Dear ACP Editor

After carefully reading the comments from the two reviewers, we have revised our manuscript. Following is our response to the comments.

Anything about our paper, please feel free to contact me via wanggh@ieecas.cn

Sincerely yours

Gehui Wang
2016-11-25

Referee No. #1

General comments:
The study compared the PM before, during and after APEC in 2014. The study focused on organic compounds in fine particles and they understand how these organic compounds change during the emission control. Recently, many previous studies prove the organics in fine particles were dominant in North China plain which could be important policy to control VOCs in the future. However, details about organic compounds is scare. Obviously, the study is important to provide more details about organics. Moreover, during the APEC period, the Chinese central government made strick emission control in North China Plain in winter. After the APEC period, one severe haze-fog event occurred. The phenonmon provides one change to understand what kind of chemical mechanism to promote the haze formation following the source emission change. I think the study provide some insights to improve the air quality in Beijing and well understand details about organics. After the reading, the current ms need to be revised after one publication.

Response: We thank the reviewer’ comments above and revised our manuscript. Following is our detailed response to the comments

Comments
(1) Abstract: The abstract is so long and two paragraph. I may suggest to take some details away and make major findings in the abstract.
Response: Suggestion taken. We have shortened the abstract by removing some details. See page 2, line 42-60.

Comments
(2) Title: Molecular distributions” what does this mean? I think the authors only provide the concentration changes of oxalic acid and related SOA. Seemly, the word is not correct here.
Response: We changed the title as “Concentrations and stable carbon isotope compositions of oxalic acid and related SOA in Beijing before, during and after the 2014 APEC event”
Comments:
(3) L253-254, the statement is unexpected. Could you show the result in anywhere? Also, the data only containing NH$_4^+$ as the basic ion is bias. What about Na$^+$, K$^+$, and Ca$^{2+}$? I think the bisulfate depending on the particle size. More smaller particle size is more acidic. Therefore, the conclusion should be revised. Also, I noticed several pervious papers in ACP. They found the Beijing air is NH$_3$-rich not NH$_3$-limited. Please find them and carefully made the conclusion.

Response: We are sorry that we did not give the related information in the ACPD version. The fact is that we have measured all cations and anions in the samples and input these data into ISORRPIA-II mode, which has treated the Na$^+$−NH$_4^+$−K$^+$−Ca$^{2+}$−Mg$^{2+}$−Cl$^-$−NO$_3^-$−SO$_4^{2-}$ system, to estimate the aerosols liquid water content (ALWC) and acidity ([H$^+_\text{aero}$]). We agree with the reviewer that Beijing air is not NH$_3$-limited, because we found that the molar ratio of NH$_4^+$ to SO$_4^{2-}$ plus NO$_3^-$ is 1.1 for the current work, which means that sulfate and nitrate in Beijing during the APEC campaign were completely neutralized. Such a conclusion is consistent with our work about Beijing haze published in PNAS recently (Wang et al., 2016). Weber et al (2016) reported that under the typical rural conditions over southeastern USA for ammonium sulfate aqueous particles the equilibrium NH$_3$ vapor concentrations is approximately 160 μgm$^{-3}$ (220 ppbv), which is far beyond the real concentration of NH$_3$ in the atmosphere and means that ammonium bisulfate is the major form of sulfate existing in the atmosphere under a typical ambient level of NH$_3$ conditions.

In the revised version, one paragraph and related data about the model calculation has been added into the text, see page 6, line 131-135 and page 22, Table 1. We also polished the statements related to aerosol acidity, see page 11, line 241-245.

Comments:
(4) Section 3.3.2 Figure 6 shows three classes of air masses. I am confused the name of the type. I think the regional type is same to long-range transport type. Also, Local type is not local from the Figure 6. Obviously, the name should be modified. I suggest that long-range transport type should be clean air mass. Regional type should be polluted air mass. Local type should be mixed type of clean and polluted.

Response: Suggestion taken. In the current version, we re-named the three types of air masses as polluted, clean and mixed, as recommended by the reviewer, and revised all the related discussions. See Section 3.3.2 and Figure 6.

Comments:
(5) L269-271 and L339-341 the result is not stable for temperature. The PM$_{2.5}$ decrease is associated with air masses or wind direction. If the air mass was from northwest, the PM$_{2.5}$ concentration decreased because it bring the clean air into Beijing. Also the temperature is decrease. As it is, you can make conclusion about the PM$_{2.5}$ concentration and oxalic formation? If the authors want to make such conclusion, you need to compare the PM$_{2.5}$ and oxalic concentration at similar air masses such both from south.

Response: We agree with the reviewer that the much less abundant PM$_{2.5}$ and oxalic acid during-APEC is related to the air masses, which originated from Siberia and Mongolia and
brought clean air into Beijing. We looked at the correlation of C$_2$/TDOC with temperature for each type of air masses, and found the correlation still exists and event more significant, for example, the R2 is 0.56 and 0.67 for the polluted type of air masses and the clean type of air masses, respectively, which indicates that higher temperature conditions are favorable for oxidation of precursors to produce oxalic acid. We have revised the related discussions. See page 10, line 251-258.

For the conclusion in previous version, i.e., L339-341, we have deleted these sentences in the current revised paper, because we believe the original version of statement overemphasized the importance of temperature in for PM$_{2.5}$ reduction and thus is not accurate enough. The lower PM$_{2.5}$ and SOA concentrations during-APEC period are not only due to the efficient emission controls but also due to the favorable meteorological conditions. During the APEC period air masses arriving in Beijing mostly originated from Siberia and Mongolia, which are clean, cold, and relatively drier compared with those before-APEC. Thus, PM$_{2.5}$ and oxalic acid concentrations are much lower. See the revised sentences in page 15, line 328-335, and line 351-357.

Comments:
In the context, the authors miss comma before and. Such L50 before-, during-, and after-APEC.
L216 L319, SO42-, NO3-, NH4+.
L293 North
L294 is – was
L341 not only, but also changed to by both the emission controls and the lower tem.;
Response: Suggestion taken. We have corrected these. See page 12, line 281-282 and page 14, line 308.

Referee #2

General comments:
This manuscript investigates aerosol chemical compositions before, during and after the APEC event. The authors also provide some valuable measurement data, e.g., particulate organic matters on molecular level and isotope compositions, to testify the effect of emission reduction, temperature and RH on secondary aerosol formation. Overall, this paper is definitely of interest for the scientific community and the findings are relevant to a better understanding the influence of pollution control on atmospheric aerosols. However, some revision work as listed below should be done before publication could be considered.
Response: We thank the reviewer’ comments above and revised our manuscript. Following is our detailed response to the comments
General comments:
The authors try to ascribe the low concentration of and relative abundances of SIA, WSOC, TDOC and C2 during and after APEC to the low temperature condition. However, as shown in figure 6 in the manuscript, the backward trajectory cluster analysis demonstrates that there are more stagnant air masses before APEC than those during APEC, and “…the resident time of the air masses within Hebei province is very short, thus aerosols…is of local characteristics and relatively fresh”. This is self-contradictory. If the backward trajectory cluster analysis is right, all the secondary features before APEC can be ascribed to the more time for the formation of secondary aerosols, instead of high temperature which favor the secondary formation. The authors need to clarify this contradiction.

