We thank the reviewers for the thorough revisions and for providing constructive comments on our manuscript, “Trends of ground-level O_3 in Mexico during 1993-2014: Comparison of Monterrey with Mexico City and Guadalajara”. We are pleased that the editor and reviewer’s perspective on addressing O_3 long-term trends in Mexican urban areas is in agreement with our own views on the issue. We have addressed the concerns and recommendations received, and we believe that these helped to improve significantly the quality of our manuscript. Please find below our detailed response to the comments received, which are also highlighted in red in the revised version of the manuscript, submitted along with this response.

Reviewer #1:

Hernandez et al present trends in ozone precursor emissions and measured ozone levels in three urban areas in Mexico: Monterrey, Mexico City, and Guadalajara. This is an important research topic because, while there has been a long history of ozone trends analysis in the EU and US, there has been relatively little published on trends in other parts of the world. The paper itself needs some revisions before it is suitable for publication in ACP. Please see comments below.

Overarching comments:

Trends in emissions of ozone precursor: The authors need to more fully explore trends in ozone precursor emissions and discuss how the trends were derived. They provide some citations but don’t address how reliable these sources are and whether there have been methodological changes over time in the emissions estimates that might impact the calculated emissions trends. Since these trends are later used to explain resulting ozone trends, they are a fundamental basis of the paper and need more discussion and exploration. In addition, Duncan et al., 2016 analyzed NO$_x$ trends in these three metro areas based on satellite NO$_2$ column measurements between 2005-2014. The NO$_x$ trends reported by Duncan et al do not match those reported by the authors in Fig 1a. For instance, Duncan et al (Table S9) found that NO$_2$ had decreased in Guadalajara in this period while Fig. 1a suggests that the increased. Additionally, Duncan found that NO$_2$ in Monterrey increased 8x more than NO$_2$ in Mexico City while Fig 1a shows them increasing at similar rates. The authors should compare their results with Duncan et al and use this to explore uncertainties and limitations in the emissions trends shown in Fig 1a.

Response: The reviewer is right, no details regarding the methodology used to obtain the estimates of emissions and their uncertainty were included previously. The source of the emission estimates reported here and the methodologies used to obtain them were included in section 2.2 NEI data. See Lines: 181-205. We have also modified Fig. 1, now Fig. S1 to include more concise information, and discussed in the introduction section the uncertainties in the emission estimates reported in existing studies. See lines 108-122, 124-133.

Text modified:

"2.2 NEI data

Estimates of NO$_x$ and VOCs emissions have been made at the national scale for the 1999-2005 and 2008-base years and reported in the NEI, and were obtained from the SEMARNAT website (http://sinea.semarnat.gob.mx). The data set is provided by emission source (mobile, point, area and natural), air pollutant, and at national, state and municipality scales. The NEI emission estimates are developed in accordance with the Manual for the Emission Inventories Program of Mexico (Radian, 2000), which is based on the US EPA AP-42 emission factors categorisation (EPA, 1995). The emission factors are regionalised for each Mexican state, based upon on-site measurements and survey information. Updates to the emission factors have been conducted for each released NEI, although no
changes in the methodology were implemented between the 1999- and 2008-base years. Overall, the mobile emissions were estimated using the MOBILE6-Mexico model (EPA, 2003). The emissions from point sources were derived using the annual operation reports submitted to the Environment Ministry. The emissions from area sources were obtained using the categorisation of Mexican area sources and the regionalised AP-42 emission factors.

The MCMA emissions inventories have been developed with a 2-year frequency since 1996, and were obtained from the MCMA Environment Secretariat website (http://www.aire.cdmx.gob.mx/). The methodology used to construct the MCMA inventories estimates is consistent with that used in the NEI (SEDEMA, 2016a), which is based on the AP-42 EPA emission factors. However, more speciated emission factors have been developed in each released version, considering updates in the local industrial activity, survey information and field measurement campaigns. To date, the only significant change in the methodology is the replacement of the Mobile6-Mexico model with the MOVES model to obtain the 2014-base year mobile emissions (SEDEMA, 2016b). As for the MCMA inventories, more speciated emission factors than those contained in the NEI were developed to produce the MMA emissions inventory 2013-base year (SDS, 2015), although, mobile emissions estimates were obtained with the Mobile6-Mexico model (EPA, 2003)."

Incomplete coverage of past trends work: In the introduction and throughout the paper the authors have a haphazard presentation of past trends work. One of the largest long-term ozone monitoring networks is located in the United States and yet the authors fail to cite any of the numerous studies looking at trends of US ozone (a subset of US trends references are listed at the end of the review). Rather, the authors inexplicably try to understand Monterey O₃ trends by comparing them to studies from London, Tokyo and other far off places with little in common meteorologically or emissions-wise to Mexico. While it is worth discussing broadly the ozone trends across the Northern Hemisphere, the authors have a huge gap in this exploration because they don’t include any work from the US. Additionally, when trying to explain/understand O₃ phenomena in Mexico, the authors should try to make comparisons to locations that have similar meteorological or emissions change drivers. Instead, the comparisons and reported trends from the literature are discussed in a disjointed way and don’t provide an overall picture or provide context for the Mexican trends work presented here.

Response: The reviewer is right, no data regarding O₃ trends in US urban areas were included previously. As requested, we re-wrote the introduction section to include relevant information of O₃ trends in the US. We thank the reviewer for the list of references provided. See lines: 81-92.

Lack of transparency of O₃ metrics discussed: In the introduction, the authors cite numerous trends studies and say that ozone has changed by XX ppb but their description leaves out what metrics are being used. A 5 ppb change in annual average O₃ would mean something completely different than a 5 ppb change in 5th percentile or 95th percentile O₃. Additionally, O₃ calculated using all hours versus O₃ calculated using daily max (1-hr or 8-hr) will behave quite differently. In order for the reader to fully understand the literature that is being cited, the authors must provide information on which metrics the studies investigated. In addition, while the results in this paper do generally state the metric used, the authors switch between metrics (monthly avg – all hrs, annual avg – all hrs, 1-hr daily max values) without providing the reader with any information on why different metrics were used or how they might relate to each other. The authors need to provide more context in their own results about the meaning of each metric and what it reveals about O₃ changes.

Response: The reviewer is right, there was no description of the metrics used to derive the cited O₃ long-term trends. As requested, the metrics used to assess the changes in O₃ reported in the introduction were included in the text. See lines: 65, 71, 72, 74, 75, 80, 83-84, 88 and 89. Regarding the relevance of the metrics described in the current study, a sentence describing this was included before the discussion of each metric addressed. See lines: 135, 307-309, 367-371 and 402-403.
Specific comments:

Line 43: add “, methane” between “CO” and “and volatile organic compounds”.
Response: “, methane” was added. See line: 43.

Line 87-92: It would be helpful if the authors provided some basic background information on the relationship between emissions of NOx and VOC and O3. For instance explaining the conditions under which NOx increases versus decreases O3 concentrations.
Response: A brief description of the O3 production regimes has been added. Text modified: “The system of O3 production is not linear, being VOC-limited whether it responds to the input of VOCs, or NOx-limited, whether O3 production increases in response to increasing NOx emissions (Monks et al., 2015; Pusede et al., 2015).”. See lines: 45-47.

Line 142-143: But didn’t the authors state that previous trends work had been conducted for Mexico City and Guadalajara?
Response: We have clarified in the text that the existing studies have focused mostly on long-term trends in O3 within the MCMA. Additionally, we have stated that to date, only Benitez-Garcia et al. (2014) have considered changes in ground-levels of O3 within the GMA and the MMA, however their results were obtained using the non-robust, simple regression analysis of annual averages, which could result in significant misestimations of the actual trends. See lines: 102-106.

Lines 176-178 and 180-186: These appear to be results which are stuck in the middle of the methods section. I suggest moving these to the results section.
Response: As suggested, lines 176-175 and 180-186 were moved to the results section, which are now part of section “3.1 Wind occurrence at the MMA”. See lines: 272-279.

Lines 195-199: Were new and old instruments ever co-located to inter-compare the measurements? Just following QA procedures is probably not sufficient to control for changes in O3 data due solely to different measurement techniques.
Response: Unfortunately, no simultaneous measurements of O3 were performed using the 49 and 49C instruments; since the analysers model 49 reach their recommended operative life by early 2003, when were replaced with the analysers model 49C. However, to rule out the impact of different instrumentation and calibration methodologies studies have recommended the use of 3-yr O3 averages, when no intercomparing measurement period was conducted. For instance, Akimoto et al. (2015) used 3-yr averages of O3 when assessing long-term changes in ground-levels of O3 at 4 large metropolitan areas of Japan. Similarly, Parrish et al. (2011) assessed the decreases in the O3 4th highest annual maximum mixing ratio within Los Angeles and the MCMA, using data calculated as 3-yr averages. This was noted in Lines: 171-173. Additionally, long-term trends in O3 annual averages were compared with those derived using the methodology as above in Supplementary information S1.1 (Fig. S2).

Text modified:

S1.1 Comparison of long-term trends in O3 annual averages with 3-yr averaged data
Linear trends were tested both for O3 annual averages and 3-yr average O3 data with the non-parametric Theil-Sen approach. Although, slight larger O3 growth rates are determined for the smoothed data than for the annual averages as shown in Fig. S2, non-significant differences ($p>0.05$) were observed between both Sen slopes. Considering this, and that the smoothing of O3 annual averages could lead to miss significant features in the current trends (Carslaw et al., 2007; Carslaw, 2015), in the current study, O3 annual averages with no smoothing were used to determine the long-term trends reported at the 3 metropolitan areas.
Fig. S2. Comparison of long-term trends in for O3 annual averages (1993-2014), and 3-yr average O3 data (1993-2012). The dashed lines represent the Sen slopes. Statistical significance is expressed as $p<0.1 = ^{\dagger}$, $p<0.05 = ^{*}$, $p<0.01 = ^{**}$ and $p<0.001 = ^{***}$.

Line 267: GPE had a higher max value than STA according to numbers reported in the following paragraphs.

Response: The reviewer is right. There was a mistake in the sentence, we have specified the site where the highest O3 1-h average mixing ratio was measured during the studied period. Text modified: “The highest O3 1-h average was observed at SNB,”. See lines: 283-285.

Line 276: It would be more accurate if this sentence read: “Reaction with O3 rapidly converts NO to NO2”.

Response: The sentence was modified as suggested. Text modified: “Reaction with O3 rapidly converts NO to NO2,”. See line: 294.
Here the authors switch from data using all hours (and daily averages) to daily max 1-hr O$_3$ values. They should note the switch and explain the importance of the different metrics.

Response: As requested by the reviewer, the relevance of the long-term trend assessment for maximum O$_3$ 1-h averages was stated. Text added: "A study conducted among asthmatic children resident in the MCMA revealed an increase in coughing and wheezing rates, associated with cumulative exposure to high 1-h averages mixing ratios of O$_3$ and NO$_2$ (Escamilla-Nuñez et al., 2008). To assess changes in cumulative exposure to O$_3$ and O$_x$ within the MMA, long-term trends of de-seasonalised maximum daily 1-h averages in O$_3$, O$_x$ and NO$_x$ were calculated, using annual averages filtered with the STL technique (Fig. 4).". See lines: 307-311.

Is this significant? If so state p-value.

Response: As requested by the reviewer, p-values were written along the text where required. See line: 312.

Here you state that changes 0.79 ppb/yr are “large” but on line 38 you referred to a change of 0.76 ppb/yr as “gradual”. Be consistent with characterization of these trends.

Response: The reviewer is right. We have changed “gradual” in Line 38 to "large" in order to be consistent with the trend characterisation. See line: 38.

The authors should state the magnitude and direction of the trend at STA is before discussing causes.

Response: As requested by the reviewer, the magnitude of the trend and significance value were stated. Text added: "By contrast, the non-significant (p>0.05) trend of -0.01 ppb O$_3$ yr$^{-1}$ observed at STA is may be masked by local import of O$_3$...". See lines 315-318.

What are the daily O$_3$ profiles normalized to? It is not clear what calculations were performed here.

Response: The reviewer is right. We have stated how the normalised cycles were constructed. Text added: "To compare the O$_3$ diurnal cycles by season, normalised daily profiles were constructed by subtracting daily averages from hourly averages in order to remove the impact of the long-term trends (Fig. 6; Hernández-Paniagua et al., 2015), with daily amplitude values (AV$_d$; calculated by subtracting the lowest normalised values from the highest normalised values) used to assess diurnal variations in O$_3$ among seasons.". See lines: 345-349.

It would be interesting if the authors could discuss whether AV$_d$ has changed over time.

Response: As requested by the reviewer, the long-term trends in AV$_d$ from 1993 to 2014 were determined for the 5 sites within the MMA. Figure 7 shows the long-term trends in AV$_d$s, which are discussed in the manuscript. See lines: 361-371.
The dashed lines represent the Sen slopes. Statistical significance is expressed as $p<0.1 = ^*,$ $p<0.05 = \ast,$ $p<0.01 = **$ and $p<0.001 = ***.$

Lines 329-338: In contrast, the maximum O_3 concentrations in the US usually occur in June-August. It would be good to note this difference.

Response: As requested, O_3 seasonal cycles within the MMA are compared with those reported for several regions of the US, including the southeast. This as the MMA is also influenced by air masses from the Gulf of Mexico. Text modified: "Figure 8b shows the seasonal cycles of $O_3,$ with spring-time maxima and winter minima, in strong correlation with SR (Lelieveld and Dentener, 2000). This behaviour agrees well with the O_3 spring maxima and winter minima characteristic of the US southeast regions (Strode et al., 2015), and follows the NH mid-latitudes O_3 cyclic pattern (Monks 2000; Vingarzan, 2004). However, it differs with the O_3 seasonal cycles observed over the US west coast regions (particularly in California), where the maxima occur between June-August, in response to the local influence of precursor emissions upon O_3 production and photochemical conditions (Vingarzan, 2004; Strode et al., 2015). By contrast, downward spikes in the seasonal cycles of O_3 within the MMA are observed recurrently between July-August (Fig. 8b), which likely result from high wind speeds (>6 km h$^{-1}$ in average) that disperse O_3 precursors and increase the boundary layer height (ProAire-AMM, 2008), and high day-time temperatures (>40° C) that could suppress the O_3 formation. Steiner et al. (2010) reported that within VOC-limited areas, temperatures >38° C may lead to decreases in O_3 formation, in response to a decrease in the peroxyacetyl nitrate lifetime (NO$_x$ sink). The peak in O_3 observed in September is characteristic of humid regions, and can be ascribed to an increase in OH radicals derived from the increment in RH during the rainy season (Lee et al., 2014). Zheng et al. (2007) reported that this O_3 secondary peak became less noticeable since 2000 over the mid-western and
eastern US regions. Indeed, the O₃ secondary peak is characteristic of the Asian summer monsoon, which transports maritime clean air to land with constant rainfall, thereby increasing RH (Xu et al., 2008).” See lines: 381-400.

