 550 nm, light absorption was still dominated by BC and OC in seasonal snow during the entire campaign. The light-absorbing contribution fraction of the MD mixing ratios was larger at high latitudes than at low latitudes due to strong winds transporting snow. Model simulation results indicated that...
mass absorption efficiencies of 6.3 and 0.3 m2g$^{-1}$, respectively, at 550 nm, light absorption was still dominated by BC and OC in seasonal snow during the entire campaign. AD contributions in snow to light absorption amounted to less than 10%. The large OC/BC ratios and correlation coefficients indicated that these contributions were mainly derived from common sources (e.g., biomass burning). Similarly, NH$_4^+$ was attributed to intense agricultural activity compared to industrial emissions of SO$_4^{2-}$ and NO$_3^-$.

The fraction of the AD mixing ratios was larger at high latitudes than at low latitudes owing to strong winds transporting snow. In this study, we indicated that the present a new spectral snow albedo model (SAMDS) for simulating the surface albedo of snow with deposited ILAPs (aerosol impurities, e.g., Black carbon, Organic carbon, Mineral dust, volcano ash, and snow algae) by using the asymptotic analytical radiative transfer theory. Given the measured BC, MD and OC mixing ratios of 100-5000 ng g$^{-1}$, 2000-6000 ng g$^{-1}$, and 1000-30000 ng g$^{-1}$ in surface snow across northeastern China, we ran the model at a solar zenith angle θ of 60$^\circ$, and the results indicated that the albedo of fresh snow at 550 nm is generally in a range of 0.95-0.75 with R_{eff} of 100 μm. This model can also be used to investigate the snow albedo influenced by the internal/external mixing of BC and snow with impurities, irregular morphology of snow grains and impurities, aging processes of snow grains and soot aggregates, and the vertical distribution of snow grains and impurities for multilayer snow.

Additionally, the properties of different snow grain shapes (Fractal particles, Hexagonal plate/column, and spheres) and the internal/external mixing with BC in snow by using SAMDS model might be useful to researchers who are conducting studies involving ILAPs and snow interaction and feedback in snow albedo reduction. Compare to the SNICAR model, the snow albedo reduction is in agreement with the
SAMDS model, different types of impurity could be included in the parameterization in SAMDS model, such as organic carbon and biogenic particles. For instance, the given shape (spheres, hexagonal plates/columns, and fractal particles), it shows that snow albedo for spherical snow grains is typically lower by 0.017-0.073, and 0.008-0.036 than that for the fractal snow grains and hexagonal plates/columns snow grains as a function of BC mixing ratios (0-5000 ng g\(^{-1}\)) with \(R_{\text{eff}}\) of 100 μm. It shows that snow albedo by spherical snow grains typically decrease by 0.017-0.073, and 0.008-0.036 as a function of BC mixing ratios (0-5000 ng g\(^{-1}\)), which is compared with the fractal snow grains and hexagonal plates/columns snow grains. The internal mixing of BC and snow absorbs substantially more light than external mixing subsequently. For fresh snow grains of hexagonal plates/columns with \(R_{\text{eff}}\) of 100 μm, the difference of snow albedo between internal and external mixing of BC and snow is up to 0.036 for 3000 ng g\(^{-1}\) BC in snow in the heavy industrial regions across northeastern China, whereas low to 0.005 for 100 ng g\(^{-1}\) BC in snow in the further north China near the border of Siberia. The spectral albedo of snow reduction caused by OC (20 μg g\(^{-1}\)) is larger by up to a factor of 3 for a snow grain size of 800 μm compared to 100 μm by using SAMDS model. Then, OC emitted from biomass burning and \(SO_4^{2-}\) and \(NO_3^-\) generated from fossil fuels and biofuels also played key roles in the mixing ratios of chemical components in seasonal snow. Finally, a comparison between measured and simulated snow albedos was conducted. Generally, the snow albedos measured from a spectroradiometer and simulated using the SNICAR and SAMDS models using \(R_{\text{eff}}\) agreed well with the measured ones from the spectroradiometer with at the lower mixing ratios of BC, OCMD, and \(AD_{\text{MD}}OC\), but with a large discrepancy in snow albedo levels between the model simulations and
surface measurements for heavy loading of ILAPs in snow was found by using the measured snow grain radii R_m. We demonstrate that the simulated snow albedo reduction simulated by SMDAS and SNICAR models is significantly enhanced by using R_{eff} of snow grains compared with R_m, especially in the case of near-infrared wavelengths. Instead of the optical effective snow grains in snow, based on the snow grain optical effective size, we found good agreement between surface measurements and radiative transfer models. Therefore, the snow grain optical effective size is preferred to present the snow albedo reduction when measurements on snow grain size are available at the near-infrared wavelength. Although the MAC of OC was much lower than that of BC, we found that OC was a major absorber in snow owing to its high mixing ratio of OC from human activities occurring across northeastern China. Moreover, 5000 ng g^{-1} of OC was found to reduce the snow albedo by $4.5\% - 5\%$, depending on the snow grain size and aging period. Therefore, we suggest that the mixing ratio of OC should be added as an input parameter to the SNICAR model for determining snow albedos.