Response: Suggestion taken. We agree with the reviewer that reaction time, in addition to temperature, is also important for secondary aerosol formation, i.e., the stagnant condition before-APEC is favorable for secondary aerosol formation. However, we do not think all the secondary features before APEC should be ascribed to the more time for the formation of secondary aerosols, because temperature and relative humidity are also important factors for photochemical oxidation especially for aerosol aqueous phase oxidation. Higher temperatures and humid conditions are favorable for SOA aqueous-phase production, which could result in abundant oxalic acid enriched with heavier 13C (Aggarwal and Kawamura, 2008; Wang et al., 2012). In the current revised version, we have modified all the related explanations about the lower concentrations and relative abundances of SIA, WSOC, TDOC and C2 during- and after-APEC throughout the paper including abstract.

Comments:
1. Line 232, “In comparison with those before-APEC the decreased ratio C2/TDOC and increased ratios of Gly/TDOC and mGly/TDOC during and after-APEC, together with a decreased ratio of WSOC/OC discussed previously, further suggest a reducing production of SOA during the whole campaign.” This sentence is very obscure.
Response: We have modified this statement. See page 10, line 218-223.

Comments:
2. Line 254, “As seen in Fig. 5d, H+aer correlated well with SO$_4^{2-}$ ($R^2 = 0.58$), probably suggesting SO$_4^-$ is the key factor controlling the aerosol acidity.” The logic of this sentence is questionable. The acidity of aerosols is decided by the anion-cation balance, not a single ion.
Response: We agree with the reviewer that the acidity of aerosols is decided by the anion-cation balance, not a single ion. The fact is that we determined all cations and anions in the samples not a single ion, and put these data into ISORROPIA-II model, which treated the Na$^+$–NH$_4^+$–K$^+$–Ca$^{2+}$–Mg$^{2+}$–Cl$^-$–NO$_3^-$–SO$_4^{2-}$ system, to estimate the aerosol aqueous H$^+$ concentration (Hennigan et al, 2015; Weber et al., 2016). We revised this sentence to make the explanation more reasonable. See page 11, line 241-245.

Comments:
3. Line 262, as discussed above, good correlation between the temperature and C2/TDOC may because the different origin of air mass.
Response: We have looked at the correlation for the different air masses, and found the linear correlation still exists and is even more significant. For example, the linear correlation coefficients are $R^2=0.56$ for the polluted type of air masses and $R^2=0.67$ for the clean type of air masses, further demonstrating that temperature is an important factor for organic aerosol oxidation, i.e., higher temperature is favorable for organic aerosol oxidation. We have modified these discussions. See page 10-11, line 251-258.

Comments:
4. Line 279, is it possible that the change of $\delta^{13}C$ in C$_2$ is due to the different source of C$_2$ precursors?

Response: We do not think so. Oxalic acid (C$_2$) in the atmosphere mostly exists in aerosol phase and is produced via aerosol-phase oxidation of organic compounds with two or more carbon atoms. Changes in $\delta^{13}C$ of atmospheric C$_2$ is caused by stable carbon isotope fractionation process, which occurs during the C$_2$ precursor oxidation process and called as kinetic isotope effects (KIE), rather than by the different source of C$_2$ precursors (Kawamura et al., 2016, Hoefs 2009). Many studies have found that oxalic acid is enriched with heavier ^{13}C during aerosol ageing process, thus $\delta^{13}C$ of C$_2$ often displays a positive correlation with its relative abundance. Because during aerosol ageing process organic aerosols release CO$_2$/CO by reaction with OH radical and other oxidants, resulting in the evolved species enriched with lighter isotope (^{12}C) and the remaining substrate enriched in ^{13}C due to KIE effects (Hoefs, 1997; Rudolph et al., 2002).

Comments
5. Line 288, I am a little confused about the definition of the pollution type. Do the authors find higher relative concentration of primary pollutant, e.g., BC, CO, in the local type? Also, the air masses from Siberia should be very clean. Is there any evidence of the pollutant transport during the periods of this type? Otherwise, the use of “transport” in the definition will be misleading.

Response: In the revised paper we have re-named the three types of air masses, as recommended by the reviewer #1. Yes, we found higher relative concentration of primary pollutant (e.g., BC and CO) in the local type (now is re-named as the mixed type). Higher relative abundances of primary species were observed for the PM$_{2.5}$ samples collected after-APEC, for example, EC/PM$_{2.5}$ is 3% in the event I and increased to 7.5% in the event II. We have added this into the text. See page 14, line 324-327.

Long-range transport is a commonly used term by aerosol researchers when they talk about aerosol origins. There is a certain amount of natural organic aerosols in the atmosphere over Siberia and Mongolia, although their concentrations are much lower compared to the anthropogenic aerosols in the downwind regions such as Beijing. During the moving of air masses from Siberia and Mongolia to east China, these particles can be transported. However, as recommended by the reviewer #1, we re-defined the three types of air masses and revised related statements to avoid any possible misleading. See page 12-13, line 273-303.

Comments:
6. Line 308, still, is it possible that the difference of $\delta^{13}C$ in each type is due the different
source of C₂ precursors?

Response: We don’t think so. See our response above.

Comments:
7. Line 315, the authors compared two pollutant episodes before and after APEC, and conclude that the difference is mainly due to the temperature. However, as it is also discussed in Part 3.3.2, the two episodes are in different pollution types with totally different air mass origin. The authors need to exclude the influence of air mass before making such conclusions.

Response: We think in the ACPD version we overemphasized the role of temperature and neglected other factors such as stagnant condition that caused a longer reaction time before-APEC for SOA formation. Thus our conclusion that the difference before- and after-APEC is mainly due to the temperature is not accurate enough. We have revised our explanation about the aerosol composition difference. See page 14, line 309-313; page 14-15, line 324-335.

Reference
Concentrations and stable carbon isotope compositions of oxalic acid and related SOA in Beijing before, during and after the 2014 APEC

Jiayuan Wang¹,³, Gehui Wang¹,²,³,⁴,*, Jian Gao⁵,⁶,*, Han Wang⁵,⁶, Yanqin Ren¹,³, Jianjun Li¹, Bianhong Zhou¹, Can Wu¹,³, Lu Zhang¹,³, Shulan Wang⁵,⁶, Fahe Chai⁵,⁶

¹State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
²School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710079, China
³University of Chinese Academy of Sciences, Beijing 100049, China
⁴Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
⁵State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100084, China
⁶Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210000, China

Correspondence to: Gehui Wang (wanggh@ieecas.cn) and Jian Gao (gaojian@craes.org.cn)
Abstract: To ensure the good air quality for the 2014 APEC, stringent emission controls were implemented in Beijing and its surrounding regions, leading to a significant reduction in PM$_{2.5}$ loadings. To investigate the impacts of the emission controls on aerosol composition and formation, high-volume PM$_{2.5}$ samples were collected in Beijing from 8th October to 24th November, 2014 and determined for secondary inorganic ions (SIA, i.e., SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$), dicarboxylic acids, keto-carboxylic acid and α-dicarbonyls, as well as stable carbon isotope composition of oxalic acid (C$_2$). Our results showed that SIA, C$_2$ and related SOA in PM$_{2.5}$ before-APEC were 2–4 times higher than those during-APEC, which can be ascribed to the warm, humid and stagnant conditions before-APEC that are favorable for secondary aerosol production.

C$_2$ in the polluted air masses, which mostly occurred before-APEC, are abundant and enriched in 13C. On the contrary, C$_2$ in the clean air masses, which mostly occurred during-APEC, is much less abundant but still enriched in 13C. In the mixed type of clean and polluted air masses, which mostly occurred after-APEC, C$_2$ is lower than that before-APEC but higher than that during-APEC and enriched in lighter 12C. A comparison on chemical composition of fine particles and δ^{13}C values of C$_2$ in two events that are characterized by high loadings of PM$_{2.5}$ further showed that after-APEC SIA and TDOC are much less abundant and fine aerosols are enriched with primary organics and relatively fresh, compared with those before-APEC.