Line 355: The authors state that AVs are similar to those recorded in the US but they have provided no information about the US with which to make this comparison.
Response: Data of the seasonal cycles over the US were included in order to discuss AVs with those observed within the MMA. Text modified: " AVs for the MMA are similar to those calculated using dynamic linear models by Zheng et al. (2007), over the mid-western US region between ca. 12 ppb O₃ in 2004 and 18 ppb O₃ in 1999, but lower than those between ca. 19 ppb O₃ in 2004 and 27 ppb O₃ in 1999 determined for the eastern region. When compared with European regions, the AVs determined within the MMA are slightly lower than those calculated at the North Kensington site in London, which ranged from ca. 7.0 ppb O₃ in 2000 to ~25.5 ppb O₃ in 2005 (Bigi and Harrison, 2010), presumably due to lower emissions of NOx and VOCs within the MMA (SDS, 2015). It is striking that the average AVs for the MMA agrees well with that of 10.5 ppb O₃ recorded during 2004-2005 at the Pico Mountain Observatory in Portugal, which is a receptor of exported NA air pollution (Kumar et al., 2013). Thus, despite trends of increasing O₃ precursor emissions within the MMA, AVs lie within the range of those recorded at sites in the mid-west US, but are slightly lower than those determined for more populated and urbanised sites in the east US and Western Europe.”. See lines: 407-418.

Line 371: Are monthly averages calculated using all hours or just daytime max values?
Response: The O₃ monthly averages were derived from daily averages of all 1-h data, as described in section 2.3, which was clarified in the manuscript. Text added: "The long-term trends were constructed from de-seasonalised annual data derived from monthly averages filtered with STL, which were calculated from daily data of all 1-h averages, as described in Methodology (Sect. 2.3).". See lines: 440-442.

Lines 381-389: Duncan et al. can provide NO₂ trends at many more locations than just Toronto. Also the US EPA publishes trends reports which include trends in emissions which could be used for comparison.
Response: As requested, we have discussed the O₃ trends observed in terms of response to changes in NOx determined within the MMA, with contrast with the NOx trends reported by Duncan et al. and economic indicators. See: Figure 10. Additionally, studies of relevance conducted within the MMA and from the list provided by the reviewer were used to discuss and explain the observed trends in O₃ within the MMA. See lines: 459-465, 469-479, 481-489, 491-503.

Lines 444-448: This explanation does not fit with the current literature. The most dramatic weekend/weekday effects have been observed in Southern California under VOC limited conditions, so VOC limitation would not explain the lack of a weekend/weekday effect.
Response: As requested by the reviewer, the discussion of the O₃ weekly cycles section was re-written. We discussed the non-significant changes between weekdays and weekends reported in our study with those reported by Wolff et al. (2013) for urban areas across the US. Moreover, we provide a plausible explanation for the O₃ weekly patterns observed, based on i) the assessment of ambient levels of O₃ as reported by Torres-Jardon (2004) for the MCMA and, ii) the vanishing effect in urban areas of the Southern California reported by Wolff et al. (2013). Text modified: “No significant differences (p>0.05) were observed at any of the metropolitan areas between O₃ AVs during weekends and weekdays. This lack of a weekend effect in O₃ was reported previously at the MCMA for 1987-2007 by Stephens et al. (2008), who attributed it to weekday O₃ production being limited by VOCs and inhibited by NOx; this was also observed by Song et al. (2010). By contrast, simultaneous decreases in emissions of VOCs and NOx mostly from vehicle sources during weekends could have counteracting effects on the O₃ production rates, leading to similar levels of O₃ during weekdays at the 3 metropolitan areas. This behaviour was
reported previously by Wolff et al. (2013) for US urban areas of the Northeast, Midwest and Coastal California regions, which exhibited similar or even higher (±5 %) O₃ levels during weekdays than at weekends, despite lower O₃ precursor emissions during weekends. Moreover, Wolff et al. reported that from 1997-1999 to 2008-2010 the sites studied exhibiting a weekend effect decreased from ca. 35% to less than 5%, which was attributed to an increase in the VOC/NOₓ emission ratio derived from a greater decline in NOₓ than in VOCs emissions (Pusede et al., 2014).

It is likely that the O₃ weekly patterns observed at the metropolitan areas arise from reduced traffic activity during weekends, leading to increases in ratios of VOCs/NOₓ. Within the MMA, this would be confirmed by lower NOₓ mixing ratios (on average 5%) during weekends, changing to a transition O₃ production between VOC- and NOₓ-limited during weekends. Moreover, a change to a NOₓ-limited O₃ production derived from the reduction in NOₓ seems unlikely since this would result in lower O₃ levels during weekends, not observed at any of the studied urban areas (Torres-Jardon et al., 2004).” See lines: 531-542 and 544-550.

Lines 451-456: Past work (Simon et al, Cooper et al) has shown that O₃ trends are much more pronounced at high percentiles than at average levels, so an annual average may not be a very good metric to use to see long-term trends. **Response:** As suggested by the reviewer, we have included for the 3 metropolitan areas, the analysis of long-term trends at the annual 5th and 95th percentiles, median and averages. The observed trends are discussed with those reported in the references provided. Text modified: “Long-term trends of the annual 5th and 95th percentiles (%ile), median and average of O₃ during 1993-2014 were calculated using the Mann-Kendall test and Sen’s estimate for the 5 sites within the MMA (Salmi et al., 2002; Carslaw and Ropkins, 2012), and are shown in Fig. 9. The long-term trends were constructed from de-seasonalised annual data derived from monthly averages filtered with STL, which were calculated from daily data of all 1-h averages, as described in Methodology (Sect. 2.3). Overall, O₃ shows significant increasing trends (p<0.05) mostly in the annual averages ranging from 0.11 ppb O₃ yr⁻¹ at SNB to 0.31 ppb O₃ yr⁻¹ at OBI, and in the 95th %ile, which ranged from 0.39 ppb O₃ yr⁻¹ at OBI and SNB to 0.75 ppb O₃ yr⁻¹ at SNN. The 5th %ile increased significant only at OBI in 0.08 ppb yr⁻¹, while the median increased at SNN by 0.14 ppb O₃ yr⁻¹ and at OBI by 0.23 ppb O₃ yr⁻¹. Note that if trends are segmented and considered only after the decline in 1994-1995, the only significant change is that the O₃ growth rate at SNN would increase to 0.31 ppb O₃ yr⁻¹ and GPE would decrease to 0.14 ppb O₃ yr⁻¹, while in the 95th %ile the trends would decline slightly at GPE and SNB to 0.27 ppb O₃ yr⁻¹, and at OBI to 0.42 ppb O₃ yr⁻¹. Despite exhibiting the highest O₃ mixing ratios within the MMA, STA did not exhibited significant trends in any of the tested metrics.” See lines: 438-451.

“Long-term trends of de-seasonalised O₃ annual median, 5th and 95th percentiles at the 3 urban areas were determined following the same methodology as for annual averages (Fig. S10). Overall, the linear trends observed in O₃ annual averages for the MMA and MCMA are also seen in the other tested metrics, with significant (p<0.05) increases at MMA ranging from 0.05 ppb O₃ yr⁻¹ (5th percentile) to 0.41 ppb O₃ yr⁻¹ (95th percentile), and decreases at MCMA between 0.37 ppb O₃ yr⁻¹ (5th percentile) and 2.32 ppb O₃ yr⁻¹ (95th percentile). As for the O₃ annual averages, the GMA shows non-significant (p>0.05) trends in the other tested metrics. Notably, only the tropospheric CO decreased significantly (p<0.05) at the 3 urban areas studied, with the largest decrease rate of 0.12 ppm CO yr⁻¹ detected at the MCMA and the lowest one of 0.02 ppm CO yr⁻¹ calculated at the MMA. Thus, whereas O₃ precursors have decreased linearly within the MCMA and the GMA during the studied period, within the MMA those have increased during the same period despite the introduction of emission control policies (SDS, 2015).” See lines: 566-576.
Lines 458-464: Zheng et al and Camalier et al have analyzed the impact of inter-annual meteorological variation on O_3 trends. These studies should be cited and discussed.

Response: As requested by the reviewer, the references provided were cited and discussed in the seasonal cycles analysis section. Briefly, since O_3 time-series contain a significant seasonal component as reported in the literature, several methodologies have been developed to remove it and filter the influence of meteorology when determining long-term trends. In the present study, the STL technique (Cleveland et al., 1990) was used to filter out the seasonal component from the O_3 data, as the seasonality accounts for the year-to-year variation caused by changes in SR, RH, temp. As described along the manuscript, all annual data used to determine long-term trends for all pollutants analysed were derived from de-seasonalised data. Therefore, it is expected that the reported trends have no significant influence of the year-to-year variations in meteorology. See lines: 374-383, 393-400 and 582-585.

Lines 466-475: The explanation linking O_3 trends to emissions trends does not follow logically and is in contrast to results presented by Duncan et al.

Response: The results presented in our manuscript were revised and contrasted with the trends reported by Duncan et al. (2016). Additionally, we conducted an exhaustive revision of the data reported in the NEI and local emission inventories to verify consistency in methodologies used, which is described in section 2.2. See lines: 181-193, 195-205, 459-465, 474-479 and 572-576.

Tables 3 and 4: Are O_3 statistics based on hourly O_3 data or some other averaging period/daily max period. Please clarify in text and table headings.

Response: As requested by the reviewer, the resolution of O_3 data reported in Table 3 and 4 (now Table S1 and S2) was added. See: Table S1 and Table S2. See line: 287.

Fig 1a: Text should describe how this figure was created from the data sources listed. Do different data sources/years use consistent methodologies?

Response: The methodologies used to obtain the emission estimates are included in section 2.2. Fig. 1 was moved to Supplementary information (now Fig. S1). Fig. S1 only shows NEI emission data of VOCs and NO_x as described in the caption.

Fig 3: The label for panel d is missing.

Response: Label (d) was included in the Fig. S5.

Figure 8: How were 95% CIs constructed? Were they based on all daily values? Or on variation among sites in annually averaged profiles? In either case, these confidence intervals look VERY small, I think there is an error in the plotting. It is hard to believe that there would be so little day to day or site to site variability.

Response: The 95 % confidence intervals shown in Fig. 12 were calculated through bootstrap resampling (Carslaw et al. 2015), since it provides a better estimation compared with calculations based on normal data distributions. This explains the small confidence intervals compared with those constructed using a parametric test.

References provided by the reviewer:

*US O3 trends references (partial list):

Chan, E.; Vet, R. J. Baseline levels and trends of ground level ozone in Canada and the United States. Atmos. Chem. Phys. 2010, 10(18), 8629−8647.

We thank the reviewers for the thorough revisions and for providing constructive comments on our manuscript, “Trends of ground-level O$_3$ in Mexico during 1993-2014: Comparison of Monterrey with Mexico City and Guadalajara”. We are pleased that the editor and reviewer’s perspective on addressing O$_3$ long-term trends in Mexican urban areas is in agreement with our own views on the issue. We have addressed the concerns and recommendations received, and we believe that these helped to improve significantly the quality of our manuscript. Please find below our detailed response to the comments received, which are also highlighted in red in the revised version of the manuscript, submitted along with this response.

Reviewer #2:

This paper by Hernandez Paniagua deals with a very important topic of ground level ozone (O$_3$) and its trend in Monterrey, Mexico (MMA) from 1993-2014. It also presents comparison of O$_3$ trend with other big metropolitan areas in Mexico namely Mexico City (MCMA) and Guadalajara (GMA). While the topic is very important for both air quality and human health, the paper needs some revisions before it is suitable for publication in ACP.

Major Comments:

The paper as it stands is not fully digested. This is one of the major weakness of the paper. It could be significantly concise and coherent without losing any of the messages. A lot of figures could be moved to the supplemental section. For example Figures 3, 4, 5, and to some extent 6 do not really add much to the paper. Similarly, sections describing measurements at MCMA and GMA could be moved to the supplemental section as these measurements are not really different from MMA. On the other hand, the paper will benefit by expanding the analysis section.

Response: As requested by the reviewer, Figures 3 and 5 were moved to Supplementary information, now Fig. S3 and S5, respectively. We consider that Figure 4 must be included in the main body of the manuscript, because it shows the wind direction occurrence discussed along the whole manuscript. Similarly, Figure 3 shows the continuous measurements of O$_3$ discussed in section 3.2, instead of moving it to Supplementary information, lines showing the 5th, median and 95th percentile as requested below, were included for better interpretation, and the trends of such metrics are discussed in Section 3.4. The Sections 2.2 and 2.3 concerning the monitoring of O$_3$ at the MCMA and the GMA were moved to Supplementary information as requested. See sections: S1.2 and S1.3.

There are also comparisons with places around the world that is not very relevant for MMA. While it is important to compare the results with measurements made at other places around the world, these locations need to be very carefully selected. O$_3$ levels depend not only on the emissions of precursors but also the availability of the sunlight. The locations selected in the paper are from everywhere in the world from Canada to Japan, Cyprus to Saudi Arabia. These places do not have similar climate and very likely different emission scenarios and as a result not suitable candidate sites for comparison. Surprisingly there were no comparison being made with any locations in United States which likely has places with similar climate and emission sources (at least in terms of vehicular fleet make up). I suggest the other make a more selective comparison.

Response: The reviewer makes a good point. We have modified the introduction to present only relevant studies carried in North America and Europe. See lines: 58-75, 77-92. Additionally, reports of trends in O$_3$ at US urban areas are cited and discussed along the results section to explain the O$_3$ trends reported in the current study. See lines: 114-119, 387-400, 496-502, 544-550 and 590-597.
Despite the paper claiming it as a study of “impact of emissions of VOCs and NO\textsubscript{x} on trends of ground level O\textsubscript{3}”, there is very little analysis of emissions of VOCs and NO\textsubscript{x} in the paper. The only analysis presented is the trend in VOC and NO\textsubscript{x} emission inventory in MMA, GMA and MCMA (Fig. 1). And, Fig. 1 is mainly used in the introduction and not interpreting the observed trends. It is misleading to claim it as the study of “impact of emissions” as it stands. I suggest the authors, present analysis of NO\textsubscript{x} and VOCs (CO) measurements and attempt to make connections between VOCs, NO\textsubscript{x} and O\textsubscript{3}. A more suitable title for the current paper would be “Trends of ground level O\textsubscript{3} in Monterrey, Mexico during 1993-2014: Comparison with Mexico City and Guadalajara”. The lack of NO\textsubscript{x} and VOCs trend makes most of the current conclusion seem more like speculations.

Response: We agree with the reviewer, data of O\textsubscript{3} precursors emissions is now presented in the introduction section. See lines: 109-122, 124-129. Additionally, data of NO\textsubscript{x} and CO recorded within the MMA were used to explain the observed trends in O\textsubscript{3}. See lines: 311-319, 410-416, 457-465 and 566-574. We have also modified the title of our manuscript as suggested to: "Trends of ground-level O\textsubscript{3} in Monterrey, Mexico during 1993-2014: Comparison with Mexico City and Guadalajara".

There are too many different O\textsubscript{3} metrics being used in the paper and the authors constantly switch between them. There is no rationale being presented for why a certain metric is being used. I suggest the authors minimize the number of metric being used if possible or justify the use of different metrics in terms of what it reveals about O\textsubscript{3} in MMA.