Future snow surveys studies across northern China should be performed to address the large variations of ILAPs in seasonal snow across the region. Additional model simulations and comparisons with measurements are needed to verify R_{eff} effect under the scenario of high mixing ratios of ILAPs in snow.

Although the SAMDS model might be useful to researchers who are conducting studies involving ILAPs and snow interaction and feedback in snow albedo change, although the SAMDS model can be used to study the snow albedo reduction for dirty snow due to ILAPs and multiple internal/external mixing stats of BC associated with irregular snow grains, we indicate that further snow surveys across
northern China should be performed for the following reasons: First (1), large variations of ILAPs in seasonal snow across northern China can lead higher uncertainties of snow albedo reduction, especially in the industrial regions, and (2) Second, we only measured the snow albedo at 6 sampling sites by using the spectroradiometer in the clear sky condition due to much less snow fallen in January 2014 than that in previous years. Comparing model simulations with the observations, we found that \(R_{\text{eff}} \), the optical effective snow grains could seemingly be enhanced by the high concentrations mixing ratios of ILAPs in snow, however, we note that further snow surveys on measuring snow albedo should be conducted to reveal this phenomenon. Finally, there are large uncertainties in simulating snow albedo reduction and radiative forcing due to the ILAPs mixed with snow/ice and the irregular morphology of snow grains, the potential snow albedo reduction change for aged snow should be investigated in the following snow surveys accordingly to test the capability of SAMDS model, which will provide more valuable and useful information for the climate models.
Acknowledgements. This research was supported by the Foundation for Innovative Research Groups of the National Science Foundation of China (41521004), the National Science Foundation of China under Grants 41522505, and the Fundamental Research Funds for the Central Universities (lzujbky-2015-k01, lzujbky-2016-k06 and lzujbky-2015-3). The MODIS data were obtained from the NASA Earth Observing System Data and Information System, Land Processes Distributed Active Archive Center (LP DAAC) at the USGS Earth Resources Observation and Science (EROS) Center.
Table 1. Statistics on seasonal snow variables measured using an ISSW in the study sites. All of the datasets are the average values from the left and right snow samples. The site numbers begin at 90 in this study, which are numbered in chronological order followed by Wang et al. (2013a), and Ye et al. (2012).