Key words: Secondary organic aerosols; Emission controls; Sources and formation mechanisms; Aqueous-phase oxidation; Aerosol acidity and water content.
1. Introduction

Atmospheric aerosols profoundly impact the global climate directly by scattering and absorbing solar radiation and indirectly by affecting cloud formation and distribution via acting as cloud condensation nuclei (CCN) and ice nuclei (IN). Moreover, atmospheric aerosols exert negative effects on human health because of their toxicity. Due to fast urbanization and industrialization, high level of atmospheric fine particle (PM$_{2.5}$) pollution has been a persistent problem in many cities of China since the nineties of last century (van Donkelaar et al., 2010).

As the capital of China and one of the largest megacities in the world, Beijing has suffered from frequent severe haze pollution especially in winter, affecting more than 21 million people by the end of 2014 (Beijing Municipal Bureau of Statistics, 2015) and causing billions of economic loses (Mu and Zhang, 2013). To improve the air quality Beijing government has put many efforts to reduce the pollutant emissions (i.e., SO$_2$, NOx, dust, and volatile organic compounds (VOCs)) from a variety of sources.

The 2014 Asia-Pacific Economic Cooperation (APEC) summit was hosted in Beijing from the 5th to 11th November. To ensure good air quality for the summit, a joint strict emission control program was conducted from 3rd November 2014 in Beijing and its neighboring provinces including Inner Mongolia, Shanxi, Hebei and Shandong provinces. During this period thousands of factories and power plants with high emissions were shut down and/or halted, all the construction activities were stopped and the numbers of on-road vehicles were reduced. These strict emission controls resulted in the air quality of Beijing during the APEC period being significantly improved, leading to a decrease in PM$_{2.5}$ concentration by 59.2% and an increase in visibility by 70.2% in Beijing during the summit compared with those before the APEC (Tang et...
al., 2015) and a term of “APEC-Blue” being created to refer to the good air quality. Such strong artificial intervening not only reduced PM$_{2.5}$ and its precursors’ loadings in Beijing and its surrounding areas but also affected the composition and formation mechanisms of the fine particles (Sun et al., 2016).

A number of field measurements have showed that particle compositions in Beijing during wintertime haze periods are dominated by secondary aerosols (Guo et al., 2014; Huang et al, 2014; Xu et al., 2015). Rapid accumulation of particle mass in Beijing during haze formation process is often accompanied by continuous particle size growth (Guo et al, 2014; Zhang et al., 2015), which is in part due to the coating of secondary organic aerosols (SOA) on pre-existing particles (Li et al., 2010). Several studies have found that SOA production during the 2014 Beijing APEC periods significantly reduced and ascribed this reduction to the efficient regional emission control (Sun et al., 2016; Xu et al, 2015). However, up to now information of the SOA decrease on a molecular level has not been reported. Dicarboxylic acids are the major class of SOA species in the atmosphere and ubiquitously found from the ground surface to the free troposphere (Fu et al., 2008; Myriokefalitakis et al., 2011; Sorooshian et al., 2007; Sullivan et al., 2007). In the current work we measured molecular distributions of dicarboxylic acids, keto-carboxylic acids and α-dicarbonyls and stable carbon isotope composition of oxalic acid in PM$_{2.5}$ aerosols collected in Beijing before, during and after the APEC event in order to explore the impact of the APEC emission control on SOA in Beijing. We first investigated the changes in concentration and composition of dicarboxylic acids and related compounds during the three periods, then recognized the difference in stable carbon isotope composition of oxalic acid in different air masses in Beijing during the APEC campaign. Finally we compared the different
chemical and compositions of PM$_{2.5}$ during two heaviest pollution episodes.

2. Experimental section

2.1 Sample collection

PM$_{2.5}$ samples were collected by using a high-volume sampler (Brand, USA) from 8th October to 24th November 2014 on the rooftop of a three-storey building located on the campus of China Research Academy of Environmental Sciences, which is situated in the north part of Beijing and close to the 5th-ring road. All the PM$_{2.5}$ samples were collected onto pre-baked (450 °C for 8 h) quartz fiber filters (Whatman 41, USA). The duration of each sample collection is 23 hr from 08:00 am of the previous day to 07:00 am of the next day. Field blanks were also collected before and after the campaign by mounting a pre-baked filter onto the sampler for 15 min without pumping air. After collection, all the filter samplers were individually sealed in aluminum foil bags and stored in a freezer (-18 °C) prior to analysis. Daily values of SO$_2$, NO$_x$ and meteorological parameters were cited from the website of Beijing Environmental Protection Agency.

2.2 Sample analysis

2.2.1 Elemental carbon (EC), organic carbon (OC), water-soluble organic (WSOC), inorganic ions, aerosol liquid water content (ALWC) and aerosol acidity.

Detailed methods for the analysis of EC, OC, WSOC and inorganic ions in aerosols were reported elsewhere (Li et al., 2011; Wang et al 2010). Briefly, EC and OC in the PM$_{2.5}$ samples were determined by using DRI Model 2001 Carbon analyzer following the Interagency Monitoring of Protected Visual Environments (IMPROVE) thermal/optical reflectance (TOR) protocol (Chow et al., 2007). WSOC and inorganic ions in the samples were extracted with
Milli-Q pure water and measured by using Shimadzu TOC-L CPH analyzer and Dionex-600 ion chromatography, respectively (Li et al. 2011; Wang et al. 2010). In the current work, aerosol liquid water content (ALWC) and acidity (i.e., liquid H⁺ concentrations, [H⁺]) of the samples were calculated by using ISORROPIA-II model, which treated the Na⁺−NH₄⁺−K⁺−Ca²⁺−Mg²⁺−Cl⁻−NO₃⁻−SO₄²⁻ system and was performed in a “metastable” mode (Hennigan et al. 2015; Weber et al., 2016).

2.2.2 Dicarboxylic acids, keto-carboxylic acids and α-dicarbonyls

The method of analyzing PM₂.₅ samples for dicarboxylic acids, ketocarboxylic acids and α-dicarbonyl has been reported elsewhere (Wang et al., 2002, 2012; Meng et al., 2014; Cheng et al., 2015). Briefly, one eighth of the filter was extracted with Milli-Q water, concentrated to near dryness, and reacted with 14% BF₃/butanol at 100 °C for 1 h to convert aldehyde group into dibutoxy acetal and carboxyl group into butyl ester. Target compounds in the derivatized samples were identified by GC/MS and quantified by GC-FID (Agilent GC7890A).

2.3. Stable carbon isotope composition of oxalic acid (C₂)

Stable carbon isotope composition (δ¹³C) of C₂ was measured using the method developed by Kawamura and Watanabe (2004). Briefly, δ¹³C values of the derivatized samples above were determined by gas chromatography-isotope ratio-mass spectrometry (GC-IR-MS) (Thermo Fisher, Delta V Advantage). The δ¹³C value of C₂ was then calculated from an isotopic mass balance equation based on the measured δ¹³C of the derivatizations and the derivatizing reagent (1-butanol) (Kawamura and Watanabe, 2004). Each sample was measured for three times to ensure the difference of the δ¹³C values less than 0.2‰, and the isotope data reported here is the averaged value of the triplicate measurements.
3. Results and discussion

3.1 Variations in meteorological conditions, gaseous pollutants and major components of PM$_{2.5}$ during the Beijing 2014 APEC campaign

Based on the emission control implementation for the APEC, we divided the whole study period into three phases: before-APEC (08/10 to 02/11), during-APEC (03/11 to 12/11) and after-APEC (13/11 to 24/11). Temporal variations in meteorological parameters and concentrations of gaseous pollutants and major components of PM$_{2.5}$ during the three phases are shown in Fig. 1 and summarized in Table 1.