Response: The reviewer is right, the importance of each metric discussed was included. See lines: 135, 307-309, 367-369 and 402-403.

Specific Comments:

Line 23: Why is larger AV\textsubscript{d} observed at polluted sites close to industrial areas? O\textsubscript{3} being a secondary pollutant should show larger AV\textsubscript{d} at downwind sites? In fact, the largest AV\textsubscript{d} is observed at STA which is furthest away from the industrial areas.

Response: The reviewer is right, there was a mistake in the description of the AV\textsubscript{d} in the abstract. Indeed, Fig. 6 clearly shows that the largest AV\textsubscript{d} occur at downwind sites, i.e. SNB and STA. Text modified: "… the largest AV\textsubscript{d} are observed at sites downwind of industrial areas.". See lines: 23-24.

Line 30: GPE is described as highly populated area downwind of an industrial area in Table 2. So, GPE qualifies as site with largest and smallest seasonal cycle (AV\textsubscript{s}).

Response: The reviewer is right. There was mistake in the GPE site description in Table 2. Indeed, GPE is located within a densely-populated area, with few industries nearby, as shown in Fig. 1. Text modified in Table 2: "Urban background site in the La Pastora park, surrounded by a highly populated area, 450 m from Pablo Rivas Rd". The sentence concerning the AV\textsubscript{s} description in the abstract was also corrected, in accordance with the results presented in Fig. 6. Text modified: " The largest amplitudes of the seasonal cycles (AV\textsubscript{s}) are typically recorded downwind of urban areas, whereas the lowest values are recorded in highly populated areas and close to industrial areas. ". See lines: 28-30.

Line 70: Introduction: The introduction switches between O\textsubscript{3} trend in rural background and urban areas. I suggest the authors focus solely on the urban areas as this is the focus of this particular paper.

Response: As suggested by reviewer, the introduction was modified to focus on studies of O\textsubscript{3} trends in urban areas. See lines: 70-75, 78-92, 96-102.

Line 133-135: Based on Figure 14, O\textsubscript{3} has gone up in MMA by only around 20-25% and decreased in GMA.
Response: We have rephrased the sentence to clarify that the exceedances mentioned are punctual.

Text modified: "For instance, official reports indicate that since 2000, ground-level O_{3} at the Guadalajara metropolitan area (GMA, the second most populated city) and the Monterrey metropolitan area (MMA, the third most populated city), has breached the 1-h average standard of 110 ppb O_{3} by up to 80 %, and the 8-h running average standard of 80 ppb O_{3} by up to 50 % (INE, 2011; SEMARNAT, 2015).". See lines: 98-102.

Line 172-186: This section belongs to the results and discussion section. These could be used to explain some of the observations rather than keeping it in the methodology section. Further, I suggest figures 3 and 4 be moved to a supplemental section to make the paper more concise.

Response: As suggested by the reviewer, the description of Air mass back-trajectories calculation was moved to the results section 3.1. Text modified:

"3.1 Wind occurrence at the MMA

The MMA is highly influenced by anti-cyclonic, easterly air masses that arrive from the Gulf of Mexico, especially during summer (Fig. S5). Figure 2 shows the frequency count of 1-h averages of wind direction by site and season within the MMA during 1993-2014. At all sites, apart from OBI, the predominant wind direction is clearly E, which occurs between 35-58 % of the time depending on season. These air masses are augmented by emissions from the industrial area E of the MMA, which are transported across the urban core and prevented from dispersing by the mountains located S-SW of the MMA. On average, the highest wind speeds are observed during summer. By contrast, calm winds of ≤ 0.36 km h^{-1} (0.1 m s^{-1}) occurred less than 2 % of the time at all sites, most frequently in winter, and least frequently in summer.

Figure 3 was moved to Supplementary information, now Fig. S5. However, we decided to maintain Fig. 4 (now Fig. 2) within the main body of the manuscript, in order to provide information of the wind occurrence at each monitoring site, which is useful for interpreting the results presented along the manuscript.

Line 188: What is the time resolution of these measurements?

Response: The resolution of the O_{3} measurements was added. Text modified: "Tropospheric O_{3}, 6 additional air pollutants (CO, NO, NO_{2}, SO_{2}, PM_{10}, and PM_{2.5}) and 7 meteorological parameters (wind speed (WS), wind direction (WD), temperature (Temp), rainfall, solar radiation (SR), relative humidity (RH) and pressure) have been monitored continuously, with data summarised as hourly averages, since November 1992 at 5 stations that form part of the Integral Environmental Monitoring System (SIMA) of the Nuevo Leon State Government (Table 2; SDS, 2016).". See lines: 159-163.

Line 204-235: Section 2.2 and 2.3: I suggest moving these sections to the supplemental as well. Most of the analysis focuses on the MMA and these two sections only describe the locations and measurements at MCMA and GMA. These measurements are not different from MMA. A reference sentence at the end of MMA measurement section would be sufficient.

Response: As suggested by the reviewer, sections 2.2 and 2.3 were moved to Supplementary information S1.2-3. A reference of O_{3} monitoring within the MCMA and the GMA was placed at the end of the paragraph. Text added: "The monitoring of O_{3} and other air pollutants at the MCMA and the GMA is detailed in the Supplementary Information S1.2-3.". See lines: 177-178.

Line 237: Section 2.4: I suggest the author expand this section to describe all the methods used in the analysis of the data. Please add a brief description for (i) openair package for R, (ii) MAKESENS 1.0 macro, (iii) Seasonal Trend Decomposition technique. Please include how do they work or what is being done in each of these program and what are the advantages of such an analysis to reveal changes in O_{3}?
Response: As requested, brief descriptions of the openair software tools, the MAKESENS 1.0 macro and the STL technique were included in section 2.3. Analysis of data. Additionally, the pertinence of each function and test used in the current study was stated when required along the results section. See lines: 217-230, 232-242, 244-256.

Line 238: I suggest that figure 5 be moved to the supplemental section.
Response: As suggested, Figure 5 was moved to Supplementary information. See Fig. S6.

Line 265: It would be better to show 5, 50 and 95th percentile line for the data in Figure 6 than all the data.
Response: As requested, lines showing the 5th, 50th and 95th percentiles were included in Fig. 3 (before Fig. 6). However, we maintained the points representing the 1-h O₃ averages in order to show the variations in the magnitude of O₃ peaks during the studied period.

Line 270: Add “(see Figure 3)” behind “(winter)”.
Response: The text was added: “The highest O₃ mixing ratios (1-h averages) are typically observed in April (spring), with lowest values usually recorded in December and January (winter) (Fig. 3).”. See line: 287.

Line 276: Reaction of O₃ with NO to form NO₂ is only a part of the full Ox cycle. Please include the full Ox cycle.
Response: We modified the sentence as requested. See lines: 294-295.

Line 278: Ox cannot have a minimum value of 0. This would require both NO₂ and O₃ to be 0. It is very likely a measurement error or lack of measurements. I suggest the authors employ some kind of data filtering. There are also instances where Ox is lower than O₃ which is again not possible.
Response: The reviewer is right, some Ox values were calculated when O₃ or NOₓ 1-h averages were missing. Table S2 was corrected.

Line 282-285: It would be very helpful to include trends in measured NOₓ and CO to interpret the observed trends in O₃ and Ox. This would also be in line with the title of the paper.
Response: As requested by the reviewer, the long-term trends in maximum daily 1-h averages for NOₓ were included in Figure 4. These were used to discuss the reported results when required. Text modified: “The largest annual increase observed at SNN is likely influenced by the significant (p<0.05) annual growth of 1.90 ppb y⁻¹ in NOₓ as shown in Fig. 4, which can be ascribed to localised industrial emissions and constant urban growth W of the MMA (ProAire-AMM, 2008; SDS, 2015). By contrast, the non-significant (p>0.05) trend of -0.01 ppb O₃ yr⁻¹ observed at STA is may be masked by local import of O₃, combined with air masses stagnation, since NOₓ does exhibit a significant (p<0.05) annual increase of 1.59 ppb yr⁻¹. However, long-term monitoring of VOCs trends and sources is needed to determine the origin of the no trend current status at STA.”. See lines: 313-319.

Line 287: Please add description of how the data is de-seasonalised.
Response: As requested by the reviewer, the STL filtering procedure is described in section 2.3 Analysis of data. the seasonal component. Text added: “The O₃ and other air pollutants time-series were decomposed into trend, seasonal and residual components using the Seasonal-Trend Decomposition technique (STL; Cleveland et al., 1990). STL consists of two recursive procedures: an inner loop nested inside an outer loop, assuming measurements of xᵢ (independent) and yᵢ (dependent) for i = 1 to n. The seasonal and trend components are updated once in each pass through the inner loop; each complete run of the inner loop consists of nᵢ such passes. Each pass of the outer loop consists of the inner loop followed by a computation of the robustness weights, which are used in the following run of the inner
loop to minimise the influence of transient and aberrant behaviour on the trend and seasonal components. The initial pass of the outer loop is performed with all robustness weights equal to 1, followed by $n_{(o)}$ passes of the outer loop.

Additionally, it was noted that STL was used to filter the O$_3$ data when required. See lines: 309-311, 361-362, 379-383, 403-405.

Line 289: A NO$_x$ trend would also help justify this statement regarding increased localized industrial emissions.

Response: As requested, we have included in Fig. 4 the long-term trend for maximum daily 1-h NO$_x$ averages for all monitoring sites, and the trends determined have been used to explain the increases in O$_3$ levels. Text modified: "The largest annual increase observed at SNN is likely influenced by the significant ($p<0.05$) annual growth of 1.90 ppb y$^{-1}$ in NO$_x$ in levels as shown in Fig. 4, which can be ascribed to localised industrial emissions and constant urban growth W of the MMA (ProAire-AMM, 2008; SDS, 2015). By contrast, the non-significant ($p>0.05$) trend of -0.01 ppb O$_3$ yr$^{-1}$ observed at STA is may be masked by local import of O$_3$, combined with air masses stagnation, since NO$_x$ does exhibit a significant ($p<0.05$) annual increase of 1.59 ppb yr$^{-1}$.". See lines: 313-318.

Line 290-292: Isn't this the further study to connect emissions with O3?

Response: We discussed in the manuscript that the changes in NO$_x$ levels are likely influencing the changes observed in O$_3$, however, we also stated that a further study of VOCs long-term trends would help to clarify the origin of the no trend status at STA. See lines: 313-318.

Line 298: It is surprising that new vehicles are only limited to the city center or the impact of new vehicles are only seen there. Is there some kind of restrictions on the age limit of vehicle that can enter the city center? Else you should see the benefit over the whole MMA unless the industrial emissions are offsetting the vehicular emissions.

Response: There is any restriction of automobile age circulation within the city centre of the MMA. We have clarified that because OBI is representative of mobile NO$_x$ sources, the growth reported in the vehicular fleet corresponds mostly to new vehicles equipped with efficient exhaust catalyst technology, and hence the decline in NO$_x$ seen at OBI (Fig. 4). Additionally, we show that the largest increase in maximum daily 1-h NO$_x$ averages is observed at the SNN industrial site. Finally, we also discussed in the manuscript that the increases in NO$_x$ at other sites are related with the constant growth in urbanisation, as can be seen in Fig. 4a for OBI. See lines: 321-330.
Fig. 4. Long-term trends of daily maximum 1-h values for NOx, O3 and O4 observed at the 5 monitoring sites during 1993-2014 within the MMA. The slopes show annual rates of change expressed in units of ppb yr\(^{-1}\). The dashed lines represent the Sen slopes. Statistical significance is expressed as \(p<0.1 = ^{+}\), \(p<0.05 = ^{*}\), \(p<0.01 = **\) and \(p<0.001 = ***\).

Line 305: Is there seasonality in rush hour or is the observed shift in O3 dip due to change in time i.e. daylight saving?

Response: The 1-h variation in the O3 daily cycle arises from the change to daylight saving time during spring and summer, which was clarified in the text. Text modified: "Figure 5 shows daily profiles of O3, O4, NO, NO2, NOx, and SR averaged over the 5 sites within the MMA. O3 generally dips during rush hour by reaction with NO, which occurs around 07:00 in spring and summer and 08:00 in autumn and winter;
the 1-h difference in the dip derives from the change to daylight saving time during spring and summer."

Response: How is the normalization performed? Do you subtract the mean O₃?

Response: We have stated how the normalisation was made. Additionally, this procedure was included also in the Figure 6 caption. Text modified: "To compare the O₃ diurnal cycles by season, normalised daily profiles were constructed by subtracting daily averages from hourly averages in order to remove the impact of the long-term trends (Fig. 6; Hernández-Paniagua et al., 2015), with daily amplitude values (AV_d; calculated by subtracting the lowest normalised values from the highest normalised values) used to assess diurnal variations in O₃ among seasons.". See lines: 345-349.

Line 318: All the sites show lowest AVd in winter not just SNN.

Response: The reviewer is right. The lowest AV_d are observed at all sites during winter, whereas the lowest ones occur in summer. Text modified: "The lowest AV_d values occur in winter at all sites in response to reduced SR, whereas the largest values observed during summer result from enhanced photochemistry under high SR.". See lines: 349-350.

Line 318-320: Please justify this statement or add a reference. This statement seems to be misplaced. The lowest AV_d during winter is likely due to availability of less sunlight and subsequent slower photochemistry as shown in Section 3.3 and not due to inflow of VOC and NOx laden air masses. These should instead enhance O₃ production resulting in larger AVd.

Response: We have clarified that the lowest annual average AV_d at SNN result from the arrival of NE and E air masses laden with fresh emissions of O₃ precursors, which contrasts with the AV_d of downwind sites where the largest average AV_d were observed. Text modified: "The lowest AV_d values occur in winter at all sites in response to reduced SR, whereas the largest values observed during summer result from enhanced photochemistry under high SR. The lowest AV_d observed at SNN is associated with the inflow of NE and E air masses laden with fresh emissions of O₃ precursors, which are transported to downwind sites (SNB and STA), and become stagnated by the surrounding mountains. This would explain that the largest AV_d within the MMA are observed at sites receptor of photochemically processed air masses, particularly STA (Fig. 6).". See lines: 349-354.

Line 340: It is hard to see what is going on in Figure 10. Please consider adding a second panel focusing only on one of the years.

Response: As requested, Fig. 8 (before Fig. 10) was modified. The annual cycle of meteorological variables reported in the literature as drivers of the O₃ cycles, was summarised in Fig. 8a. The statistical analysis of O₃ mixing ratios dependence to Temp., rain RH and SR, showed the strongest correlation for O₃ and SR (r=0.76, p<0.05). Figure 8b shows seasonal cycles for O₃ and SR derived from monthly averages filtered with the STL technique. Overall, the relationship between both variables is clear, with peaks for O₃ in spring and early autumn, and for SR in early summer. Figure 8c shows the trends in the O₃ AVs for all sites within the MMA, with a clear decline in O₃ AVs before and during the economic crisis between 1994-1996 as result of decreased emissions of O₃ precursors, and an increasing trend since 1998 in response to the recovery of the economy. Finally, Figure 8d shows the annual rates of change in AVs for the 5 monitoring sites within the MMA from 1993 to 2014.
Fig. 8a). Annual cycles of O_3, temp., rain, RH and SR constructed by averaging records from 1993 to 2014 for a 1-year period. b). Average seasonal cycles in O_3 and SR within the MMA, constructed from monthly averages filtered with the STL technique developed by Cleveland et al. (1990). c). Trends in AV$_s$ of O_3 recorded at the 5 monitoring sites within the MMA from 1993 to 2014. The decline in AV$_s$ observed is due to the economic crisis experienced in Mexico during 1994-1996, followed by persistent increases in AV$_s$ since 1998. d). Annual rates of change in O_3 AV$_s$ by site, before and after the 1994-1996 economic crisis.