<table>
<thead>
<tr>
<th>Site</th>
<th>Layer</th>
<th>Latitude N</th>
<th>Longitude E</th>
<th>Snow type</th>
<th>Site average snow depth (cm)</th>
<th>Sample depth (cm)</th>
<th>Temperature (°C)</th>
<th>Snow density (g cm(^{-3}))</th>
<th>(R_m) (mm)</th>
<th>(C_{\text{equiv}}^{\text{BC}}) (ng g(^{-1}))</th>
<th>(C_{\text{BC}}^{\text{max}}) (ng g(^{-1}))</th>
<th>(C_{\text{BC}}) (ng g(^{-1}))</th>
<th>(f_{\text{non-BC}}) (%)</th>
<th>(\AA_{\text{tot}}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>1</td>
<td>45°02'44"</td>
<td>116°22'45"</td>
<td>Aged</td>
<td>3</td>
<td>0</td>
<td>-14</td>
<td>0.38</td>
<td>0.15</td>
<td>860</td>
<td>530</td>
<td>330 (–, 470)</td>
<td>61 (45, 110)</td>
<td>3.8</td>
</tr>
<tr>
<td>91</td>
<td>1</td>
<td>50°02'48"</td>
<td>124°22'41"</td>
<td>Fresh</td>
<td>8</td>
<td>0</td>
<td>-25</td>
<td>0.23</td>
<td>0.08</td>
<td>250</td>
<td>200</td>
<td>160 (110, 200)</td>
<td>35 (18, 55)</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>Aged</td>
<td>5</td>
<td>10</td>
<td>-25</td>
<td>0.18</td>
<td>0.15</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>1</td>
<td>50°39'07"</td>
<td>122°23'53"</td>
<td>Fresh</td>
<td>14</td>
<td>0</td>
<td>-16</td>
<td>0.17</td>
<td>0.08</td>
<td>80</td>
<td>70</td>
<td>50 (30, 70)</td>
<td>34 (15, 60)</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>Aged</td>
<td>5</td>
<td>10</td>
<td>-16</td>
<td>0.18</td>
<td>1.25</td>
<td>110</td>
<td>100</td>
<td>80 (50, 100)</td>
<td>29 (11, 55)</td>
<td>2.2</td>
</tr>
<tr>
<td>93</td>
<td>1</td>
<td>50°24'50"</td>
<td>124°54'20"</td>
<td>Fresh</td>
<td>8</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>0.07</td>
<td>170</td>
<td>100</td>
<td>70 (40, 90)</td>
<td>53 (39, 73)</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>Aged</td>
<td>2</td>
<td>6</td>
<td>-21</td>
<td>0.21</td>
<td>0.175</td>
<td>310</td>
<td>140</td>
<td>100 (50, 130)</td>
<td>68 (59, 85)</td>
<td>2.7</td>
</tr>
<tr>
<td>94</td>
<td>1</td>
<td>50°09'05"</td>
<td>125°46'06"</td>
<td>Fresh</td>
<td>8</td>
<td>0</td>
<td>-24</td>
<td>–</td>
<td>0.1</td>
<td>1200</td>
<td>400</td>
<td>260 (110, 360)</td>
<td>78 (69, 91)</td>
<td>2.8</td>
</tr>
<tr>
<td>95</td>
<td>1</td>
<td>50°54'43"</td>
<td>127°04'50"</td>
<td>Aged</td>
<td>18</td>
<td>0</td>
<td>-22</td>
<td>0.23</td>
<td>0.175</td>
<td>280</td>
<td>110</td>
<td>80 (40, 100)</td>
<td>73 (64, 86)</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>Aged</td>
<td>3</td>
<td>8</td>
<td>-23</td>
<td>0.18</td>
<td>0.9</td>
<td>230</td>
<td>80</td>
<td>50 (30, 70)</td>
<td>77 (68, 89)</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>Aged</td>
<td>8</td>
<td>13</td>
<td>-25</td>
<td>0.27</td>
<td>1</td>
<td>90</td>
<td>50</td>
<td>30 (10, 40)</td>
<td>71 (55, 92)</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>Aged</td>
<td>13</td>
<td>18</td>
<td>-25</td>
<td>0.14</td>
<td>1.3</td>
<td>520</td>
<td>310</td>
<td>130 (–, 240)</td>
<td>75 (54, 148)</td>
<td>4.8</td>
</tr>
<tr>
<td>96</td>
<td>1</td>
<td>49°14'21"</td>
<td>129°43'13"</td>
<td>Fresh</td>
<td>13</td>
<td>0</td>
<td>-22</td>
<td>0.37</td>
<td>0.08</td>
<td>1300</td>
<td>390</td>
<td>240 (20, 330)</td>
<td>83 (76, 99)</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>Aged</td>
<td>5</td>
<td>10</td>
<td>-23</td>
<td>0.25</td>
<td>0.6</td>
<td>230</td>
<td>90</td>
<td>50 (10, 70)</td>
<td>81 (69, 98)</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>Aged</td>
<td>10</td>
<td>15</td>
<td>-22</td>
<td>0.22</td>
<td>1</td>
<td>370</td>
<td>130</td>
<td>80 (30, 110)</td>
<td>80 (71, 93)</td>
<td>3.0</td>
</tr>
<tr>
<td>97</td>
<td>1</td>
<td>47°39'18"</td>
<td>131°13'10"</td>
<td>Aged</td>
<td>20</td>
<td>0</td>
<td>-22</td>
<td>0.36</td>
<td>0.2</td>
<td>1000</td>
<td>360</td>
<td>240 (90, 310)</td>
<td>76 (69, 91)</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>Aged</td>
<td>5</td>
<td>10</td>
<td>-18</td>
<td>0.27</td>
<td>1.1</td>
<td>160</td>
<td>80</td>
<td>50 (20, 70)</td>
<td>71 (57, 91)</td>
<td>3.0</td>
</tr>
<tr>
<td>Site</td>
<td>Layer</td>
<td>Latitude N</td>
<td>Longitude E</td>
<td>Snow type</td>
<td>Site average snow depth (cm)</td>
<td>Sample depth</td>
<td>Temperature</td>
<td>Snow density</td>
<td>R_m</td>
<td>C_{equiv} (ng g(^{-1}))</td>
<td>C_{max}^BC</td>
<td>C_{est}</td>
<td>f_{est}</td>
<td>Å_{est}</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----</td>
<td>----------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>45°25'38"</td>
<td>130°58'55"</td>
<td>Fresh</td>
<td>35</td>
<td>0</td>
<td>-20</td>
<td>0.22</td>
<td>0.9</td>
<td>2200</td>
<td>2100</td>
<td>1500</td>
<td>74</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>10</td>
<td>15</td>
<td>-14</td>
<td>0.32</td>
<td>0.9</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>74</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>10</td>
<td>15</td>
<td>-15</td>
<td>0.24</td>
<td>0.5</td>
<td>640</td>
<td>350</td>
<td>240</td>
<td>58</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>15</td>
<td>20</td>
<td>-14</td>
<td>0.26</td>
<td>0.75</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>75</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>20</td>
<td>25</td>
<td>-13</td>
<td>0.28</td>
<td>1.1</td>
<td>430</td>
<td>260</td>
<td>170</td>
<td>62</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>25</td>
<td>30</td>
<td>-11</td>
<td>0.29</td>
<td>1.3</td>
<td>350</td>
<td>170</td>
<td>110</td>
<td>68</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>30</td>
<td>35</td>
<td>–</td>
<td>0.33</td>
<td>1.3</td>
<td>290</td>
<td>120</td>
<td>70</td>
<td>75</td>
<td>2.6</td>
</tr>
<tr>
<td>99</td>
<td>1</td>
<td>43°36'10"</td>
<td>125°42'04"</td>
<td>Fresh</td>
<td>13</td>
<td>0</td>
<td>-2</td>
<td>0.18</td>
<td>0.085</td>
<td>1500</td>
<td>920</td>
<td>640</td>
<td>54</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>5</td>
<td>12</td>
<td>-3</td>
<td>0.23</td>
<td>1.1</td>
<td>8000</td>
<td>3800</td>
<td>2900</td>
<td>51</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>12</td>
<td>18</td>
<td>-4</td>
<td>0.28</td>
<td>1.1</td>
<td>2800</td>
<td>1400</td>
<td>1100</td>
<td>62</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>18</td>
<td>24</td>
<td>-4</td>
<td>0.28</td>
<td>0.7</td>
<td>2000</td>
<td>1500</td>
<td>1100</td>
<td>46</td>
<td>2.6</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>43°30'45"</td>
<td>127°15'34"</td>
<td>Fresh</td>
<td>18</td>
<td>0</td>
<td>2.5</td>
<td>0.14</td>
<td>0.075</td>
<td>1700</td>
<td>700</td>
<td>510</td>
<td>71</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>2.5</td>
<td>4</td>
<td>-2</td>
<td>0.18</td>
<td>0.25</td>
<td>4100</td>
<td>2900</td>
<td>1700</td>
<td>58</td>
<td>3.6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>4</td>
<td>9</td>
<td>-2</td>
<td>0.23</td>
<td>0.9</td>
<td>1100</td>
<td>560</td>
<td>410</td>
<td>60</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>9</td>
<td>15</td>
<td>-3</td>
<td>0.24</td>
<td>0.8</td>
<td>1600</td>
<td>730</td>
<td>540</td>
<td>66</td>
<td>2.6</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>43°47'25"</td>
<td>125°46'08"</td>
<td>Fresh</td>
<td>22</td>
<td>0</td>
<td>-19</td>
<td>0.24</td>
<td>0.07</td>
<td>5600</td>
<td>5100</td>
<td>3700</td>
<td>35</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>5</td>