Temperature during the sampling campaign showed a continuous decreasing trend with averages of 13 ± 2.6 °C, 7.0 ± 1.7 °C and 4.3 ± 1.3 °C before-, during- and after-APEC periods, respectively, while relative humidity (RH) did not show a clear trend with mean values of 62 ± 19%, 47 ± 14% and 51 ± 16% during the three periods (Fig.1a and Table 1). SO$_2$ showed a similar level before- and during-APEC periods (8.8 ± 4.6 μg m$^{-3}$ versus 7.6 ± 3.9 μg m$^{-3}$) (Table 1), but increased dramatically to 23 ± 8.8 μg m$^{-3}$ after-APEC due to domestic coal burning for house heating (Fig. 1b). NO$_2$ concentration (45 ± 18 μg m$^{-3}$) during the APEC reduced by about 30% compared to that in the before- and after-APEC phases (71 ± 27 μg m$^{-3}$ versus 78 ± 29 μg m$^{-3}$) (Table 1), mainly because of the reduction of the on-road vehicle numbers, as well as the reduced productivities of power plant and industry. O$_3$ displayed a decreasing trend similar to that of temperature (Fig. 1c). PM$_{2.5}$ pollution episodes in Beijing showed a periodic cycle of 4−5 days, which is caused by the local weather cycles. Secondary inorganic ions (SIA, i.e., SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$) are major components of PM$_{2.5}$ and present a temporal variation pattern similar to that of the fine particles (Fig. 1d). In the current work mass ratio of NO$_3^-$/SO$_4^{2-}$ in PM$_{2.5}$
during the whole study time is 1.8 ± 1.9 (Table 1), which is in agreement with the ratio (1.6–2.4) for PM\textsubscript{1} observed during the same time by using aerosol mass spectrometry (AMS) (Sun et al., 2016). OC and EC of PM\textsubscript{2.5} linearly correlated each other (R2=0.91) and varied periodically in a cycle similar to SIA (Fig. 1e). OC/EC ratio during the whole sampling period is 3.3 ± 0.6 (range: 2.2–4.7) with no significant differences among the three APEC phases (Table 1).

Figure 2 shows the differences in chemical composition of PM\textsubscript{2.5} before-, during- and after-APEC periods. PM\textsubscript{2.5} is 98 ± 46 μg m-3 during-APEC, about 50% lower than that before- and after-APEC (178 ± 122 μg m-3 versus 161 ± 100 μg m-3), respectively. Organic matter (OM) is the most abundant component of the fine particles. Relative abundance of OM (OM, 1.6 times of OC) (Xing et al., 2013) to PM\textsubscript{2.5} continuously increased from 24% before-APEC to 30% and 39% during- and after-APEC, respectively, although the mass concentration (19 ± 7.6 μg m-3) of OC during-APEC is the lowest compared to those before- and after-APEC (26 ± 16 μg m-3 versus 39 ± 23 μg m-3). Sulfate, nitrate and ammonium before-APEC are 15 ± 13, 28 ± 26 and 9.0 ± 8.0 μg m-3 (Table 1) and account for 8%, 16% and 5% of PM\textsubscript{2.5}, respectively (Fig. 2). Their concentrations decrease to 5.3 ± 2.8, 10 ± 8.1 and 3.1 ± 2.6 μg m-3 (Table 1) with the relative contributions to PM\textsubscript{2.5} down to 5%, 10% and 3% during-APEC, respectively. While after-APEC their concentrations increased to 11 ± 10, 15 ± 13 and 6.9 ± 6.4 μg m-3 and accounted for 7%, 9% and 4% of PM\textsubscript{2.5}. Such significant decreases in concentrations of OM and SIA during-APEC demonstrate the efficiency of the emission controls. OC/EC ratio is almost constant during the whole period, but WSOC/OC ratio decreased by 20% from 0.42 ± 0.13 before-APEC, 0.38 ± 0.16 during-APEC to 0.35 ± 0.17 after-APEC (Table 1). Since WSOC in fine aerosols consist mainly of secondary organic aerosols (SOA) (Laskin et al., 2015), the decreasing ratio of
WSOC/OC probably indicates a reduced SOA production during the campaign.

3.2 Oxalic acid and related SOA during the Beijing 2014 APEC campaign

A homogeneous series of dicarboxylic acids (C$_2$−C$_{11}$), keto-carboxylic acid and α-dicarbonyls in the PM$_{2.5}$ samples were detected. As show in Table 2, total dicarboxylic acids during the whole study period is 593 ± 739 ng m$^{-3}$, which is lower than that observed during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing) (average 760 ng m$^{-3}$) and 2007 (average 1010 ng m$^{-3}$) (Ho et al, 2010, 2015) and the averaged wintertime concentration reported by a previous research for 14 Chinese cities (904 ng m$^{-3}$) (Ho et al, 2007). Total keto-carboxylic acid is 66 ± 81 ng m$^{-3}$, while total dicarbonyls is 126 ± 115 ng m$^{-3}$ (Table 2). These values are higher than those during CAREBeijing 2006 and 2007 (Ho et al, 2010, 2015), but close to the value observed for the 14 Chinese megacities (Ho et al, 2007). Being similar to those previous observations, oxalic acid (C$_2$) is the most abundant diacid in the 2014 APEC samples with an average of 334 ± 461 ng m$^{-3}$ (range: 10−2127 ng m$^{-3}$, Table 2) during the whole campaign, followed by methylglyoxal (mGly), succinin acid (C$_4$), terephthalic acid (tPh), and glyoxal (Gly). These five species account for 43%, 10%, 9%, 6% and 6% of total detected organic compounds (TDOC), respectively (Fig. 3).

As see in Fig. 4, TDOC in PM$_{2.5}$ are 1099 ± 1104, 325 ± 220 and 487 ± 387 ng m$^{-3}$ before-, during- and after-APEC, respectively. In comparison with those before-APEC, TDOC during-APEC decreased by 71%. Oxalic acid (C$_2$) is the leading species among the detected organic compounds and accounted for 46%, 31% and 34% of TDOC during the three phases, respectively (Fig. 4). C$_2$ is an end product of precursors that are photochemically oxidized in aerosol aqueous phase via either oxidation of small compounds containing two carbon atoms or
decomposition of larger compounds containing three or more carbon atoms. Thus mass ratio of C$_2$ to TDOC is indicative of aerosol aging (Wang et al., 2012; Ho et al., 2015). As shown in Fig. 4, the highest proportion of C$_2$ before- APEC suggests that organic aerosols during this period are more oxidized, compared to those during- and after-APEC. Glyoxal (Gly) and methylglyoxal (mGly) are the precursors of C$_2$. Mass ratios of both compounds to TDOC are lowest before-APEC (Fig. 4), further indicating an enhanced SOA production during this period.