Line 341: How does reduced rainfall decrease O_3 levels? In line 345-346, it is mentioned that frequent rain storms suppresses O_3 levels in late summer and early autumn. These two statements are contradictory.
Response: The reviewer is right, there was a mistake in the sentence. Lee et al. (2014) reported increases in O₃ levels during the rainy season due to increased concentrations of the hydroxyl radical. We have corrected the sentence and included such study. Text modified: "By contrast, downward spikes in the seasonal cycles of O₃ within the MMA are observed recurrently between July-August (Fig. 8b), which likely result from high wind speeds (>6 km h⁻¹ in average) that disperse O₃ precursors and increase the boundary layer height (ProAire-AMM, 2008), and high day-time temperatures (>40° C) that could suppress the O₃ formation. Steiner et al. (2010) reported that within VOC-limited areas, temperatures >38° C may lead to decreases in O₃ formation, in response to a decrease in the peroxyacetyl nitrate lifetime (NO₃ sink). The peak in O₃ observed in September is characteristic of humid regions, and can be ascribed to an increase in OH radicals derived from the increment in RH during the rainy season (Lee et al., 2014). Zheng et al. (2007) reported that this O₃ secondary peak became less noticeable since 2000 over the mid-western and eastern US regions. Indeed, the O₃ secondary peak is characteristic of the Asian summer monsoon, which transports maritime clean air to land with constant rainfall, thereby increasing RH (Xu et al., 2008).". See lines 390-400.

Line 359: What is the benefit of calculating AVs. It is currently not clear. One could do a similar trend analysis without calculating AVs.

Response: We have stated the relevance of analysing AVs. Since the O₃ seasonal cycle is related with the periodic component of the O₃ time series (Cleveland et al., 1990), an increase in the AV may imply an increase in the mixing ratios related to seasonality. Moreover, the changes in AVs determined for the MMA, may reflect the changes in ambient levels of O₃ precursors between 1993-2014. The analysis of AVs presented in the current study confirms the dominant role of emissions from the industrial region over tropospheric O₃, since the greater changes were observed at the industrial site SNN compared to the urban site GPE. Text modified: "The seasonal amplitude value (AV) may provide insights regarding the response in O₃ production to year-to-year variations in the emissions of O₃ precursors and climate.". See lines: 402-405.

Line 364: How did NOx and CO change during the economic crisis? A large decrease in NOx was observed in US and Europe during the last recession (Castellanos et al., 2012, Russell et al., 2012). Do you see similar decrease in NOx as well?

Response: As suggested by the reviewer, we conducted an analysis of NOx and CO long-term trends of data recorded within the MMA and cited and discussed the provided references. Overall, significant decreases are observed for GPE, SNN and OBI of ca. 5-20 % between 1994-1996, although such decreases are discussed in detail in section 3.8. Additionally, we included Fig. S8, which shows changes in the national Gross Domestic Product (GDP) from 1993 to 2014. Overall, the GDP decreased significantly in 1995 by 7.8 % relative to 1994, during the 1994-1996 economic crisis in Mexico, and in 2009, by 6.4 % in relation to 2008 in response to the worldwide economic recession. This is in agreement with the decreases observed in the US and in some European urban areas during 2007-2009. Text added: "It is very likely that the observed decline in O₃ AVs is ascribed to the economic crisis experienced in Mexico during 1994-1996 (Tiwari et al., 2014; INEGI, 2016), which caused a reduction in VOCs and NOx emissions from the industrial activity as reflected in the gross domestic product in 1995 (Fig. S8). Moreover, the reported recovery of the economy since 1997 may have driven the increases in precursor
emissions leading to the observed increases in O₃ AVs. During the global economic recession of 2008-2009, Castellanos and Boersma (2012) observed a reduction of 10-30 % in the tropospheric levels of NO₂ over large European urban areas, which is consistent with a faster decline of 8 ±5 % yr⁻¹ in the NO₂ column density during the same period detected by Russell et al. (2012) at US urban regions. See lines: 425-435.

Line 376: Please see previous comments regarding NOx trend. **Response:** As requested, long-term trends of NOx daily maximum 1-h averages and annual averages were included and discussed in the corresponding sections, as evidence of the changes in emissions with the MMA from 1993-2014.

Line 385: Please see previous comments regarding new vehicle being limited to city centers. **Response:** The statement was re-phrased, clarifying that the observed decrease in NOx observed at OBI is likely due to decreased NOx emissions from mobile sources, which is offset at other sites by industrial emissions and urban growth. See lines 454-465.

Line 399: Why would accumulation or stagnation of air mass not result in an increasing trend? If more O3 and precursors are coming in from nearby places, then O3 should go up? **Response:** We have stated that the lack of a trend at STA is likely due to the occurrence and stagnation of photo-chemically processed air masses with high loading of O₃ and NOx, and VOCs depleted, which is line with the increasing NOx trend observed at STA. Text modified: “The large growth rates both in O₃ and NOₓ identified at SNN are likely the result of increased emissions from a growing number of industries and sub-urban development E of the MMA. However, at OBI, the increasing positive trend in O₃ contrasts with the NOₓ decreasing trend of 0.40 ppb NOₓ yr⁻¹, which may arise from the O₃ production non-linear response in the VOC-sensitive MMA airshed, to increasing emissions of VOCs and decreasing NOₓ emissions (Sierra et al., 2013; Menchaca-Torre et al. 2015).". See lines: 457-462.

Line 400: Figure 4 does not show stagnation at STA. **Response:** We do not agree with this comment. Fig. 4 shows that STA is dominated by the arrival of E and SE air masses in all seasons. Moreover, with the exception of a significant increase of NW air masses occurrence in winter, low occurrence is observed from other wind directions, which is due to the influence of mountains surrounding STA, which act as natural barriers to the N and S-SW-W. Hence, this would confirm that air masses towards the S-SW-W and N would likely stagnate over STA.

Line 423: SNB has growth rate of -0.06 ppb not SNN. **Response:** The reviewer is right, there was a mistake. The sentence was corrected. Text modified: "Table 3 shows that significant (p<0.05) annual O₃ growth ranged from -0.05 ppb O₃ yr⁻¹ for STA and W, to 0.66 ppb O₃ yr⁻¹ for OBI and SE.". See lines: 508-509.

Line 427: Please add p value. **Response:** The p-value was added. Text modified: "By contrast, significant (p<0.05) decreasing trends of 0.48 ppb Oₓ yr⁻¹ and 1.52 ppb NOₓ yr⁻¹ were calculated for the SW sector at OBI, whereas non-significant (p>0.05) trends were apparent at STA.". See lines: 513-514.

Line 431: Are there any sites upwind of the MMA industrial area? This would help interpretation of the data. **Response:** Although, there is a monitoring site E of SNN, it was set in 2011 and has experienced instrumentation problems since then. Therefore, the data recorded there were not used in the current study.
Line 442: Figure 1 shows largest emissions for GMA in recent years. This contradicts the statement being made about Figure 1 describing the magnitude of AVdVs in three cities.

Response: Since the main comment was the consistency of the methodology used to obtain the emission estimates in each NEI release, we included these in section 2.2 and modified Fig. 1 accordingly (now Fig. S1). Additionally, we discussed in the introduction the uncertainties reported for the NEI data, although, Fig. 13 clearly shows that largest mixing ratios of O₃ are observed at the MCMA and the lowest ones at the MMA, which is in agreement with the AVd reported. See section 2.2 and lines 534-542.

Line 445-448: The statement regarding weekend effect is not clear. Figure 13 does not differentiate between weekday and weekend. It is not clear whether NOx or VOCs decrease during the weekend. So, the statement regarding why no differences in O₃ is observed between weekday and weekend is not appropriate.

Response: As requested, the discussion of the weekly cycles was re-written. Text modified: "No significant differences (p>0.05) were observed at any of the metropolitan areas between O₃ AVd during weekends and weekdays. This lack of a weekend effect in O₃ was reported previously at the MCMA for 1987-2007 by Stephens et al. (2008), who attributed it to weekday O₃ production being limited by VOCs and inhibited by NO; this was also observed by Song et al. (2010). By contrast, simultaneous decreases in emissions of VOCs and NOₓ mostly from vehicle sources during weekends could have counteracting effects on the O₃ production rates, leading to similar levels of O₃ during weekdays at the 3 metropolitan areas. This behaviour was reported previously by Wolff et al. (2013) for US urban areas of the Northeast, Midwest and Coastal California regions, which exhibited similar or even higher (±5 %) O₃ levels during weekdays than at weekends, despite lower O₃ precursor emissions during weekends. Moreover, Wolff et al. reported that from 1997-1999 to 2008-2010 the sites studied exhibiting a weekend effect decreased from ca. 35 % to less than 5 %, which was attributed to an increase in the VOC/NOₓ emission ratio derived from a greater decline in NOₓ than in VOCs emissions (Pusede et al., 2014).

It is likely that the O₃ weekly patterns observed at the metropolitan areas arise from reduced traffic activity during weekends, leading to increases in ratios of VOCs/NOₓ. Within the MMA, this would be confirmed by lower NOₓ mixing ratios (on average 5 %) during weekends, changing to a transition O₃ production between VOC- and NOₓ-limited during weekends. Moreover, a change to a NOₓ-limited O₃ production derived from the reduction in NOₓ seems unlikely since this would result in lower O₃ levels during weekends, not observed at any of the studied urban areas (Torres-Jardon et al., 2004).". See lines 531-549.

Line 450: Section 3.7: I suggest the authors consolidate the trend in O₃ in the three metropolitan areas to the observation based only on the trend line. A statement regarding why the trend line is more appropriate than randomly choosing the start and end data to get the reduction/increase in O₃ is justified.

Response: As suggested by the reviewer, section 3.7 was modified. Text modified: "Figure 13 shows long-term trends for these pollutants determined with the Mann-Kendall and Sen's estimate. Within the MMA, a significant (p<0.05) increasing trend of 0.20 ppb O₃ yr⁻¹ is observed during 1993-2014, within the MCMA a significant (p<0.05) decreasing trend of 0.71 ppb O₃ yr⁻¹ occurred during the same period, while within the GMA, a non-significant (p>0.05) trend of -0.09 ppb O₃ yr⁻¹ is evident during 1996-2014. The observed trends in O₃ during the studied period, reflect the response to decreasing NOₓ (1.24 ppb yr⁻¹; p<0.05) within the MCMA (Fig. 13a), and increasing NOₓ (0.28 ppb yr⁻¹; p<0.05) within the MMA (Fig. 13c). Such changes in tropospheric NOₓ of 1.0 % yr⁻¹ within the MMA and of -1.24 % yr⁻¹ within the MCMA, agree with those reported by Duncan et al. (2016), in the NO₂ column during 2005-2014 over the MMA (0.8 % yr⁻¹) and MCMA (-0.1 % yr⁻¹). The status of no trend in O₃ within the GMA contrasts with the significant decrease in NOₓ levels (1.47 ppb yr⁻¹; p<0.05) observed both at ground-level (-2.0 % yr⁻¹) and in the NO₂ column (-0.2 % yr⁻¹).". See lines: 554-564.
Line 462: Why is there such a large variance in the annual averages?

Response: We have discussed along the manuscript that changes in O₃ precursor emissions during the economic crisis in Mexico between 1994-1996, and the global recession in 2008-2009 may have led to decreases in O₃. See lines: 472-483, 617-625.

Line 471: Figure 1 shows both VOCs and NOx are going up for MCMA not going down. So, why is O₃ going down with both the precursors going up?

Response: Fig. 1 (now Fig. S1) was modified, and now shows that NOₓ emissions decreased during 1999-2008 and VOCs emissions remained constant during 2005-2008. This is in agreement with the observed trends in O₃, despite the uncertainties reported. Additionally, data of NOₓ measurements were included and discussed, which show a decreasing trend during 1993-2014. Text modified: “Within the MMA, a significant (p<0.05) increasing trend of 0.20 ppb O₃ yr⁻¹ is observed during 1993-2014, within the MCMA a significant (p<0.05) decreasing trend of 0.71 ppb O₃ yr⁻¹ occurred during the same period, while within the GMA, a non-significant (p>0.05) trend of -0.09 ppb O₃ yr⁻¹ is evident during 1996-2014. The observed trends in O₃ during the studied period, reflect the response to decreasing NOₓ (1.24 ppb yr⁻¹; p<0.05) within the MCMA (Fig. 13a), and increasing NOₓ (0.28 ppb yr⁻¹; p<0.05) within the MMA (Fig. 13c). Such changes in tropospheric NOₓ of 1.0 % yr⁻¹ within the MMA and of -1.24 % yr⁻¹ within the MCMA, agree with those reported by Duncan et al. (2016), in the NO₂ column during 2005-2014 over the MMA (0.8 % yr⁻¹) and MCMA (-0.1 % yr⁻¹). The status of no trend in O₃ within the GMA contrasts with the significant decrease in NOₓ levels (1.47 ppb yr⁻¹; p<0.05) observed both at ground-level (-2.0 % yr⁻¹) and in the NO₂ column (-0.2 % yr⁻¹).” See lines: 555-564, 566-576.

Line 487: Which standard is used for Table 5, new or the old one? If it is a mixed of standards it is kind of misleading to say "recommended that more stringent emission controls are introduced in order to improve air quality within the MMA".

Response: We clarified in the text how the number of annual exceedances was calculated. Text modified: "Such standards are applicable for whole calendar years and were not used in this study to determine the annual exceedances.". See lines 607-608.

Line 493: It is hard to evaluate the statement without not knowing what is represented in table 5. 2012 and 2013 showed a significant reduction in number of days exceeding the standard. Then, there is a big jump in 2014. If the big jump in 2014 due to the change in the standard, then it is kind of misleading to say "recommended that more stringent emission controls are introduced in order to improve air quality within the MMA".

Response: We clarified in the text that the decrease in the number of annual exceedances between 2012-2013 could be due to decreases in NOₓ emissions observed particularly at SNN, and possibly ascribed to decreased primary emissions from industries upwind the MMA. Therefore, a decrease of industrial emissions upwind would have a positive impact as observed in the MMA airshed. Text modified: “Between 2012-2013, the number of annual exceedances decreased at all sites, possibly ascribed to an acute deacceleration of the Mexican economy reflected in declines in ground-level NOₓ, which is observed particularly at SNN (Fig. 10). Such decrease in primary emissions from the industries upwind the urban area may impact positively the MMA airshed, leading to the observed decreases in annual exceedances.”. See lines: 617-625.