<td>10</td>
<td>-17</td>
<td>0.24</td>
<td>0.9</td>
<td>4300</td>
<td>3800</td>
<td>2600</td>
<td>40</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>10</td>
<td>15</td>
<td>-15</td>
<td>0.23</td>
<td>1.1</td>
<td>660</td>
<td>390</td>
<td>310</td>
<td>46</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>15</td>
<td>20</td>
<td>-14</td>
<td>0.28</td>
<td>1.3</td>
<td>300</td>
<td>250</td>
<td>190</td>
<td>39</td>
<td>2.5</td>
</tr>
<tr>
<td>102</td>
<td>1</td>
<td>42°12'34"</td>
<td>126°37'50"</td>
<td>Fresh</td>
<td>46</td>
<td>0</td>
<td>-8</td>
<td>0.13</td>
<td>0.07</td>
<td>2100</td>
<td>1700</td>
<td>1400</td>
<td>37</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>3</td>
<td>8</td>
<td>-8</td>
<td>0.26</td>
<td>0.1</td>
<td>590</td>
<td>380</td>
<td>280</td>
<td>53</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Aged</td>
<td>8</td>
<td>13</td>
<td>-8</td>
<td>0.24</td>
<td>0.3</td>
<td>2500</td>
<td>2100</td>
<td>1600</td>
<td>35</td>
<td>3.1</td>
</tr>
<tr>
<td>Site</td>
<td>Layer</td>
<td>Latitude N</td>
<td>Longitude E</td>
<td>Snow</td>
<td>Site average snow depth</td>
<td>Sample depth</td>
<td>Temperature</td>
<td>Snow density</td>
<td>Rm</td>
<td>C_{equiv}</td>
<td>C_{max}</td>
<td>C_{est}</td>
<td>f_{est}</td>
<td>f_{non-BC}</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------------</td>
<td>-------------</td>
<td>------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>45°02'44"</td>
<td>116°22'45"</td>
<td>Aged</td>
<td>13</td>
<td>18</td>
<td>-8</td>
<td>0.28</td>
<td>0.7</td>
<td>900</td>
<td>100</td>
<td>770</td>
<td>(230,1000)</td>
<td>60 (48,88)</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>48°02'44"</td>
<td>116°22'45"</td>
<td>Aged</td>
<td>23</td>
<td>28</td>
<td>-5</td>
<td>0.22</td>
<td>1.2</td>
<td>900</td>
<td>100</td>
<td>900 (500,1200)</td>
<td>38 (21,80)</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>50°02'48"</td>
<td>124°22'41"</td>
<td>Aged</td>
<td>28</td>
<td>25</td>
<td>-5</td>
<td>0.26</td>
<td>1.2</td>
<td>860</td>
<td>100</td>
<td>450</td>
<td>(130,400)</td>
<td>60 (53,87)</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>50°39'07"</td>
<td>122°23'53"</td>
<td>Aged</td>
<td>33</td>
<td>25</td>
<td>-5</td>
<td>0.3</td>
<td>1.2</td>
<td>80</td>
<td>100</td>
<td>400</td>
<td>(110,310)</td>
<td>34 (14,54)</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>50°39'07"</td>
<td>122°23'53"</td>
<td>Aged</td>
<td>33</td>
<td>25</td>
<td>-5</td>
<td>0.3</td>
<td>1.2</td>
<td>80</td>
<td>100</td>
<td>400</td>
<td>(110,310)</td>
<td>34 (14,54)</td>
</tr>
<tr>
<td>2</td>
<td>50°24'50"</td>
<td>124°54'20"</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>-16</td>
<td>0.18</td>
<td>1.25</td>
<td>1.08</td>
<td>0.77</td>
<td>27.10 (97.2)</td>
<td>29.11 (15.5)</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>50°00'05"</td>
<td>125°46'06"</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>-16</td>
<td>0.18</td>
<td>1.25</td>
<td>1.08</td>
<td>0.77</td>
<td>27.10 (97.2)</td>
<td>29.11 (15.5)</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>50°54'42"</td>
<td>127°44'50"</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>-16</td>
<td>0.18</td>
<td>1.25</td>
<td>1.08</td>
<td>0.77</td>
<td>27.10 (97.2)</td>
<td>29.11 (15.5)</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>51°14'21"</td>
<td>129°43'13"</td>
<td>13</td>
<td>5</td>
<td>10</td>
<td>-16</td>
<td>0.18</td>
<td>1.25</td>
<td>1.08</td>
<td>0.77</td>
<td>27.10 (97.2)</td>
<td>29.11 (15.5)</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>47°30'18"</td>
<td>131°13'10"</td>
<td>20</td>
<td>5</td>
<td>10</td>
<td>-16</td>
<td>0.18</td>
<td>1.25</td>
<td>1.08</td>
<td>0.77</td>
<td>27.10 (97.2)</td>
<td>29.11 (15.5)</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>45°25'38"</td>
<td>130°58'55"</td>
<td>45</td>
<td>5</td>
<td>10</td>
<td>-16</td>
<td>0.18</td>
<td>1.25</td>
<td>1.08</td>
<td>0.77</td>
<td>27.10 (97.2)</td>
<td>29.11 (15.5)</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>42°10'45"</td>
<td>127°15'34"</td>
<td>48</td>
<td>0</td>
<td>2.5</td>
<td>-</td>
<td>0.14</td>
<td>0.075</td>
<td>1729</td>
<td>703</td>
<td>508 (250, 651)</td>
<td>21 (63, 86)</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
<td>--------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>4</td>
<td>-2</td>
<td>0.18</td>
<td>0.25</td>
<td>4126</td>
<td>2801</td>
<td>4729 (–, 2371)</td>
<td>58 (43, 103)</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>-2</td>
<td>0.23</td>
<td>0.9</td>
<td>1062</td>
<td>564</td>
<td>441 (208, 529)</td>
<td>60 (49, 80)</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>15</td>
<td>-3</td>
<td>0.24</td>
<td>0.8</td>
<td>1601</td>
<td>728</td>
<td>511 (266, 891)</td>
<td>66 (57, 83)</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>42°17'35"</td>
<td>128°46'48"</td>
<td>32</td>
<td>0</td>
<td>5</td>
<td>-19</td>
<td>0.24</td>
<td>0.07</td>
<td>5644</td>
<td>5079</td>
<td>4651 (1133, 4611)</td>
<td>45 (18, 76)</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10</td>
<td>-7</td>
<td>0.24</td>
<td>0.9</td>
<td>4318</td>
<td>3826</td>
<td>2575 (882, 3284)</td>
<td>40 (24, 79)</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>15</td>
<td>-15</td>
<td>0.23</td>
<td>1.4</td>
<td>657</td>
<td>389</td>
<td>313 (206, 386)</td>
<td>46 (33, 63)</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>20</td>
<td>-14</td>
<td>0.28</td>
<td>1.3</td>
<td>297</td>
<td>254</td>
<td>188 (108, 239)</td>
<td>39 (21, 67)</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>42°12'34"</td>
<td>126°37'50"</td>
<td>46</td>
<td>0</td>
<td>3</td>
<td>-8</td>
<td>0.13</td>
<td>0.07</td>
<td>5109</td>
<td>1734</td>
<td>1352 (808, 1755)</td>
<td>37 (19, 61)</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>-8</td>
<td>0.26</td>
<td>0.4</td>
<td>594</td>
<td>377</td>
<td>279 (149, 371)</td>
<td>53 (37, 75)</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>13</td>
<td>-8</td>
<td>0.24</td>
<td>0.3</td>
<td>3513</td>
<td>2088</td>
<td>1623 (425, 2120)</td>
<td>35 (15, 81)</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>18</td>
<td>-8</td>
<td>0.28</td>
<td>0.6</td>
<td>1922</td>
<td>1073</td>
<td>773 (229, 1013)</td>
<td>60 (48, 88)</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>23</td>
<td>-7</td>
<td>0.32</td>
<td>1.1</td>
<td>1112</td>
<td>629</td>
<td>450 (197, 590)</td>
<td>60 (47, 82)</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>28</td>
<td>-6</td>
<td>0.27</td>
<td>1.2</td>
<td>4466</td>
<td>1284</td>
<td>903 (300, 1167)</td>
<td>38 (21, 80)</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>33</td>
<td>-5</td>
<td>0.26</td>
<td>1.2</td>
<td>858</td>
<td>493</td>
<td>341 (133, 457)</td>
<td>66 (53, 87)</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td>38</td>
<td>-5</td>
<td>0.3</td>
<td>1.1</td>
<td>426</td>
<td>197</td>
<td>109 (27, 163)</td>
<td>24 (61, 95)</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>38</td>
<td>43</td>
<td>-4</td>
<td>0.29</td>
<td>0.8</td>
<td>524</td>
<td>245</td>
<td>157 (47, 320)</td>
<td>71 (58, 87)</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Estimates of integrated snowpack BC content in seasonal snow in the study sites for 2010 and 2014. (change as surface and average BC)