3.3 Formation mechanism of oxalic acid

3.3.1 Correlation of oxalic acid with temperature, relative humidity (RH), aerosol liquid water content (ALWC) and acidity and sulfate

A few studies have pointed out that aerosol aqueous phase oxidation is a major formation pathway for oxalic acid (Yu et al., 2005; Pinxteren, et al., 2014; Bikkina et al., 2015; Tilgner et al., 2010). To explore the formation mechanism of oxalic acid, we calculated ALWC and acidity (i.e., proton concentration, [H$^+$]) of PM$_{2.5}$ aerosols by using ISOROPPIA-II model (Weber et al., 2016). As shown in Fig. 5, during the entire period C$_2$ showed a strong linear correlation with sulfate ($R^2=0.70$ Fig. 5a), which is consistent with those observed in Xi’an (Wang et al., 2012) and other Chinese cities (Yu et al, 2005). Previous studies on particle morphology showed that sulfate particles internally mixes with SOA in Beijing especially in humid haze days (Li et al., 2010, 2011), which probably indicates that they are formed via similar aqueous phase pathways. In addition, a robust correlation was also found for C$_2$ with RH ($R^2=0.64$, Fig. 5b) and aerosol liquid water content (ALWC) ($R^2=0.61$, Fig. 5c), indicating that humid conditions are favorable for the aqueous phase formation of C$_2$, which is most likely due to an enhanced gas-to-aerosol
aqueous phase partitioning of the precursors (e.g., Gly and mGly) (Fu et al., 2008; Wang et al., 2015).

NH$_4^+$, NO$_3^-$ and SO$_4^{2-}$ are the dominant cation and anions of fine particles in Beijing, respectively (Guo et al., 2014; Zhang et al., 2015) and the molar ratio of [NH$_4^+$] to [NO$_3^-$ + SO$_4^{2-}$] in this study is 1.1. Thus it is plausible that SO$_4^{2-}$ during the APEC campaign largely existed as ammonium bisulfate, resulting in a strong linear correlation between [H$^+$] and SO$_4^{2-}$ with a molar slope of 1.03 (Fig. 5d) (Zhang et al., 2007). In addition, [H$^+$] shows a significant positive correlation with C$_2$ ($R^2 = 0.84$) (Fig. 5e), possibly due to the fact that acidic conditions are favorable for the formation of C$_2$ precursors. For example, Surratt et al (2007; 2010) found that aerosol acidity can promote the formation of biogenic SOA (BSOA) derived from isoprene oxidation such as 2-methylglyceric acid, Gly and mGly. These BSOA precursors can be further oxidized into C$_2$ (Meng et al., 2014; Wang et al., 2009).

There is a significant positive correlation ($R^2 = 0.58$, $p<0.001$) between the mass ratios of C$_2$/TDOC and ambient temperatures (Fig. 5f), which is similar to the results found by previous researchers (Ho et al., 2007; Strader et al., 1999), indicating that organic aerosols are more aged under a higher temperature condition (Erven et al, 2011; Carlton et al., 2009). Thus, compared with those before-APEC the lower C$_2$/TDOC ratios (31% and 34%, respectively) (Fig. 4) during- and after-APEC can be ascribed in part to the relatively lower temperature conditions that are not favorable for oxidation of the precursors to produce oxalic acid ($13 \pm 2.6 \, ^\circ C$, $7.0 \pm 1.7 \, ^\circ C$ and $4.3 \pm 1.3 \, ^\circ C$ before-, during- and after-APEC periods, respectively) (Table 1).

3.3.2 Temporal variation in stable carbon isotopic composition of oxalic acid

To further discuss the formation mechanism of C$_2$, we investigated the temporal variations
of concentration and stable carbon isotopic composition of C$_2$ in the PM$_{2.5}$ samples (Fig. 6).

Previous studies have demonstrated that Gly, mGly, glyoxylic acid (ωC$_2$) and pyruvic acid (Pyr) are the precursors of C$_2$ (Carlton et al., 2006, 2007; Ervens and Barbara, 2004; Wang et al., 2012).

Thus, higher mass ratios of C$_2$ to its precursors indicate that organic aerosols are more oxidized (Wang et al., 2010). As shown in Table 3, δ^{13}C of C$_2$ in this work positively correlated with the mass ratios of C$_2$/ωC$_2$, C$_2$/mGly and TDOC/WSOC, demonstrating an enrichment of 13C during the aerosol oxidation process. Because decomposition (or breakdown) of larger molecular weight precursors in aerosol aqueous phase is the dominant formation pathway for C$_2$ in aerosol ageing process (Kawamura et al., 2016; Gensch et al., 2014; Kirillova et al., 2013), during which organic compounds release CO$_2$/CO by reaction with OH radical and other oxidants, resulting in the evolved species enriched with lighter isotope (12C) and the remaining substrate enriched in 13C due to kinetic isotope effects (KIE) (Hoefs, 1997; Rudolph et al., 2002).

72-h backward trajectory analysis showed that air masses moved to Beijing during the whole sampling period can roughly be categorized into three types (Fig. 6a) (all trajectories during the entire study period can be found in the supplementary materials). (1) **Polluted type**, by which air masses originated from inland and east coastal China and moved slowly into Beijing within 72-h from its south regions, i.e., Henan, Shandong and Jiangsu Provinces. This type of air masses mostly occurred before-APEC with high PM$_{2.5}$ concentrations. Air pollution has widely distributed in the three provinces (Wei et al., 2016); thus aerosols transported by this type of air masses are of regional characteristics. (2) **Mixed type**, by which air masses originated from Mongolia and North China, and moved quickly into Hebei province and then turned back to Beijing. Air in Mongolia and North China was clean but polluted in Hebei province, which is
adjacent to Beijing. This type of air masses is a mixture of clean and polluted air and thus named as mixed type. Since the resident time of the mixed type of air masses within Hebei province is very short, thus aerosols transported by this type of air masses is of local characteristics and relatively fresh. (3) Clean type, by which air masses originated from Siberia and moved rapidly into Beijing directly via a long-range transport. Aerosols from the clean type of air masses are much more aged, while those from the mixed type of air masses are fresh. Since severe air pollution is widespread in the south regions, gas-to-aerosol phase partitioning of precursors and subsequent aerosol-phase oxidation to produce SOA including C₂ continuously proceed during the air mass movement. However, such a partition for producing SOA is not significant when air mass move from Siberia, Mongolia and North China because of the much less abundant VOCs. Instead, aerosols in the clean air masses are continuously oxidized, during which C₂ is produced by photochemical decomposition of larger molecular weight precursors. Therefore, C₂ in PM₂.₅ transported by the mixed type air masses are not only fresh and abundant but also enriched in ¹²C, whereas C₂ in PM₂.₅ transported by the clean type air masses are aged, less abundant and enriched in ¹³C due to KIE effects, as illustrated by the pink and light blue columns in Fig. 6b, respectively. C₂ in PM₂.₅ transported by the polluted type of air masses are most abundant compared with that in other two type of air masses, which is not only due to the severe air pollution in the Henan, Shandong and Jiangsu provinces but also due to the enhanced photochemical oxidation under the humid, higher temperature and stagnant conditions that occurred mostly before-APEC, as discussed previously. Therefore, C₂ in the polluted type of air masses is not only abundant but also enriched in ¹³C (see black columns in Fig. 6b).