Table 3: I suggest moving it to the supplemental section.

Response: As suggested by the reviewer, Table 3 was moved to Supplementary information, now Table S1.

Table 5: Which standard is being used to calculate these exceedances?

Response: The annual exceedances of the O₃ 1-h and 8-h running averages were calculated using the old NOM-020-SSA1-1993, which set the maximum permitted O₃ levels in 110 ppb (1-h), and 80 ppb (8-
h). Additionally, in order to permit a better interpretation of the annual exceedances of the O₃ NOM, the results from Table 5 were depicted in Fig. 14.

Fig. 14. Annual exceedances of the O₃ NOM for 1-h averages (110 ppb) and 8-h running averages (80 ppb) at the 5 monitoring sites within the MMA from 1993 to 2014.

Figure 2: Please remove the wind rose plot from OBI and add predominant wind direction for each site as a single arrow for each site.
Response: As requested by the reviewer, Figure 2 (now Fig. 1) was modified.
Fig. 1(a). The MMA, MCMA and GMA in the national context. (b). Topography of the MMA and distribution of the 5 monitoring sites over the area. (c). The 5 monitoring sites in relation to primary and secondary motorways, industries and major residential areas. The red arrows show the predominant wind direction at each site from 1993 to 2014.

Figure 9: Legend is missing STA. There are two GPE s instead.

Response: The legend in Fig. 9 (now Fig. 6) was corrected.
Fig. 6. O$_3$ de-trended daily profiles by season observed within the MMA during 1993-2014. De-trended O$_3$ daily cycles were constructed by subtracting daily averages from hourly averages to remove the impact of the long-term trends.

Figure 10: Please add a zoom into one of the years.

Response: Figure 10 was included as a panel of Fig. 8. Additionally, instead of including a zoom in a given year, the average annual cycle for O$_3$ and meteorological variables reported to be associated with O$_3$ seasonal variations was included in Fig. 8.
Fig. 8a). Annual cycles of O_3, temp., rain, RH and SR constructed by averaging records from 1993 to 2014 for a 1-year period. b). Average seasonal cycles in O_3 and SR within the MMA, constructed from monthly averages filtered with the STL technique developed by Cleveland et al. (1990). c). Trends in AV_s of O_3 recorded at the 5 monitoring sites within the MMA from 1993 to 2014. The decline in AV_s observed is due to the economic crisis experienced at the country during 1994-1996, followed by persistent increases in AV_s since 1998. d). Annual rates of change in O_3 AV_s by site, before and after the economic crisis within the country.

References:
Trends of ground-level O_3 in Monterrey, Mexico during 1993-2014: Comparison of with Mexico City and Guadalajara

Iván Y. Hernández Paniagua¹, Kevin C. Clemmish², and Alberto Mendoza¹,*

¹Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, N.L., México, 64849.
²Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
*Corresponding author: mendoza.alberto@itesm.mx

Keywords
Air quality, emissions inventory, time series, wind-sector analysis

Abstract
In developed countries, long-term trends in O_3 have been studied extensively. However, there has been relatively little focus on economically developing countries with significant emissions of pollutant precursors. Here, the dominant role of primary emissions on regional/urban O_3 mixing ratios in Mexico is addressed. High-precision and high-frequency UV-photometric measurements of ambient O_3 have been made since 1993 at 5 sites within the Monterrey metropolitan area (MMA), in NE Mexico. The data sets exhibit variations on time-scales of hours, days, months and years. The O_3 diurnal cycles vary with the length of daylight, which influences photochemical processes that produce O_3. No differences are observed in the amplitudes of the diurnal cycle (AV_d) during weekdays when fossil fuel use and combustion process are higher than during weekends, although the largest AV_d are observed at sites downwind of industrial areas. During weekdays, cycle troughs and peaks are typically recorded at 07:00 and 14:00 CDT, respectively, and during weekends, at 06:00 and 13:00 CDT, respectively.

The O_3 seasonal cycles are driven by the temporal variation of meteorological conditions, with maximum O_3 mixing ratios recorded in spring and minimum values in winter. The largest amplitudes of the seasonal cycles (AV_s) are typically recorded downwind of urban areas, whereas the lowest values are recorded in highly populated areas and close to industrial areas. At all sites, AV_s declined during 1993-1998, followed by persistent increases from 1998 to 2014. Wind sector analysis shows that, at all sites, the highest mixing ratios are recorded from the E and SE sectors, while the lowest ones are recorded in air masses from the W and NW. The wind sector analysis of mixing ratios of O_3 precursors revealed that the dominant sources of emissions are located in the industrial regions within the MMA and the surrounding area. At all sites, the largest annual increases in O_3 are for the E and SE sectors, 0.50 and 0.66 ppb yr⁻¹, respectively, and for the upper data distribution, 0.39-0.75 ppb yr⁻¹. Overall, during 1993 to 2014, within the MMA, O_3 has increased at an average rate of 0.20 ppb yr⁻¹ ($p<0.001$), which is in marked contrast with the large decline of 0.71 ppb yr⁻¹ ($p<0.001$) observed in the Mexico City metropolitan area (MCMA).
for the same period. No clear trend is observed during 1996 to 2014 within the Guadalajara metropolitan area (GMA).

1. **Introduction**

O$_3$ is a secondary air pollutant formed in the troposphere via the photo-oxidation of CO, methane (CH$_4$) and volatile organic compounds (VOCs) in the presence of NO and NO$_2$ (NO + NO$_2$ = NO$_3$) (Jenkin and Clemitshaw, 2000). The system of O$_3$ production is not linear, being VOC-limited whether it responds to the input of VOCs, or NO$_x$-limited, whether O$_3$ production increases in response to increasing NO$_x$ emissions (Monks et al., 2015; Pusede et al., 2015). Tropospheric O$_3$ is of concern to policy makers due to its adverse impacts on human health, agricultural crops and vegetation, and its role as a greenhouse gas despite its relatively short lifetime of around 22.3 ± 3.0 days (Stevenson et al., 2006; IPCC, 2013; WHO, 2014; Lelieveld et al., 2015). As the predominant source of OH*, tropospheric O$_3$ controls the lifetime of CH$_4$, CO, VOCs, among many other air pollutants (Revell et al., 2015). In polluted regions, increased levels of O$_3$ are common during seasons with stable high-pressure systems and intense photochemical processing of NO$_x$ and VOCs (Dentener et al., 2005; Xu et al., 2008) and, to lesser extent, downward transport from the stratosphere (Wang et al., 2012). By contrast, the main removal processes for tropospheric O$_3$ are photolysis and reaction with NO (Atkinson, 2000; Jenkin and Clemitshaw, 2000).

Tropospheric O$_3$ increased in the Northern Hemisphere (NH) during 1950-1980s due to a rapid increase of precursor emissions derived from the industrialisation and economic growth in Europe and North America (NA) (Staehelin and Schmid, 1991; Guicherit and Roemer, 2000). Since the 1990s, reductions in O$_3$ precursor emissions in economically developed countries have resulted in decreases in tropospheric O$_3$ levels (Schultz and Rast, 2007; Butler et al., 2012; Pusede et al., 2015), however, in some regions, increases in O$_3$ have also been reported. For instance, a substantial study of O$_3$ data recorded at 158 rural background monitoring stations in Europe carried out by Wilson et al. (2012) showed significant positive annual trends in O$_3$ annual averages during 1996-2005 at 54 % of the sites, with an average overall increase of 0.16 ± 0.02 ppb yr$^{-1}$. Positive trends typically corresponded to sites in central and north-western Europe, with negative trends observed at 11 % of the sites, which were located mostly in eastern and south-western Europe. It was concluded that long-term trends of ambient O$_3$ related to reductions in NO$_x$ and VOC were masked by factors such as changes in meteorology, background O$_3$ and source patterns of O$_3$. Similarly, from an analysis of O$_3$ data from 179 urban sites over France during 1999-2012, Sicard et al. (2016) reported an increasing trend in the annual averages of 0.14 ± 0.19 ppb yr$^{-1}$, and in the medians of 0.13 ± 0.22 ppb yr$^{-1}$, attributed to long-range transport and reduced O$_3$ titration by NO due to reductions in local NO$_x$ emissions. However, Sicard et al. (2016) also reported during the same period that at 61 rural sites, O$_3$ decreased in the annual averages by 0.12 ± 0.21 ppb yr$^{-1}$, and in the medians by 0.09 ± 0.22 ppb yr$^{-1}$.
In the US and Canada, O₃ levels have decreased substantially since 1990s derived from the introduction of air quality policies. For example, in the Greater Area of Toronto during 2000 to 2012, O₃ levels decreased at urban sites by approximately 0.4 % yr⁻¹, and at sub-urban sites by approximately 1.1 % yr⁻¹, as a consequence of a reduction in the mid-day averages of NO₂ of 5.8-6.4 % yr⁻¹, and in the VOC reactivity of 9.3% yr⁻¹ (Pugliese et al., 2014). In the US, NOₓ and VOCs emissions decreased at national scale during 1980-2008 by approximately 40 % and 47 %, respectively (EPA, 2009; Xing et al., 2013). Lefohn et al. (2010) reported that from 1980 to 2008, the O₃ US EPA exposure metrics of the annual 2nd highest 1-h average, and the annual 4th highest daily maximum 8-h average, decreased at 87 % and 71 % of monitoring sites, respectively, located in 12 US major metropolitan areas, but the lower- and mid-O₃ mixing ratios increased derived from decreased reaction with NO. More recently, Simon et al. (2015) assessed changes in the 1-h average O₃ mixing ratios at around 1400 sites across the US between 1998-2013, using the 5th, 25th, 50th, 75th, 95th percentiles, and the maximum daily 8-h average. Overall, Simon et al. (2015) observed increases at the lower end of the O₃ data distribution of 0.1-1 ppb yr⁻¹, mostly in urban and sub-urban areas, whereas O₃ decreased at the upper end of the data distribution between 1-2 ppb yr⁻¹ at less urbanised areas. Such changes were associated with the implementation of control strategies within the US to abate peak O₃ mixing ratios.

In Mexico, studies of long-term trends in O₃ have focused mostly in the Mexico City Metropolitan Area (MCMA) (Molina and Molina, 2004; Jaimes et al., 2012; Rodriguez et al., 2016), and report a decrease of ca. 33 % during the last two decades (Parrish et al., 2011; SEDEMA, 2016a). By contrast, O₃ has received relatively less consideration at other large metropolitan areas, where Mexican air quality standards are frequently exceeded (Table 1). For instance, official reports indicate that since 2000, ground-level O₃ at the Guadalajara metropolitan area (GMA, the second most populated city) and the Monterrey metropolitan area (MMA, the third most populated city), has breached the 1-h average standard of 110 ppb O₃ by up to 80 %, and the 8-h running average standard of 80 ppb O₃ by up to 50 % (INE, 2011; SEMARNAT, 2015). To date, only Benítez-García et al. (2014) have addressed the changes in ambient O₃ at the GMA and MMA from 2000 to 2011, reporting an increase in O₃ annual averages of around 47 % and 42 %, respectively. However, Benítez-García et al. (2014) did not provide an explanation for the reported trends in O₃, which were determined using non-robust, simple linear regression analysis.

To improve air quality, the Mexican government has introduced several initiatives to reduce primary pollutants emissions. Data from the National Emissions Inventories (NEI) suggest that from 1999 to 2008, anthropogenic NOₓ emissions decreased at the MCMA by 3.8 % yr⁻¹, but increased at the GMA and the MMA by 1.9 % yr⁻¹, and by 4.0 % yr⁻¹, respectively; whereas anthropogenic emissions of VOCs decreased at the MMA by 0.2 % yr⁻¹, but increased at the MCMA and the GMA by 2.7 % yr⁻¹ and by 3.2 % yr⁻¹, respectively (Fig. S1) (SEMARNAT, 2006, 2011, 2014). However, studies have shown large uncertainties in the NEI data. For instance, the NEI NOₓ emission estimates agree with the decrease of
1.7 % yr⁻¹ in the NO₂ vertical column density during 2005-2014 for the MCMA reported by Duncan et al. (2016), but disagree for the GMA and the MMA where decreases of 2.7 % yr⁻¹ and of 0.3 % yr⁻¹, respectively, are reported. In a previous study, Boersma et al. (2008) observed that NOₓ emissions over Mexico derived from NO₂ satellite observations were higher by a factor of 1.5-2.5 times than bottom-up emission estimates, which were lower by 1.6-1.8 times than data reported in the NEI 1999-base year. As well as the NEI, emission inventories have been developed for the MCMA and the MMA by the local governments (SDS, 2015), although only for the MCMA with a frequency of two years since 1996 (SEDEMA, 1999, 2001, 2003, 2004, 2006, 2008, 2010, 2012, 2014, 2016a).

The accuracy of the MCMA emission inventories has been also assessed during several field campaigns. For instance, during the MCMA 2002-2003 campaign, Velasco et al. (2007) observed an overestimation in the 1998 inventory for VOCs emission of alkenes and aromatics, but an underestimation in the contribution of some alkanes. By contrast, for the MCMA 2002 inventory, Lei et al. (2007) reported an underestimation in the VOCs total emissions of around 65 %, based on a simulation of an O₃ episode in 2003 within the MCMA. Therefore, since the emission inventories data are used to predict future air quality, and to design clean air policies, it is imperative to examine the current results of the policies implemented to abate emissions of O₃ precursors. Moreover, the discrepancies between estimates of O₃ precursor emissions and measured data highlight the importance of analysing the long-term trends in O₃ within large metropolitan areas of Mexico.

This study analyses long-term trends in O₃ within the MMA, based on health-based exposure metrics. Long-term and high-frequency measurements of O₃ were recorded at 5 air quality monitoring stations evenly distributed within the MMA from 1993 to 2014. The data sets contain features representative of industrial, urban-background and urban monitoring sites, which allow assessment of O₃ trends and dynamics, pollutant emissions and their contribution to the atmospheric composition depending on local meteorology and air mass transport. In order to better assess photo-chemical production of O₃, total oxidants defined as \([O₃] = [O_3] + [NO_2]\) were also considered, as O₃ is not affected by the titration of O₃ with NO. Additionally, diurnal, seasonal and annual cycles of O₃ and O₃ were evaluated in order to interpret the variations observed. The influence of air mass origin on O₃ annual growth rates has also been evaluated. Finally, long-term trends in O₃ and precursor emissions are compared with those observed within the MCMA and GMA.

2. Methodology

2.1 Monitoring of O₃ in the Monterrey Metropolitan Area (MMA).

The MMA (25°40’N, 100°20’W) is located around 720 km N of Mexico City, some 230 km S of the US border in the State of Nuevo Leon (Fig. 1a). It lies at an average altitude of 500 m above sea level (m asl) and is surrounded by mountains to the S and W, with flat terrain to the NE (Fig. 1b). The MMA covers an area of around 4,030 km², is the largest urban area in Northern Mexico, and is the third most populous
in the country with 4.16 million inhabitants, which in 2010, comprised 88% of the population of Nuevo Leon State (INEGI, 2010). The MMA is the second most important industrial area with the highest gross domestic product per capita in Mexico (Fig. 1c). Although the weather rapidly fluctuates on a daily time-scale, the climate is semi-arid with an annual average rainfall of 590 mm, and an annual average temperature of 25.0°C with hot summers and mild winters (ProAire-AMM, 2008; SMN, 2016).