<table>
<thead>
<tr>
<th>Site</th>
<th>Date sampled (2014)</th>
<th>Snowpack average - Integrated BC (ng g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10-Jan</td>
<td>334</td>
</tr>
<tr>
<td>91</td>
<td>13-Jan</td>
<td>161</td>
</tr>
<tr>
<td>92</td>
<td>14-Jan</td>
<td>65</td>
</tr>
<tr>
<td>93</td>
<td>15-Jan</td>
<td>94</td>
</tr>
<tr>
<td>94</td>
<td>15-Jan</td>
<td>260</td>
</tr>
<tr>
<td>95</td>
<td>16-Jan</td>
<td>62</td>
</tr>
<tr>
<td>96</td>
<td>17-Jan</td>
<td>140</td>
</tr>
<tr>
<td>97</td>
<td>18-Jan</td>
<td>105</td>
</tr>
<tr>
<td>98</td>
<td>19-Jan</td>
<td>264</td>
</tr>
<tr>
<td>99</td>
<td>23-Jan</td>
<td>1507</td>
</tr>
<tr>
<td>100</td>
<td>24-Jan</td>
<td>592</td>
</tr>
<tr>
<td>101</td>
<td>26-Jan</td>
<td>1635</td>
</tr>
<tr>
<td>102</td>
<td>27-Jan</td>
<td>583</td>
</tr>
</tbody>
</table>
Table 23. Chemical species (ng g$^{-1}$) in surface snow for sites across northeastern China in January 2014. The datasets of SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$ were reprinted from Wang et al. (2015).