3.4 Different chemical characteristics of PM₂.₅ between two severe haze events
From Fig. 1 and Table 4, it can be found that PM$_{2.5}$ showed two equivalent maxima on 9th October and 20th November during the whole study period. However, the chemical compositions of PM$_{2.5}$ during these two pollution events were significantly different. As shown in Fig. 7a, relative abundances of SIA (sum of SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$) to PM$_{2.5}$ are 30% during the event I and 23% during the event II, respectively. The relative abundance of OM (21%, Fig. 7a) during the event I is lower than that (37%) during the event II (Fig. 7b). In contrast, the ratios of WSOC/OC and TDOC/OC are higher in the event I than in the event II, which is consistent with lower levels of O$_3$ after-APEC (Table 1), suggesting a weaker photochemical oxidation capacity during the event II. Organic biomarkers in the PM$_{2.5}$ have been measured for the source apportionment (Wang et al., 2016) and cited here to further identify the difference in chemical composition of PM$_{2.5}$ between the two events. Levoglucosan is a key tracer for biomass burning smoke. Mass ratio of levoglucosan to OC in PM$_{2.5}$ (Lev/OC) is comparable between the two events, suggesting a similar level of contributions of biomass burning emission to PM$_{2.5}$ before- and after-APEC. However, the mass ratios of PAHs and hopanes to OC are lower in event I than those in event II (Fig. 7c), which again demonstrates the enhanced emissions from coal burning for house heating, because these compounds are key tracers of coal burning smokes (Wang et al., 2006). As seen in Fig. 7d, C$_2$ in the event I was enriched in 13C. Such relatively more abundant SIA, WSOC and TDOC and heavier C$_2$ in PM$_{2.5}$ clearly demonstrate that PM$_{2.5}$ during the event I were enriched with secondary products while the fine particles during the event II were enriched with primary compounds. After-APEC house heating activities including residential coal burning were activated, which emitted huge amounts of SO$_2$, NOx, and VOCs as well as primary particles, resulting in both absolute concentrations and relative abundances of CO and...
EC 30–40% higher after-APEC than before-APEC (see Table 1). Li et al (2015) reported that VOCs in Beijing was 86 ppbv before-APEC, 48 ppbv during-APEC and 73 ppbv after-APEC. As shown in Table 4, temperature (16.7±0.8 °C for event I and 4.5±1.7 °C for event II) and relative humidity (RH) (82±4% for event I and 62±13% for event II) are lower during the event II than during the event I. Moreover, air masses arriving in Beijing during the event II are the mix type, of which the resident time in Hebei province is short. Compared with those in the event I, such colder and drier conditions and short reaction time during the event II are unfavorable for photochemical oxidation, resulting in SOA not only less abundant but also enriched with lighter 12C during the event II, although VOCs levels are comparable before- and after-APEC.

4. Summary and conclusion

Temporal variations in molecular distribution of SIA, dicarboxylic acids, ketoacids and α-dicarbonyl and stable carbon isotopic composition (13C) of C$_2$ in PM$_{2.5}$ collected in Beijing before-, during- and after- the 2014 APEC were investigated. Absolute concentrations and relative abundances of SIA and C$_2$ in PM$_{2.5}$ are highest before-APEC, followed by those after- and during-APEC, suggesting that the fine aerosols before-APEC are enriched with secondary products, mainly due to an enhanced photochemical oxidation under the warm, humid and stagnant conditions. Concentrations of SIA, oxalic acid and related SOA in PM$_{2.5}$ during-APEC are 2–4 times lower than those before-APEC, which can be ascribed to the effective emission controls and the favorable meteorological conditions that brought clean air from Siberia and Mongolia into Beijing.

Positive correlations of C$_2$ with RH, sulfate mass, ALWC and aerosol acidity indicate that C$_2$ formation pathway is involved an acid-catalyzed aerosol aqueous phase oxidation. SIA, C$_2$
and related SOA in the polluted type of air masses are abundant with C2 enriched in 13C. On the contrary, those in the clean type of air masses are much less abundant, although C2 is also enriched in 13C. By comparing the chemical composition of PM$_{2.5}$ and δ^{13}C values of C2 in two events that are characterized by the highest loadings of PM$_{2.5}$ before- and after-APEC, we further found that compared with those before- APEC fine aerosols after-APEC are enriched with primary species and C2 is depleted in heavier 13C, although SO$_2$, NOx and VOCs are abundant during the heating season, again demonstrating the important role of meteorological conditions in the secondary aerosol formation process, which are warmer, humid and stagnant before-APEC and result in secondary species much more abundant than those during- and after-APEC.

Acknowledgements
This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants No. XDB05020401), the China National Natural Science Founds for Distinguished Young Scholars (Grants No. 41325014), and the program from National Nature Science Foundation of China (No. 41405122, 91544226 and 41375132).

References

Figure Captions

Figure 1. Temporal variations of meteorological conditions, gaseous pollutants and major components of PM$_{2.5}$ during the 2014 APEC campaign. (The brown shadows represent two air pollution events characterized by highest PM$_{2.5}$ levels before- and after-APEC, while the blue shadow represents the APEC event).

Figure 2. Chemical composition of PM$_{2.5}$ during the 2014 APEC campaign.

Figure 3. Molecular distributions of dicarboxylic acids and related compounds in PM$_{2.5}$ of Beijing, China during the 2014 APEC campaign. The pie chart is the average composition of total detected organic compounds (TDOC) and the top number is the average mass concentration of TDOC of the whole study period.

Figure 4. Compositions of total detected organic compounds (TDOC) in PM$_{2.5}$ during the 2014 APEC campaign.

Figure 5. Correlation analysis for oxalic acid (C$_{2}$) and sulfate in PM$_{2.5}$ during the whole 2014 APEC campaign. (a-c) Concentrations of C$_{2}$ with sulfate, relative humidity (RH), and aerosol liquid water content (ALWC); (d, e) sulfate and C$_{2}$ with aerosol acidity [H$^{+}$] and (f) temperature with mass ratio of C$_{2}$ to total detected organic compounds (C$_{2}$/TDOC).

Figure 6. (a) 72-h backward trajectories determined by the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model arriving at the sampling site to reveal the major air mass flow types during the study period. Northwesterly wind (light blue) was most frequently (64%), followed by northerly (21%, pink) and southerly (15%, black) and is defined as clean, mixed and polluted types, respectively (see the definitions in the text); (b) Time series of δ^{13}C values and concentration of oxalic acid during the whole study period (Colors in Fig. 6a are corresponding to those in Fig. 6b).