Tropospheric O₃, 6 additional air pollutants (CO, NO, NO₂, SO₂, PM₁₀, and PM₂.₅) and 7 meteorological parameters (wind speed (WS), wind direction (WD), temperature (Temp), rainfall, solar radiation (SR), relative humidity (RH) and pressure) have been monitored continuously, with data summarised as hourly averages, since November 1992 at 5 stations that form part of the Integral Environmental Monitoring System (SIMA) of the Nuevo Leon State Government (Table 2; SDS, 2016). From November 1992 to April 2003, and in accordance with EPA, EQuOA-0880-047, Thermo Environmental Inc. (TEI) model 49 UV photometric analysers were used to measure O₃ with stated precision less than ±2 ppb O₃ and a detection limit of 2 ppb O₃. Similarly, in accordance with RFNA-1289-074, TEI model 42 NO-Ο₃ chemiluminescence detectors were used to measure NO-ΝΟ₂-ΝΟₓ with stated precision less than ±0.5 ppb NO, and a detection limit of 0.5 ppb NO. In May 2003, replacement TEI model 49C O₃ and model 42C NO-ΝΟ₂-ΝΟₓ analysers were operated as above, with stated precision better than ±1 ppb O₃ and ±0.4 ppb NO, respectively, and detection limits of 1 ppb O₃ and 0.4 ppb NO, respectively. To rule out instrumentation influences on the determined air pollutants trends, long-term trends based on annual averages were compared with those derived using 3-yr running averages, in accordance with Parrish et al. (2011) and Akimoto et al. (2015) (Supplementary Information S1.1; Fig. S2). Calibration, maintenance procedures and quality assurance/quality control (QA/QC) followed protocols established in the Mexican standards NOM-036-SEMARNAT-1993 and NOM-156-SEMARNAT-2012. The SIMA dataset has been validated by the Research Division of Air Quality of the Secretariat of Environment and Natural Resources (SEMARNAT). The monitoring of O₃ and other air pollutants at the MCMA and the GMA is detailed in the Supplementary Information S1.2-3.

2.2 NEI data

Estimates of NOₓ and VOCs emissions have been made at the national scale for the 1999-, 2005- and 2008-base years and reported in the NEI, and were obtained from the SEMARNAT website (http://sinea.semarnat.gob.mx). The data set is provided by emission source (mobile, point, area and natural), air pollutant, and at national, state and municipality scales. The NEI emission estimates are developed in accordance with the Manual for the Emission Inventories Program of Mexico (Radian, 2000), which is based on the US EPA AP-42 emission factors categorisation (EPA, 1995). The emission factors are regionalised for each Mexican state, based upon on-site measurements and survey information. Updates to the emission factors have been conducted for each released NEI, although no changes in the methodology were implemented between the 1999- and 2008-base years. Overall, the mobile emissions were estimated using the MOBILE6-Mexico model (EPA, 2003). The emissions from
point sources were derived using the annual operation reports submitted to the Environment Ministry. The emissions from area sources were obtained using the categorisation of Mexican area sources and the regionalised AP-42 emission factors.

The MCMA emissions inventories have been developed with a 2-year frequency since 1996, and were obtained from the MCMA Environment Secretariat website (http://www.aire.cdmx.gob.mx/). The methodology used to construct the MCMA inventories estimates is consistent with that used in the NEI (SEDEMA, 2016a), which is based on the AP-42 EPA emission factors. However, more speciated emission factors have been developed in each released version, considering updates in the local industrial activity, survey information and field measurement campaigns. To date, the only significant change in the methodology is the replacement of the Mobile6-Mexico model with the MOVES model to obtain the 2014-base year mobile emissions (SEDEMA, 2016b). As for the MCMA inventories, more speciated emission factors than those contained in the NEI were developed to produce the MMA emissions inventory 2013-base year (SDS, 2015), although, mobile emissions estimates were obtained with the Mobile6-Mexico model (EPA, 2003).

2.3 Analysis of data

SIMA, SIMAT (Atmospheric Monitoring System of the MCMA) and SIMAJ (Atmospheric Monitoring System of the GMA) instrumentation recorded O₃ data every minute, which were then validated and archived as 1-h averages. Total SIMA O₃ data capture by year and site are shown in Fig. S3. Data capture averaged during 1993-2014 ranged from 82.6 % at GPE to 93.3 % at SNB, with data capture <50 % during 1998-2000 at GPE, in 1998 at SNN, and in 1999 at OBI. A threshold of 75% data capture was defined to consider data valid and representative (ProAire-AMM, 2008; Zellweger et al., 2009; Wilson et al., 2012). All data were processed with hourly averages used to determine daily averages, which were used to calculate monthly averages, from which yearly averages were obtained.

The SIMA, SIMAT and SIMAJ O₃ data sets were analysed extensively using the openair package v. 1.1-4 (Carslaw and Ropkins, 2012) for R software v. 3.1.2 (R Core Team, 2013). In this study, the openair functions windRose, timeVariation and TheilSen were used to analyse air pollution data. Briefly, the windRose summarises wind speed and wind direction by a given time-scale, with proportional paddles representing the percentage of wind occurrence from a certain angle and speed range. The timeVariation function was used to obtain normalised daily cycles by season, and weekly cycles, with the 95 % confidence intervals in the cycles calculated from bootstrap re-sampling, which accounts for better estimations for non-normally distributed data (Carslaw, 2015). Finally, long-term trends of air pollutants at the MCMA, GMA and MMA were computed with the TheilSen function, which is based on the non-parametric Theil-Sen method (Carslaw, 2015; and references therein). The Theil-Sen estimate of the slope is the median of all slopes calculated for a given n number of x,y pairs, while the regression
parameters, confidence intervals and statistical significance are determined through bootstrap re-
sampling. It yields accurate confidence intervals despite the data distribution and heteroscedasticity, and
is also resistant to outliers.

The trends computed with openair were contrasted with those calculated using the MAKESENS 1.0
macro (Salmi et al., 2002) as follows. Firstly, the presence of a monotonic trend (increasing or
decreasing) was tested with the non-parametric Mann-Kendal test. For the MCMA, GMA and MMA the
available yearly data are \(n > 10 \), hence positive values in the \(Z \) parameter correspond to positive trends
and vice versa for negative values of \(Z \). The significance of the estimated trend was tested at \(\alpha = 0.001,
0.01, 0.05 \) and 0.1 using a two-tailed test. Secondly, slopes of linear trends are calculated with the non-
parametric Sen’s method. The Sen’s method assumes linear trends, with a \(Q \) slope and a \(B \) intercept.
To calculate \(Q \), first the slopes of all data values are calculated in pairs, with the Sen’s estimator slope
as the median of all calculated slopes. Finally, 100(1-\(\alpha \))% two-sided confidence intervals about the slope
estimate are obtained based on a normal distribution. The comparison of estimated trends from both
approaches is shown in the Supplementary information S1.4 (Fig. S4).

The \(O_3 \) and other air pollutants time-series were decomposed into trend, seasonal and residual
components using the Seasonal-Trend Decomposition technique (STL; Cleveland et al., 1990). STL
consists of two recursive procedures: an inner loop nested inside an outer loop, assuming measurements
of \(x_i \) (independent) and \(y_i \) (dependent) for \(i = 1 \) to \(n \). The seasonal and trend components are updated
once in each pass through the inner loop; each complete run of the inner loop consists of \(n_{(i)} \) such passes.
Each pass of the outer loop consists of the inner loop followed by a computation of the robustness
weights, which are used in the following run of the inner loop to minimise the influence of transient and
aberrant behaviour on the trend and seasonal components. The initial pass of the outer loop is performed
with all robustness weights equal to 1, followed by \(n_{(i)} \) passes of the outer loop. The Kalman Smoother
(KS) was used to provide minimum-variance, unbiased linear estimations of observations and to impute
missing data to satisfy the STL (Reinsel, 1997; Durbin et al., 2012; Carslaw, 2015). Overall, statistical
seasonal auto-regressive and moving averages with annual seasonal components were employed.
Statistical analyses were carried out with SPSS 19.0.

In order to carry out seasonal analyses of data, seasons were defined according to temperature records
in the NH, as described previously (Hernandez-Paniagua et al., 2015): winter (December-February),
spring (March-May), summer (June-August) and autumn (September-November). Wind-sector analyses
of data were performed by defining 8 wind sectors each of 45° starting from 0° ± 22.5°. The lower bound
of each sector was established by adding 0.5° to avoid data duplicity. Data were assigned to a calm
sector when wind speed was \(\leq 0.36 \) km h\(^{-1}\). To assess regional transport, air mass back-trajectories
(AMBT) were calculated using the HYSPLIT model v.4 (NOAA Air Resources Laboratory (ARL); Stein
et al., 2015), with the Global NOAA-NCEP/NCAR reanalysis data files on a latitude-longitude grid of 2.5
degrees, downloaded from the NOAA ARL website (http://ready.arl.noaa.gov/HYSPLIT.php). HYSPLIT frequency plots of 96-h AMBT were constructed for every 6 h during the year 2014 with an arrival altitude of 100 m above ground level.

3. Results and Discussion

3.1 Wind occurrence at the MMA

The MMA is highly influenced by anti-cyclonic, easterly air masses that arrive from the Gulf of Mexico, especially during summer (Fig. S5). Figure 2 shows the frequency count of 1-h averages of wind direction by site and season within the MMA during 1993-2014. At all sites, apart from OBI, the predominant wind direction is clearly E, which occurs between 35-58 % of the time depending on season. These air masses are augmented by emissions from the industrial area E of the MMA, which are transported across the urban core and prevented from dispersing by the mountains located S-SW of the MMA. On average, the highest wind speeds are observed during summer. By contrast, calm winds of ≤ 0.36 km h⁻¹ (0.1 m s⁻¹) occurred less than 2 % of the time at all sites, most frequently in winter, and least frequently in summer.

3.2 Continuous records and trend of daily maxima of O₃ and Oₓ

Figure 3 shows the complete data set of 1-h averages of O₃ recorded at the 5 monitoring stations within the MMA from January 1993 to December 2014. The highest O₃ 1-h average was observed at SNB, and is likely to arise from short-range transport and large upwind emissions of O₃ precursors from vehicles and industries. The highest O₃ mixing ratios (1-h averages) are typically observed in April (spring), with lowest values usually recorded in December and January (winter) (Fig. 3). Table S1 summarises the minimum, maximum, mean (average) and median hourly O₃ mixing ratios recorded. The highest mixing ratios recorded were 186 ppb O₃ at GPE in 1997, 146 ppb O₃ at SNN in 2004, and 224 ppb O₃ at SNB in 2001. At OBI and STA, the highest O₃ mixing ratios were both recorded on June 2, 1993: 182 ppb at 12:00 CDT at OBI, and 183 ppb at 13:00 CDT at STA. Annual averages varied from 14 ± 14 ppb O₃ at OBI in 2001 to 32 ± 23 ppb O₃ at SNB in 1993, whereas annual medians ranged from 10 ppb O₃ at OBI in 2001 to 28 ppb O₃ at SNN in 1993.

Reaction with O₃ rapidly converts NO to NO₂, and therefore mixing ratios of odd oxygen (Oₓ = O₃ + NO₂) were calculated for each hour during 1993-2014 at the 5 sites within the MMA (Table S2; Fig. S6). Minimum values of Oₓ ranged from 2 ppb, observed at all sites mostly during the whole studied period (except for 1993,1997, 2005, 2009 and 2013 and 2014) to 13 ppb at OBI in 2007. Maximum values of Oₓ ranged from 99 ppb at SNN in 2002, to 330 at OBI in 1993. Annual averages varied from 23 ± 17 ppb at SNN in 2002 to 51 ± 27 ppb at OBI and at STA in 2001 and 2006, respectively, whereas annual medians ranged from 21 ppb at SNB and SNN, in 2001 and 2002, respectively, to 46 ppb at OBI and STA in 2001 and 2006, respectively. The highest values of Oₓ were observed at OBI during 1993-2002, which coincided with the largest mixing ratios of NO₂ that were likely dominated by vehicle emissions. Since 2003, the highest Oₓ mixing ratios recorded at STA were likely due to increase upwind NOₓ and
VOCs emissions mostly from nearby industries (SEMARNAT, 2006, 2011, 2014; SDS, 2015). As for O₃, O₂ exhibits a seasonal cycle with the highest values in spring and lowest values in winter.

A study conducted among asthmatic children resident in the MCMA revealed an increase in coughing and wheezing rates, associated with cumulative exposure to high 1-h averages mixing ratios of O₃ and NO₂ (Escamilla-Nuñez et al., 2008). To assess changes in cumulative exposure to O₃ and O₂ within the MMA, long-term trends of de-seasonalised maximum daily 1-h averages in O₃, O₂ and NOₓ were calculated, using annual averages filtered with the STL technique (Fig. 4). Overall, the maximum daily O₃ 1-h averages show significant increasing trends (p<0.05) of 0.35 to 0.79 ppb O₃ yr⁻¹ at GPE and SNN, respectively. The largest annual increase observed at SNN is likely influenced by the significant (p<0.05) annual growth of 1.90 ppb yr⁻¹ in NOₓ in levels as shown in Fig. 4, which can be ascribed to localised industrial emissions and constant urban growth W of the MMA (ProAire-AMM, 2008; SDS, 2015). By contrast, the non-significant (p>0.05) trend of -0.01 ppb O₃ yr⁻¹ observed at STA is may be masked by local import of O₃, combined with air masses stagnation, since NOₓ does exhibit a significant (p<0.05) annual increase of 1.59 ppb yr⁻¹. However, long-term monitoring of VOCs trends and sources is needed to determine the origin of the no trend current status at STA.

The maximum daily 1-h mixing ratios of O₁ show significant increasing trends (p<0.1) of 0.18, 0.62 and 0.43 ppb O₁ yr⁻¹ at GPE, SNN and SNB, respectively, which arise either from an increment in NOₓ or O₃ levels as shown in Fig. 4. By contrast, significant decreasing trends (p<0.05) of 0.49 and 0.56 ppb O₁ yr⁻¹ are seen at OBI and STA, respectively. For OBI, the negative O₁ trend is likely due to the decreasing levels of NOₓ, as result of improved exhaust catalyst technology in an expanding fleet of new vehicles and less traffic loading because the population is moving out of the MMA core (INEGI, 2015; SDS, 2015). At STA, the negative trend in O₁ contrasts with the significant increase in NOₓ, and the no trend status in O₃. This could be due to the arrival at OBI and at STA of chemically processed air masses with decreased VOC/NOₓ ratios, compared with those arriving at SNN loaded with fresh emissions from the nearby industrial area.