<table>
<thead>
<tr>
<th>Site</th>
<th>ADMD</th>
<th>BC</th>
<th>OC</th>
<th>K$^+$biosmoke</th>
<th>SO$_4^{2-}$</th>
<th>NO$_3^-$</th>
<th>NH$_4^+$</th>
<th>Sea salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>1900</td>
<td>380</td>
<td>6700</td>
<td>327</td>
<td>1685</td>
<td>213</td>
<td>22</td>
<td>868</td>
</tr>
<tr>
<td>91</td>
<td>1700</td>
<td>180</td>
<td>590</td>
<td>179</td>
<td>853</td>
<td>465</td>
<td>36</td>
<td>827</td>
</tr>
<tr>
<td>92</td>
<td>1300</td>
<td>60</td>
<td>280</td>
<td>150</td>
<td>511</td>
<td>105</td>
<td>19</td>
<td>456</td>
</tr>
<tr>
<td>93</td>
<td>1700</td>
<td>80</td>
<td>450</td>
<td>213</td>
<td>718</td>
<td>387</td>
<td>90</td>
<td>960</td>
</tr>
<tr>
<td>94</td>
<td>3300</td>
<td>300</td>
<td>2700</td>
<td>118</td>
<td>1335</td>
<td>550</td>
<td>28</td>
<td>554</td>
</tr>
<tr>
<td>95</td>
<td>2000</td>
<td>90</td>
<td>600</td>
<td>164</td>
<td>587</td>
<td>523</td>
<td>39</td>
<td>669</td>
</tr>
<tr>
<td>96</td>
<td>2300</td>
<td>280</td>
<td>3900</td>
<td>309</td>
<td>1285</td>
<td>493</td>
<td>91</td>
<td>1227</td>
</tr>
<tr>
<td>97</td>
<td>2400</td>
<td>280</td>
<td>2400</td>
<td>173</td>
<td>1163</td>
<td>407</td>
<td>38</td>
<td>753</td>
</tr>
<tr>
<td>98</td>
<td>3900</td>
<td>1600</td>
<td>13300</td>
<td>633</td>
<td>3096</td>
<td>747</td>
<td>195</td>
<td>2516</td>
</tr>
<tr>
<td>99</td>
<td>3000</td>
<td>770</td>
<td>4700</td>
<td>372</td>
<td>3379</td>
<td>1492</td>
<td>155</td>
<td>2310</td>
</tr>
<tr>
<td>100</td>
<td>3800</td>
<td>570</td>
<td>4000</td>
<td>260</td>
<td>4237</td>
<td>2258</td>
<td>487</td>
<td>2195</td>
</tr>
<tr>
<td>101</td>
<td>3500</td>
<td>4200</td>
<td>32000</td>
<td>1337</td>
<td>12382</td>
<td>2364</td>
<td>–</td>
<td>5131</td>
</tr>
<tr>
<td>102</td>
<td>5800</td>
<td>1700</td>
<td>2400</td>
<td>488</td>
<td>8034</td>
<td>3631</td>
<td>769</td>
<td>4420</td>
</tr>
</tbody>
</table>