Figure 7. Comparison of chemical composition of PM$_{2.5}$ during two air pollution events. (a) Percentages of major species in PM$_{2.5}$; (b, c) mass ratios of major species and organic tracers in PM$_{2.5}$; (d) stable carbon isotope composition of oxalic acid (C$_{2}$) (Data about levoglucosan (Lev), PAHs and hopanes are cited from Wang et al (2016)).
<table>
<thead>
<tr>
<th></th>
<th>Whole period</th>
<th>Before-APEC</th>
<th>During-APEC</th>
<th>After-APEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=48)</td>
<td>(N=26)</td>
<td>(N=10)</td>
<td>(N=12)</td>
</tr>
<tr>
<td>I. Meteorological parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature, °C</td>
<td>9.5±4.3 (3.0–18)</td>
<td>13±2.6 (9.0–18)</td>
<td>7.0±1.7 (4.0–10)</td>
<td>4.3±1.3 (3.0–7.0)</td>
</tr>
<tr>
<td>Relative humidity, %</td>
<td>56±19 (17–88)</td>
<td>62±19 (22–88)</td>
<td>47±14 (17–65)</td>
<td>51±16 (29–80)</td>
</tr>
<tr>
<td>Visibility, km</td>
<td>8.8±6.8 (1.0–28)</td>
<td>7.3±6.6 (1.0–24)</td>
<td>13±7.7 (6.0–28)</td>
<td>7.2±4.2 (2.0–15)</td>
</tr>
<tr>
<td>Wind speed, km h⁻¹</td>
<td>8.0±4.9 (3.0–26)</td>
<td>7.6±4.8 (3.0–26)</td>
<td>9.4±6.6 (3.0–26)</td>
<td>7.8±2.9 (3.0–13)</td>
</tr>
<tr>
<td>II. Gaseous pollutants, µg m⁻³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₃</td>
<td>48±23 (6.0–115)</td>
<td>55±24 (9.0–115)</td>
<td>52±13 (25–69)</td>
<td>29±18 (6.0–60)</td>
</tr>
<tr>
<td>SO₂</td>
<td>12±8.5 (2.0–43)</td>
<td>8.8±4.6 (2.0–19)</td>
<td>7.6±3.9 (2.0–15)</td>
<td>23±8.8 (13–43)</td>
</tr>
<tr>
<td>NO₂</td>
<td>68±29 (10–135)</td>
<td>71±27 (22–118)</td>
<td>45±18 (10–69)</td>
<td>78±29 (45–135)</td>
</tr>
<tr>
<td>CO</td>
<td>1360±730 (220–3320)</td>
<td>1370±700 (250–2460)</td>
<td>960±410 (220–1420)</td>
<td>1720±830 (740–3320)</td>
</tr>
<tr>
<td>III. Major components of PM₂.₅, µg m⁻³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>157±110 (16–408)</td>
<td>178±122 (16–408)</td>
<td>98±46 (28–183)</td>
<td>161±100 (36–383)</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>12±11.5 (1.2–43)</td>
<td>15±13 (1.2–43)</td>
<td>5.3±2.8 (1.8–11)</td>
<td>11±10 (2.9–34)</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>21±22 (0.32–88)</td>
<td>28±26 (0.32–88)</td>
<td>10±8.1 (1.2–26)</td>
<td>15±13 (2.9–46)</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>7.3±7.2 (0.2–28)</td>
<td>9.0±8.0 (0.2–28)</td>
<td>3.1±2.6 (0.2–8.6)</td>
<td>6.9±6.4 (1.0–22)</td>
</tr>
<tr>
<td>OC</td>
<td>28±18 (5.7–78)</td>
<td>26±16 (6.0–67)</td>
<td>19±7.6 (5.7–29)</td>
<td>39±23 (9.7–78)</td>
</tr>
<tr>
<td>EC</td>
<td>8.8±5.4 (1.4–25)</td>
<td>8.6±4.6 (1.4–18)</td>
<td>6.0±2.7 (1.5–9.6)</td>
<td>12±7.0 (2.1–25)</td>
</tr>
<tr>
<td>WSOC</td>
<td>10±6.0 (2.4–32)</td>
<td>11±4.6 (3.1–32)</td>
<td>6.4±2.6 (2.4–11)</td>
<td>11±6.1 (4.5–24)</td>
</tr>
<tr>
<td>ALWC</td>
<td>40±62 (0–299)</td>
<td>58±75 (0–299)</td>
<td>6.3±5.5 (0–19)</td>
<td>28±41 (0.4–136)</td>
</tr>
<tr>
<td>[H⁺]</td>
<td>0.083±0.14 (0–0.56)</td>
<td>0.13±0.17 (0–0.56)</td>
<td>0.026±0.025 (0–0.072)</td>
<td>0.033±0.067 (0–0.20)</td>
</tr>
</tbody>
</table>

Table 1. Meteorological parameters and concentrations of gaseous pollutants and chemical components of PM₂.₅ in Beijing during the 2014 APEC campaign.
Table 2. Concentrations of dicarboxylic acids and related compounds in PM$_{2.5}$ in Beijing during the 2014 APEC campaign (ng m$^{-3}$)

<table>
<thead>
<tr>
<th></th>
<th>Whole period (N=48)</th>
<th>Before-APEC (08/10–02/11) (N=26)</th>
<th>During-APEC (03/11–12/11) (N=10)</th>
<th>After-APEC (13/11–14/11) (N=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Dicarboxylic acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxalic, C$_2$</td>
<td>334 ± 461 (10–2127)</td>
<td>502 ± 564 (10.5–2127)</td>
<td>101 ± 69 (35–251)</td>
<td>166 ± 157 (22–554)</td>
</tr>
<tr>
<td>Malonic, C$_3$</td>
<td>31 ± 42 (ND–247)</td>
<td>45.7 ± 52.1 (1.44–247)</td>
<td>12 ± 8.0 (3.4–22.8)</td>
<td>16± 10.9 (ND–36)</td>
</tr>
<tr>
<td>Succinic, C$_4$</td>
<td>74 ± 118 (3.0–722)</td>
<td>111 ± 150 (3.0–722)</td>
<td>24 ± 14 (7.1–42)</td>
<td>36 ± 26 (4.9–90)</td>
</tr>
<tr>
<td>Glutaric, C$_5$</td>
<td>8.7 ± 12 (ND–68)</td>
<td>13± 15 (ND–68.1)</td>
<td>2.9 ± 2.24 (0.9–5.8)</td>
<td>4.9 ± 4.2 (ND–13)</td>
</tr>
<tr>
<td>Adipic, C$_6$</td>
<td>13± 14 (0.9–83)</td>
<td>17 ± 18 (1.9–83)</td>
<td>5.9 ± 3.8 (2.1–14)</td>
<td>9.9 ± 7.1 (2.0–23)</td>
</tr>
<tr>
<td>Pimelic, C$_7$</td>
<td>2.1 ± 3.8 (ND–27)</td>
<td>2.6 ± 5.1 (ND–27)</td>
<td>1.1 ± 0.7 (0.2–2.3)</td>
<td>2.0 ± 1.1 (0.9–4.4)</td>
</tr>
<tr>
<td>Suberic, C$_8$</td>
<td>10 ± 11 (ND–66)</td>
<td>12± 13 (ND–66)</td>
<td>7.6 ± 5.0 (1.3–16)</td>
<td>8.7 ± 6.0 (2.0–21)</td>
</tr>
<tr>
<td>Azelaic, C$_9$</td>
<td>7.7 ± 7.4 (ND–34)</td>
<td>9.4 ± 8.8 (ND–34)</td>
<td>4.2± 3.6 (0.5–11)</td>
<td>6.8 ± 4.9 (1.4–16)</td>
</tr>
<tr>
<td>Undecanedioic, C$_{10}$</td>
<td>11 ± 13 (ND–77)</td>
<td>14 ± 16 (ND–77)</td>
<td>3.3± 2.5 (ND–7.5)</td>
<td>9.4 ± 6.4 (0.8–23)</td>
</tr>
<tr>
<td>Methylsuccinic, iC$_5$</td>
<td>13 ± 16 (0.6–79)</td>
<td>18 ± 19 (0.6–79)</td>
<td>4.8 ± 3.0 (1.0–9.2)</td>
<td>8.4 ± 6.0 (2.3–19)</td>
</tr>
<tr>
<td>Maleic, M</td>
<td>3.4 ± 3.9 (ND–15)</td>
<td>4.6± 4.7 (ND–15)</td>
<td>1.4 ± 0.8 (ND–2.9)</td>
<td>2.4 ± 2.0 (ND–6.3)</td>
</tr>
<tr>
<td>Glutaric, C$_5$</td>
<td>7.2 ± 8.8 (ND–64)</td>
<td>10 ± 11 (ND–64)</td>
<td>2.2 ± 1.5 (ND–5.4)</td>
<td>4.7 ± 3.2 (1.4–10)</td>
</tr>
<tr>
<td>Fumaric, F</td>
<td>7.2 ± 8.8 (ND–64)</td>
<td>10 ± 11 (ND–64)</td>
<td>2.2 ± 1.5 (ND–5.4)</td>
<td>4.7 ± 3.2 (1.4–10)</td>
</tr>
<tr>
<td>Phthalic, Ph</td>
<td>17 ± 14 (1.5–64)</td>
<td>20 ± 16 (1.5–64)</td>
<td>10 ± 6.8 (2.3–20)</td>
<td>17 ± 9.0 (6.4–31)</td>
</tr>
<tr>
<td>Isophthalic, tPh</td>
<td>4.6 ± 3.9 (2.6–133)</td>
<td>50 ± 35 (2.6–123)</td>
<td>28 ± 19 (4.7–59)</td>
<td>53± 40 (7.4–133)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>593 ± 739 (25–3788)</td>
<td>849 ± 905 (25–3788)</td>
<td>214 ± 135 (72–447)</td>
<td>354 ± 279 (85–965)</td>
</tr>
<tr>
<td>II. Keto-carboxylic acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyruvic, Pyr</td>
<td>24 ± 20 (1.3–84)</td>
<td>31± 23 (2.4–84)</td>
<td>15 ± 12 (1.3–36)</td>
<td>15 ± 9.3 (3.2–33)</td>
</tr>
<tr>
<td>Glyoxylic, ωC$_2$</td>
<td>33 ± 51 (1.2–300)</td>
<td>48± 64 (1.2–300)</td>
<td>10 ± 7.7 (2.6–21)</td>
<td>20 ± 23 (2.8–80)</td>
</tr>
<tr>
<td>7-Oxohexanoic, ωC$_7$</td>
<td>8.8 ± 14 (ND–90)</td>
<td>13 ± 17 (ND–90)</td>
<td>4.2 ± 3.6 (ND–13)</td>
<td>4.5 ± 5.1 (ND–17)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>66 ± 81 (3.6–474)</td>
<td>92 ± 99 (3.6–474)</td>
<td>30 ± 22 (5.9–66)</td>
<td>40 ± 35 (13–128)</td>
</tr>
<tr>
<td>III α-Dicarbonyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyoxal, Gly</td>
<td>44 ± 47 (4.2–270)</td>
<td>57 ± 56 (4.2–270)</td>
<td>22 ± 19 (4.9–47)</td>
<td>35 ± 30 (7.3–101)</td>
</tr>
<tr>
<td>Methylglyoxal, mGly</td>
<td>82 ± 82 (ND–406)</td>
<td>102 ± 96 (ND–406)</td>
<td>60 ± 52 (15–139)</td>
<td>58 ± 51 (5.8–144)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>126 ± 115 (5.3–466)</td>
<td>158 ± 132 (5.3–466)</td>
<td>81.6 ± 67.4 (22–186)</td>
<td>93 ± 80 (14–225)</td>
</tr>
<tr>
<td>TDOC<sup>a</sup></td>
<td>785 ± 872 (36–4636)</td>
<td>1099 ± 1104 (36–4636)</td>
<td>325 ± 220 (107–664)</td>
<td>487 ± 387 (117–1318)</td>
</tr>
</tbody>
</table>