3.2 O₃ daily cycles

Figure 5 shows daily profiles of O₃, O₁, NO, NO₂, NOₓ, and SR averaged over the 5 sites within the MMA. O₃ generally dips during rush hour by reaction with NO, which occurs around 07:00 in spring and summer and 08:00 in autumn and winter; the 1-h difference in the dip derives from the change to daylight saving time during spring and summer. O₃ generally peaks around 13:00 in spring, 12:00 in summer (co-incident with SR), and about 14:00 in autumn and winter. Similar profiles are observed for O₃ being in an anti-phase cycles of NO₂ mixing ratios (r=0.93 (winter) to 0.97 (summer) (p<0.05), in all seasons). Despite differences of 1 to 3 hours in the timing of the O₃ dips and peaks as shown in Fig. 5, they coincide broadly with those observed at urban areas in NA and in the NH. For example, O₃ daily maxima occur between 13:00 and 15:00 in the MCMA (Jaimes-Palomera et al., 2016), in the Los Angeles urban area (VanCuren,
2015), and in the Toronto urban area (Pugliese et al., 2014). Similar timing for O_3 peaks was reported at 4 metropolitan areas in Japan (Akimoto et al., 2015), and in Central London (Bigi and Harrison, 2010).

To compare the O_3 diurnal cycles by season, normalised daily profiles were constructed by subtracting daily averages from hourly averages in order to remove the impact of the long-term trends (Fig. 6; Hernández-Paniagua et al., 2015), with daily amplitude values (AV_d; calculated by subtracting the lowest normalised values from the highest normalised values) used to assess diurnal variations in O_3 among seasons. The lowest AV_d values occur in winter at all sites in response to reduced SR, whereas the largest values observed during summer result from enhanced photochemistry under high SR. The lowest AV_d observed at SNN is associated with the inflow of NE and E air masses laden with fresh emissions of O_3 precursors, which are transported to downwind sites (SNB and STA), and become stagnated by the surrounding mountains. This would explain that the largest AV_ds within the MMA are observed at sites receptor of photochemically processed air masses, particularly STA (Fig. 6). In Toronto, for example, Pugliese et al. (2014) observed that O_3 maxima were enhanced by photochemical processing of air masses from polluted wind sectors, whereas O_3 maxima were decreased in cleaner air masses. O_3 daily profiles and AV_ds similar to those for the MMA were observed at Linan in China from 1995 to 2006 (Xu et al., 2008), with variability in AV_ds ascribed to increasing emissions of O_3 precursors, particularly NOx.

The existence of trends in O_3 AV_ds during 1993-2014 was tested using de-seasonalised annual averages filtered with STL. The lowest annual AV_d of 18.6 ppb O_3 was observed for OBI in 1995, whereas the largest of 49.5 ppb O_3 was calculated for STA in 2004. Despite their annual variability, significant increasing trends (p<0.05) in AV_ds were detected at all sites apart from STA (Fig. 7), and ranged from 0.48 ppb yr$^{-1}$ at GPE to 0.77 ppb yr$^{-1}$ at SNN. These increasing trends in O_3 AV_ds agree with annual increments in daily maximum 1-h O_3 averages observed at all sites (Fig. 4), whereas the no trend status at STA is likely related to the lack of trend in the daily maximum 1-h O_3 average. Such increments would imply an increase in the exposure to O_3 of 1.54-3.26 % yr$^{-1}$ in a daily time scale for inhabitants of the MMA (Escamilla-Nuñez et al., 2008). A plausible alternative to reduce the population exposure to O_3 is the reduction of 25-50% in ground-level VOCs within the MMA as proposed by Sierra et al. (2013), which would decrease daily exposure to O_3 by reducing peak O_3 between 0.7-13.4 %.

3.3. O_3 seasonal cycles within the MMA from STL data

Annual variations in ground-level O_3 have been be correlated with the seasonality of temperature, RH and SR (Camalier et al., 2007; Zheng et al., 2007). Hence, the annual average cycle for the above mentioned variables was constructed by averaging monthly averages for the same month during the studied period (Fig. 8a). A linear regression analysis was conducted to test the O_3 mixing ratios dependence to temp., rain, RH and SR, using data from the annual average cycles. The strongest relationship was observed between O_3 and SR ($r = 0.72$, p<0.001; Fig. S7). To depict the O_3 seasonal
dependence, monthly averages of O₃ and SR for the MMA during 1993-2014 were filtered with the STL technique to obtain the seasonal component (Cleveland et al., 1990). Figure 8b shows the seasonal cycles of O₃, with spring-time maxima and winter minima, in strong correlation with SR (Lelieveld and Dentener, 2000).

This behaviour agrees well with the O₃ spring maxima and winter minima characteristic of the US southeast regions (Strode et al., 2015), and follows the NH mid-latitudes O₃ cyclic pattern (Monks 2000; Vingarzan, 2004). However, it differs with the O₃ seasonal cycles observed over the US west coast regions (particularly in California), where the maxima occur between June-August, in response to the local influence of precursor emissions upon O₃ production and photochemical conditions (Vingarzan, 2004; Strode et al., 2015). By contrast, downward spikes in the seasonal cycles of O₃ within the MMA are observed recurrently between July-August (Fig. 8b), which likely result from high wind speeds (>6 km h⁻¹ in average) that disperse O₃ precursors and increase the boundary layer height (ProAire-AMM, 2008), and high day-time temperatures (>40° C) that could suppress the O₃ formation. Steiner et al. (2010) reported that within VOC-limited areas, temperatures >38° C may lead to decreases in O₃ formation, in response to a decrease in the peroxyacetyl nitrate lifetime (NOₓ sink). The peak in O₃ observed in September is characteristic of humid regions, and can be ascribed to an increase in OH radicals derived from the increment in RH during the rainy season (Lee et al., 2014). Zheng et al. (2007) reported that this O₃ secondary peak became less noticeable since 2000 over the mid-western and eastern US regions. Indeed, the O₃ secondary peak is characteristic of the Asian summer monsoon, which transports maritime clean air to land with constant rainfall, thereby increasing RH (Xu et al., 2008).

The seasonal amplitude value (AVₙ) may provide insights regarding the response in O₃ production to year-to-year variations in the emissions of O₃ precursors and climate. O₃ AVₙs were calculated for the average seasonal cycle within the MMA, as the difference peak-to-trough for each annual cycle after filtering monthly averages with STL, considering the largest value in spring as the peak of the cycle. An average AVₙ of 15.1 ± 2.97 (1σ) ppb O₃ was calculated from 1993-2014 within the MMA, with the lowest AVₙ of 10.3 ppb O₃ determined in 1998, and the largest value of 19.0 ppb O₃ observed in 2014. AVₙ for the MMA are similar to those calculated using dynamic linear models by Zheng et al. (2007), over the mid-western US region between ca. 12 ppb O₃ in 2004 and 18 ppb O₃ in 1999, but lower than those between ca. 19 ppb O₃ in 2004 and 27 ppb O₃ in 1999 determined for the eastern region. When compared with European regions, the AVₙ determined within the MMA are slightly lower than those calculated at the North Kensington site in London, which ranged from ca. 7.0 ppb O₃ in 2000 to ~25.5 ppb O₃ in 2005 (Bigi and Harrison, 2010), presumably due to lower emissions of NOₓ and VOCs within the MMA (SDS, 2015). It is striking that the average AVₙ for the MMA agrees well with that of 10.5 ppb O₃ recorded during 2004-2005 at the Pico Mountain Observatory in Portugal, which is a receptor of exported NA air pollution (Kumar et al., 2013). Thus, despite trends of increasing O₃ precursor emissions within the MMA, AVₙ lie
within the range of those recorded at sites in the mid-west US, but are slightly lower than those determined for more populated and urbanised sites in the east US and Western Europe.

Figure 8c shows long-term trends of O₃ AVₜ for the 5 monitoring sites within the MMA during 1993-2014, determined as above. Overall, significant decreases (p<0.05) in O₃ AVₜ are observed during 1993-1997 for GPE and SNB and, during 1993-1998 for SNN, OBI and STA, which ranged from 0.78 ppb O₃ yr⁻¹ for GPE to 2.28 ppb O₃ yr⁻¹ for SNN (Fig. 8d). By contrast, significant increases (p<0.05) in O₃ AVₜ are observed for all sites since 1998, which ranged from 0.9 ppb O₃ yr⁻¹ at GPE to 0.75 ppb O₃ yr⁻¹ at SNN.

It is very likely that the observed decline in O₃ AVₜ is ascribed to the economic crisis experienced in Mexico during 1994-1996 (Tiwari et al., 2014; INEGI, 2016), which caused a reduction in VOCs and NOₓ emissions from the industrial activity as reflected in the gross domestic product in 1995 (Fig. S8).

Moreover, the reported recovery of the economy since 1997 may have driven the increases in precursor emissions leading to the observed increases in O₃ AVₜ. During the global economic recession of 2008-2009, Castellanos and Boersma (2012) observed a reduction of 10-30 % in the tropospheric levels of NOₓ over large European urban areas, which is consistent with a faster decline of 8 ±5 % yr⁻¹ in the NOₓ column density during the same period detected by Russell et al. (2012) at US urban regions. This behaviour may explain the opposite trends determined before and after the economic crisis within the MMA, and that the lowest rates of change in the O₃ AVₜ were observed at GPE, which contrasts with the largest ones determined at SNN driven by increases in industrial activity.

3.4. Long-term trends of O₃ within the MMA during 1993-2014

Long-term trends of the annual 5th and 95th percentiles (%ile), median and average of O₃ during 1993-2014 were calculated using the Mann-Kendall test and Sen's estimate for the 5 sites within the MMA (Salmi et al., 2002; Carslaw and Ropkins, 2012), and are shown in Fig. 9. The long-term trends were constructed from de-seasonalised annual data derived from monthly averages filtered with STL, which were calculated from daily data of all 1-h averages, as described in Methodology (Sect. 2.3). Overall, O₃ shows significant increasing trends (p<0.05) mostly in the annual averages ranging from 0.11 ppb O₃ yr⁻¹ at SNB to 0.31 ppb O₃ yr⁻¹ at OBI, and in the 95th %ile, which ranged from 0.39 ppb O₃ yr⁻¹ at OBI and SNB to 0.75 ppb O₃ yr⁻¹ at SNN. The 5th %ile increased significant only at OBI in 0.08 ppb yr⁻¹, while the median increased at SNN by 0.14 ppb O₃ yr⁻¹ and at OBI by 0.23 ppb O₃ yr⁻¹. Note that if trends are segmented and considered only after the decline in 1994-1995, the only significant change is that the O₃ growth rate at SNN would increase to 0.31 ppb O₃ yr⁻¹ and GPE would decrease to 0.14 ppb O₃ yr⁻¹, while in the 95th %ile the trends would decline slightly at GPE and SNB to 0.27 ppb O₃ yr⁻¹, and at OBI to 0.42 ppb O₃ yr⁻¹. Despite exhibiting the highest O₃ mixing ratios within the MMA, STA did not exhibited significant trends in any of the tested metrics.

To gain insights of changes in the O₃ precursor emissions within the MMA during the studied period, long-term trends of NOₓ and CO were calculated as above, and are shown in Fig. 10. The increasing
trends at GPE, SNN and SNB are likely caused by increasing emissions of NO\textsubscript{x}, which is in agreement with significant increases (p<0.05) in the annual averages of NO\textsubscript{x} at those sites, that ranged from 0.19 ppb NO\textsubscript{x} yr-1 at GPE to 0.51 ppb NO\textsubscript{x} yr-1 at SNN. The large growth rates both in O\textsubscript{3} and NO\textsubscript{x} identified at SNN are likely the result of increased emissions from a growing number of industries and sub-urban development E of the MMA. However, at OBI, the increasing positive trend in O\textsubscript{3} contrasts with the NO\textsubscript{x} decreasing trend of 0.40 ppb NO\textsubscript{x} yr-1, which may arise from the O\textsubscript{3} production non-linear response in the VOC-sensitive MMA airshed, to increasing emissions of VOCs and decreasing NO\textsubscript{x} emissions (Sierra et al., 2013; Menchaca-Torre et al. 2015). Moreover, the decrease in NO\textsubscript{x} detected at OBI may reflect the positive results of stricter emissions standards for mobile sources such as the fitting of improved catalyst technology, which may have been offset at the other monitoring sites by emissions from the industrial sources.

When O\textsubscript{x} were tested for linear trends, significant (p<0.05) increases of 0.48 ppb O\textsubscript{x} yr-1 at GPE and of 0.69 ppb O\textsubscript{x} yr-1 at OBI agree with those of detected in O\textsubscript{3}, whereas at STA O\textsubscript{x} increased in 0.48 ppb O\textsubscript{x} yr-1. At SNN and SNB, the non-significant (p>0.05) trends in O\textsubscript{x} contrast with those of O\textsubscript{3} increasing. The largest O\textsubscript{x} trend observed at OBI is may be ascribed to decreasing NO\textsubscript{x} but increasing VOCs. The NO\textsubscript{x} positive trends determined within the MMA are in good agreement with the increase of 7.8 ± 11.2 % in the NO\textsubscript{2} column over the MMA during 2005-2014 reported by Duncan et al. (2016). Moreover, the decreases in NO\textsubscript{x} and O\textsubscript{3} observed between 1994-1996 are likely the response to the economic crisis during the same period in Mexico, when the DGP decreased by 5.9 % (Fig. S8). Consistent with economic indicators, annual averaged petrol sales in the Nuevo Leon state in 1995 decreased by 2.4 % in relation to 1994, but increased linearly from 1996 to 2008 at an approximate rate of 98,800 m3 petrol yr-1 (r = 0.90) (Fig. S9) (SENER, 2015). As for petrol sales, registered vehicles in Nuevo Leon show significant variations between 1993-1996, but increase linearly since 1997 at a rate of 100,000 vehicles yr-1 (r=0.99).

Data from the MMA Emission Inventories suggest that NO\textsubscript{x} emissions from total anthropogenic and mobile sources decreased around 15 % and 8 % from 1995 to 2013, respectively, (SDS, 2015), whereas the NEI data suggest increases from 1999 to 2008 for the same categories of 55 % and 60 %, respectively (Fig. 11a). A large overestimation in the NEI data may be confirmed when compared with the CO data recorded within the MMA during 1993-2014, which exhibited a linear negative trend of 1.8 % yr-1, and disagree with the increases in emission estimates of CO for the 2005- and 2008-base years (Fig. 11b). Similarly, NEI estimates indicates that VOC emissions in 2005 were larger than those in 1999 by 155 %, and those for 2008 are larger than the MMA estimates for 2013 by 255 % (Fig. 11c), suggesting a possible overestimation in the emissions as reported in previous studies (Velasco et al., 2007).