Table 4. Measured and calculated snow grain sizes for sites in northeastern China in January 2014.

<table>
<thead>
<tr>
<th>Site</th>
<th>Measured Snow grain radius (μm)</th>
<th>Calculated R$_{eff}$ using SAMDS (μm)</th>
<th>Calculated R$_{eff}$ using SNICAR (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>150</td>
<td>203-236</td>
<td>168-197</td>
</tr>
<tr>
<td>91</td>
<td>80</td>
<td>178-220</td>
<td>148-183</td>
</tr>
<tr>
<td>93</td>
<td>70</td>
<td>73-80</td>
<td>60-65</td>
</tr>
<tr>
<td>95</td>
<td>175</td>
<td>148-188</td>
<td>123-156</td>
</tr>
<tr>
<td>98</td>
<td>90</td>
<td>248-302</td>
<td>209-259</td>
</tr>
<tr>
<td>101</td>
<td>70</td>
<td>362-446</td>
<td>312-390</td>
</tr>
</tbody>
</table>
Fig. 1. Spatial distribution of the averaged AOD retrieved from Aqua-MODIS over northern China from October 2013 to January 2014. The red regions—dots are MODIS active fire locations; the black dots are the sampling locations. The site
numbers beginning at 90 in this study, which are numbered in chronological order followed by Wang et al. (2013a), and Ye et al. (2012). The “A” and “F” refer to aged snow and fresh snow, respectively.
Fig. 2. The variation in AOD at 500 nm at different sites measured using a Microtops II Sun photometer over northeastern China in January 2014.
Fig. 3. Vertical temperature, snow density, and measured snow grain radius (R_m) profiles at each site during the 2014 Chinese snow survey.
Fig. 4. The spatial distribution of C_{ext}^BC in the (a) surface and (b) average snowSurface (a, c) and averaged and integrated (b, d) BC content in seasonal snow in 2014 and 2010 across northeastern China.
Fig. 5. Comparisons between the calculated and optically measured C_{BC} contents in surface snow during 2010 and 2014 snow surveys in January 2014. The datasets of
measured $C_{\text{BC}}^{\text{est}}$ in 2010 from sites 3-40 were reprinted from Wang et al. (2013a). The datasets in 2010 were originated from sites 3-40 in Wang et al. (2013).
Fig. 6. Ratios of OC and BC, NH$_4^+$ and SO$_4^{2-}$, NH$_4^+$ and NO$_3^-$, and K$^+$ and Al in surface snow in January 2014.
The major components include ADMD, BC, OC, K^+_{Biosmoke}, biomass smoke potassium, secondary aerosol ions (SO_4^{2-}, NO_3^-, and NH_4^+), and sea salt in the surface snow samples collected in January 2014. The distribution of 17 different surface vegetation types retrieved from MODIS global land cover type product (MCD12C1) with 0.05 spatial resolution was used in this study. The datasets of SO_4^{2-}, NO_3^-, and NH_4^+ were reprinted from originates from Wang et al. (2015).
Fig. 78. The light absorption of ILAPs in surface snow in January 2014. The distribution of 17 different surface vegetation types retrieved from MODIS global land cover type product (MCD12C1) with 0.05 spatial resolution was used in this study.
Fig. 89. Spectral albedo of snow with different contaminants for a 60° solar zenith angle and a $1070 \, \mu m$ snow grain radius R_{eff}. Solid and dashed lines show the
SAMDS and SNICAR model predictions for BC and mineral dust. Dotted lines show the SAMDS model predictions for all ILAPs, including BC, mineral dust, and OC.
Fig. 9.10. Spectrally weighted snow albedo reduction over the 400–1400 nm solar spectrum attributed to (a) BC, (b) mineral dust MD, and (c) OC computed as the albedo of pure snow minus the albedo of contaminated snow for a 60° solar zenith angle. Solid and dashed lines show the SAMDS and SNICAR models predictions. The MAC values of BC, FeOC, and FeOC were assumed to be 7.5 m² g⁻¹, 0.9 m² g⁻¹, and 0.3 m² g⁻¹ at 550 nm, respectively, in SAMDS model.
fractal particles
hexagonal ice columns and plates
spheres