^aND: not detectable; ^bTDOC: total detected organic compounds.
Table 3 Linear correlation coefficients of $\delta^{13}C$ of C$_2$ with C$_2$/ωC$_2$, C$_2$/mGly, and TDOC/WSOC

<table>
<thead>
<tr>
<th></th>
<th>C$_2$/ωC$_2$</th>
<th>C$_2$/mGly</th>
<th>TDOC/WSOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta^{13}C$</td>
<td>0.49**</td>
<td>0.35*</td>
<td>0.41*</td>
</tr>
</tbody>
</table>

** $p<0.01$; * $p<0.05$
Table 4. Meteorological parameters and chemical compositions (μg m$^{-3}$) of two maximum PM$_{2.5}$ between two pollution episodes in Beijing

<table>
<thead>
<tr>
<th></th>
<th>T (°C)</th>
<th>RH (%)</th>
<th>V (km)</th>
<th>PM$_{2.5}$</th>
<th>OC</th>
<th>EC</th>
<th>SIAb</th>
<th>TDOCc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event I (8/10-11/10, Before-APEC)</td>
<td>16.7 ± 0.8</td>
<td>82 ± 4</td>
<td>1.5 ± 0.5</td>
<td>349 ± 57</td>
<td>45 ± 12</td>
<td>12 ± 2</td>
<td>106±39</td>
<td>2749 ± 1357</td>
</tr>
<tr>
<td>Event II (18/11-21/11, After-APEC)</td>
<td>4.5 ± 1.7</td>
<td>62 ± 13</td>
<td>3.5 ± 1.5</td>
<td>259 ± 102</td>
<td>60 ± 21</td>
<td>17 ± 6</td>
<td>60±32</td>
<td>831 ± 400</td>
</tr>
</tbody>
</table>

aV: visibility; bSIA: secondary inorganic ions (the sum of sulfate, nitrate and ammonium); cTDOC: total detected organic compounds
Figure 1. Temporal variations of meteorological conditions, gaseous pollutants and major components of PM$_{2.5}$ during the 2014 APEC campaign. (The brown shadows represent two air pollution events characterized by highest PM$_{2.5}$ levels before- and after-APEC, while the blue shadow represents the APEC event).
Figure 2. Chemical composition of PM$_{2.5}$ during the 2014 APEC campaign.
Figure 3. Molecular distributions of dicarboxylic acids and related compounds in PM$_{2.5}$ of Beijing, China during the 2014 APEC campaign. The pie chart is the average composition of total detected organic compounds (TDOC) and the top number is the average mass concentration of TDOC of the whole study period.
Figure 4. Compositions of total detected organic compounds (TDOC) in PM$_{2.5}$ during the 2014 APEC campaign.
Figure 5. Correlation analysis for oxalic acid (C$_2$) and sulfate in PM$_{2.5}$ during the whole 2014 APEC campaign. (a-c) Concentrations of C$_2$ with sulfate, relative humidity (RH), and aerosol liquid water content (ALWC); (d, e) sulfate and C$_2$ with aerosol acidity [H$^+$] and (f) temperature with mass ratio of C$_2$ to total detected organic compounds (C$_2$/TDOC).
Figure 6. (a) 72-h backward trajectories determined by the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model arriving at the sampling site to reveal the major air mass flow types during the study period. Northwesterly wind (light blue) was most frequently (64%), followed by northerly (21%, pink) and southerly (15%, black) and is defined as clean, mixed and polluted types, respectively (see the definitions in the text); (b) Time series of δ¹³C values and concentration of oxalic acid during the whole study period (Colors in Fig. 6a are corresponding to those in Fig. 6b).
Figure 7. Comparison of chemical composition of PM$_{2.5}$ during two air pollution events. (a) Percentages of major species in PM$_{2.5}$; (b, c) mass ratios of major species and organic tracers in PM$_{2.5}$; (d) stable carbon isotope composition of oxalic acid (C$_2$) (Data about levoglucosan (Lev), PAHs and hopanes are cited from Wang et al (2016)).