Spectral averages (0.4 - 1.4 µm)
= 60°
MAC(BC) = 7.5 m² g⁻¹
R_eff(snow) = 70 µm
Fig. 101. Spectral albedo of snow albedo as a function of BC concentration mixing ratios in snow, by using SMDAS model for: (a) the irregular morphology of snow grains (fractal, hexagonal plates/columns, and spheres), (b) internal and external mixing of BC with hexagonal plates/columns mixed with BC snow grains. Also shown are model parameters including spectral wavelengths (400-1400 nm), solar zenith angle (θ), mass absorption coefficient (MAC) of BC, and snow grain optical effective radius (R_{eff}).
Fig. 1. Measured and modeled spectral albedos of snow at sites (a) 90, (b) 91, (c) 93, (d) 95, (e) 98, and (f) 101. Gray shaded bands correspond to measured spectral albedos using an spectroradiometer from the SAMDS and SNICAR models. Red and blue solid lines correspond to spectral albedos from simulated by the SAMDS and SNICAR models with measured snow grain radii (R_m), and light red and blue shaded bands correspond to the albedos from the SAMDS and SNICAR models with calculated snow grain optical effective radii (R_{eff}). Contaminants only include BC and mineral dust MD in the SAMDS and SNICAR models. In the SNICAR model, the ratio of Fe in dust was found to be 2.8%. Dashed red lines are similar to solid red lines, although OC should be added to the list of contaminants in the SAMDS model.
References

Lorenz, K., Preston, C. M., and Kandeler, E.: Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of
organic matter by solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy, Geoderma, 130, 312-323, 2006.

References

Wang, D., Wang, Y. Q., and Cheng, Y.: Characterization of soil dust aerosol in
China and its transport and distribution during 2001 ACE-Asia: 1. Network
observations, J. Geophys. Res., Atmos., 108, Artn 4261, 10.1029/2002jd002632,
2003.

Zhao, C., Hu, Z., Qian, Y., Leung, L. R., Huang, J., Huang, M., Jin, J., Flanner, M. G.,
carbon and dust and their radiative forcing in seasonal snow: a case study over
North China with field campaign measurements, Atmos. Chem. Phys., 14,
11475-11491, 10.5194/acp-14-11475-2014, 2014.

Ofosu, F. G., Hopke, P. K., Aboh, I. J. K., and Bamford, S. A.: Characterization of
fine particulate sources at Ashaiman in Greater Accra, Ghana, Atmos Pollut Res., 3,
301-310, 2012.