The O\textsubscript{3} trends observed within the MMA for the mid- and upper-data distribution agree with those observed by Simon et al. (2015) from 1998 to 2013 at US western urban areas, but are opposite to those
for southern US urban areas. As for the MMA, the increasing O_3 in urban areas was ascribed to changes in NOx emissions. Moreover, Simon et al. (2015) attributed increases in the O_3 5th percentile of 0.1-1 ppb yr$^{-1}$ at urban areas to reductions in NOx emissions, behaviour also reported in central London by Bigi and Harrison (2010) during 1996-2008 and similar to that observed at OBI. O_3 growth rates similar to those recorded within the MMA of 0.22-0.37 ppb O_3 yr$^{-1}$ were recorded at four urban areas in Japan during 1990-2010 (Akimoto et al., 2015), and were ascribed to trans-boundary transport of O_3 and a decrease of the NO tritation effect. By contrast, Sather and Cavender (2016) reported that in 4 South Central US urban areas, the reduction in ambient levels of NOx and VOCs of 31-70 % and 43-72 %, respectively, resulted in a reduction of 18-37 ppb O_3 in the 8-h averages opposite to the increases observed within the MMA. This highlights the need of long-term VOCs monitoring within the MMA to revise the effectiveness of current air quality policies.

3.5 O_3 growth rates by wind sector within the MMA

Long-term trends in O_3, O$_x$ and NOx recorded within the MMA were determined by wind sector. Data were split into 8 wind sectors, with the Mann-Kendall test and Sen’s estimate used to calculate annual growth rates. Table 3 shows that significant ($p<0.05$) annual O_3 growth ranged from -0.05 ppb O_3 yr$^{-1}$ for STA and W, to 0.66 ppb O_3 yr$^{-1}$ for OBI and SE. The largest and most significant O_3 growth rates are seen for the E and SE sectors, whereas the lowest significant growth rates correspond to the W sector. Similarly, the largest significant ($p<0.05$) O$_x$ growth rates of 0.52 ppb O$_x$ yr$^{-1}$, 0.55 ppb O$_x$ yr$^{-1}$ and 0.78 ppb O$_x$ yr$^{-1}$ at GPE, SNN, and at SNB, respectively are observed for the E and SE sectors (Table S3). By contrast, significant ($p<0.05$) decreasing trends of 0.48 ppb O$_x$ yr$^{-1}$ and 1.52 ppb NO$_x$ yr$^{-1}$ were calculated for the SW sector at OBI, whereas non-significant ($p>0.05$) trends were apparent at STA. The observed growth rates highlight the dominant contribution of local industrial emissions of O_3 precursors and the role of regional-scale transport of O_3: largest growth rates are observed at SNN and OBI that are downwind of significant industrial emissions (Table S4).

3.6 Comparison of MMA O_3 weekly profiles with those at MCMA and GMA

Hourly O_3 data were used to construct weekly averaged profiles for the MCMA from 1993 to 2014, and for the GMA from 1996 to 2014. Figure 12 compares weekly O_3 cycles within the MMA with those for the MCMA and GMA. In each case, and consistent with observations in other major NA urban areas, the lowest O_3 mixing ratios occur during the morning rush hour due to O_3 tritation with NO emitted from on-road sources, with peak values apparent after mid-day (Stephens et al., 2008; Jaimes-Palomera et al, 2016). It should be noted that the peak value for the MCMA occurs an hour or so earlier than for the MMA and GMA and is attributed to accelerated photo-chemical production of O_3 during late morning (Volkamer et al., 2010). As might be anticipated, larger AV$_d$ of 76.9 ± 1.6 ppb O_3 were observed for the MCMA than for the GMA (46.1 ± 1.0 ppb O_3) and MMA (37.6 ± 0.4 ppb O_3), and as seen in Fig. 13, appear to be related to the relative emissions of the O_3 precursors.
No significant differences ($p>0.05$) were observed at any of the metropolitan areas between O_3 AV$_d$ during weekends and weekdays. This lack of a weekend effect in O_3 was reported previously at the MCMA for 1987-2007 by Stephens et al. (2008), who attributed it to weekday O_3 production being limited by VOCs and inhibited by NOx; this was also observed by Song et al. (2010). By contrast, simultaneous decreases in emissions of VOCs and NOx mostly from vehicle sources during weekends could have counteracting effects on the O_3 production rates, leading to similar levels of O_3 during weekdays at the 3 metropolitan areas. This behaviour was reported previously by Wolff et al. (2013) for US urban areas of the Northeast, Midwest and Coastal California regions, which exhibited similar or even higher ($\pm 5\%$) O_3 levels during weekdays than at weekends, despite lower O_3 precursor emissions during weekends. Moreover, Wolff et al. reported that from 1997-1999 to 2008-2010 the sites studied exhibiting a weekend effect decreased from ca. 35% to less than 5%, which was attributed to an increase in the VOC/NOx emission ratio derived from a greater decline in NOx than in VOCs emissions (Pusede et al., 2014).

It is likely that the O_3 weekly patterns observed at the metropolitan areas arise from reduced traffic activity during weekends, leading to increases in ratios of VOCs/NOx. Within the MMA, this would be confirmed by lower NOx mixing ratios (on average 5%) during weekends, changing to a transition O_3 production between VOC- and NOx-limited during weekends. Moreover, a change to a NOx-limited O_3 production derived from the reduction in NOx seems unlikely since this would result in lower O_3 levels during weekends, not observed at any of the studied urban areas (Torres-Jardon et al., 2004). However, continuous measurements of ambient VOCs levels are required to explain the weekly patterns observed.

3.7. Long-term trends at MCMA, GMA and MMA from 1993 to 2014

De-seasonalised annual averages of O_3, NOx and CO for sites within the MCMA and GMA were calculated as for the MMA sites. Figure 13 shows long-term trends for these pollutants determined with the Mann-Kendall and Sen’s estimate. Within the MMA, a significant ($p<0.05$) increasing trend of 0.20 ppb O_3 yr$^{-1}$ is observed during 1993-2014, within the MCMA a significant ($p<0.05$) decreasing trend of 0.71 ppb O_3 yr$^{-1}$ occurred during the same period, while within the GMA, a non-significant ($p>0.05$) trend of -0.09 ppb O_3 yr$^{-1}$ is evident during 1996-2014. The observed trends in O_3 during the studied period, reflect the response to decreasing NOx (1.24 ppb yr$^{-1}$; $p<0.05$) within the MCMA (Fig. 13a), and increasing NOx (0.28 ppb yr$^{-1}$; $p<0.05$) within the MMA (Fig. 13c). Such changes in tropospheric NOx of 1.0% yr$^{-1}$ within the MMA and of -1.24% yr$^{-1}$ within the MCMA, agree with those reported by Duncan et al. (2016), in the NO2 column during 2005-2014 over the MMA (0.8% yr$^{-1}$) and MCMA (-0.1% yr$^{-1}$). The status of no trend in O_3 within the GMA contrasts with the significant decrease in NOx levels (1.47 ppb yr$^{-1}$; $p<0.05$) observed both at ground-level (-2.0% yr$^{-1}$) and in the NO2 column (-0.2% yr$^{-1}$).

Long-term trends of de-seasonalised O_3 annual median, 5th and 95th percentiles at the 3 urban areas were determined following the same methodology as for annual averages (Fig. S10). Overall, the linear trends observed in O_3 annual averages for the MMA and MCMA are also seen in the other tested metrics,
with significant (p<0.05) increases at MMA ranging from 0.05 ppb O₃ yr⁻¹ (5th percentile) to 0.41 ppb O₃ yr⁻¹ (95th percentile), and decreases at MCMA between 0.37 ppb O₃ yr⁻¹ (5th percentile) and 2.32 ppb O₃ yr⁻¹ (95th percentile). As for the O₃ annual averages, the GMA shows non-significant (p>0.05) trends in the other tested metrics. Notably, only the tropospheric CO decreased significantly (p<0.05) at the 3 urban areas studied, with the largest decrease rate of 0.12 ppm CO yr⁻¹ detected at the MCMA and the lowest one of 0.02 ppm CO yr⁻¹ calculated at the MMA. Thus, whereas O₃ precursors have decreased linearly within the MCMA and the GMA during the studied period, within the MMA those have increased during the same period despite the introduction of emission control policies (SDS, 2015).

The trends in O₃ observed in this study for the MCMA and MMA, agree with the reduction of 20 ppb O₃ during 1991-2011 for the MCMA reported by Jaimes et al. (2012), and with the reduction of 8 ppb O₃ during 2000-2011 for the MMA reported Benítez-García et al. (2014). However, the no trend status in O₃ within the GMA, is in contrast to the increase of 12 ppb O₃ during 2000-2011 reported by Benítez-García et al. (2014), which is likely due to the different periods assessed in both studies. It seems unlikely that meteorology could obscure the O₃ trends for the GMA determined here (Camalier et al., 2007), since all O₃ data used to construct the long-term trends were filtered out for meteorological effects with the STL technique. The decreases in O₃ reported here for the upper data distribution (0.71-2.32 ppb yr⁻¹) within the MCMA are larger than those reported by Simon et al. (2015) of 1-2 ppb yr⁻¹ during summer for US southern and western urban areas during 1998-2013, which are opposite to the O₃ increases within the MMA.

The decreases in tropospheric O₃ in response to the abatement of emissions of O₃ precursors in US urban areas reported by Strode et al. (2015), are consistent with the trends within the MCMA observed here for NOₓ and O₃, and with the decrease in the average concentrations of VOCs of around 2.4 ppb yr⁻¹ since 2002, mostly propane, ethanol and acetone, reported by Garzón et al. (2016). Compared with other urban areas, the average increase in O₃ of 0.20 ppb yr⁻¹ within the MMA is similar to those of 0.22-0.37 ppb yr⁻¹ reported by Akimoto et al. (2015) in 4 urban areas of Japan during 1990-2010, and lower than that of ca. 0.5 ppb yr⁻¹ reported by Bigi and Harrison (2010) in central London during 1996-2008, which were ascribed to faster decreases in NOₓ than VOCs emissions. Finally, the results obtained here demonstrate the merits of the assessment and analysis of long-term continuous data for air quality and air pollutant emissions, with continued monitoring required to confirm the observed positive trend and growth rate of O₃ within the MMA and, to better understand the changes in regional and urban O₃.

3.8 Compliance with the 1-h and 8-h O₃ Mexican Standards
In Mexico, the running 8-h average standard of 80 ppb O₃ is considered to be breached if more than 4 exceedances occur in a calendar year, whereas the 1-h average standard sets a maximum permitted limit of 110 ppb O₃ (NOM-020-SSA1-1993). Since 19 Oct 2014, there have been new maximum permitted levels of a 1-h average of 95 ppb O₃ and a running 8-h average of 70 ppb O₃, respectively.
The impact of decrease of NO	extsubscript{x} emissions of daily air masses travel mixing ratios greatest mixing ratios of O\textsubscript{3} within the whole urban area controls emissions. Such decrease is a decrease in the growth rate at SNB to 1.83 exceedances yr-1 after 2000, the only significant change is a decrease in the growth rate at SNB to 1.83 exceedances yr-1 (p<0.1). This suggests that according to the long-term trends in O\textsubscript{3} and NO\textsubscript{x} calculated within the MMA, the number of annual exceedances of the O\textsubscript{3} NOM standards will likely increase in response to increases in precursor emissions. Finally, based on the results reported here, it is recommended that more stringent emission controls are introduced, particularly for industries located upwind the MMA in order to improve air quality within the whole urban area.

4. Conclusions

The impact of changes in NO\textsubscript{x} and VOCs emissions over O\textsubscript{3} long-term trends in the MMA, MCMA and GMA has been addressed by the first time in this study. Continuous high-frequency and high-precision O\textsubscript{3} data recorded during 1993-2014 at 5 sites within the MMA and 29 sites within the MCMA, and during 1996-2014 at 10 sites within the GMA, were used to calculate long-term trends. Within the MMA, the greatest mixing ratios of O\textsubscript{3} were recorded at downwind sites in E and SE air masses, representing the transport of precursors from industrial sources, dominant in the periphery of the MMA. The lowest O\textsubscript{3} mixing ratios were recorded at SNN, and for all sites were observed for the W and SW sectors, where air masses travel from central Mexico over 100-300 km of semi-arid region sparsely populated. Maximum daily 1-h values of O\textsubscript{3} and O\textsubscript{x} increased significantly at GPE, SNN and SNB, owing to increasing emissions of precursors, while at OBI increasing O\textsubscript{3} and decreasing O\textsubscript{x} trends arise from the local decrease of NO\textsubscript{x} emissions from automobiles.
The O₃ seasonal cycles are driven mostly by temporal variations of meteorology. The largest and lowest AV₃ are observed in summer and winter, respectively, for all sites, while the largest values correspond to STA result of stagnant air masses. Annual cycles at all sites peak in spring and through in winter, respectively, with a downward spike during summer caused by high winds that disperse O₃, and increase the boundary layer height. Decreases in O₃ precursor emissions during the economic crisis experienced in the country between 1994-1996, caused significant decline trends in AV₃ from 1993 to 1997 or 1998, depending on site, followed by increasing trends in AV₃ derived of the recovery of the economy, which is underlined by the greatest increase of AV₃ observed at the industrial site SNN.

At all metropolitan areas, O₃ peaks after mid-day and dips before sunrise, though the peak value for the MCMA occurs around an hour earlier than for the MMA and GMA caused by the accelerated photo-chemical production of O₃ during late morning. Larger AV₃ are seen at MCMA than at GMA and MMA related to the relative emissions of the O₃ precursors. Non-significant differences at any of the metropolitan areas between O₃ AV₃ during weekends and weekdays are observed. This lack of the weekend effect is likely due to weekday O₃ production being limited by VOCs and inhibited by NOₓ; whereas increases in the VOC/NOₓ ratio during weekends in response to reduced emissions from mobile sources results in similar O₃ mixing ratios that during weekdays.

The largest O₃ growth rates were observed in the upper data distribution, and in sites near the industrial area located east of the MMA. Significant increasing linear trends in NOₓ were observed at all sites, except at OBI, confirming the dominant role of increasing precursor emissions on the observed O₃ trends. A significant increasing trend of 0.20 ppb O₃ yr⁻¹ within the MMA contrasts within a significant decreasing trend of -0.71 ppb O₃ yr⁻¹ within the MCMA during 1993-2014, whereas a non-significant trend is evident within the GMA during 1996-2014. At the MCMA and MMA, the observed O₃ trends reflect the changes in tropospheric precursor levels. According to the long-term trends in O₃ for the MMA, the number of exceedances of the air quality standards will very likely increase as result of increasing precursor emissions. This emphasises the need for more stringent control of emissions in order to improve air quality within the MMA.

5. Acknowledgments

This research was supported by Tecnologico de Monterrey through the Research Group for Energy and Climate Change (Grant 0824A0104 and 002EICIR01). Grateful acknowledgements are made to the Secretariat for Sustainable Development of the Nuevo Leon State, the Secretariat for the Environment of Mexico City and the Secretariat for the Environment and Territorial Development of the Jalisco State for the public domain records. We gratefully thank the NOAA Air Resources Laboratory (ARL) for provision of the HYSPLIT model and READY website (http://www.ready.noaa.gov). The authors acknowledge Dr. Sigfrido Iglesias for providing imputed O₃ and NOₓ data for the MMA time-series. We
are also grateful to Professor Paul Monks and Professor Richard Derwent for encouraging comments on an earlier version of the manuscript.

6. References

R Core Team: R: a Language and Environment for Statistical Computing, R

SDS (Secretaria de Desarrollo Sustentable), Inventario de emisiones del Área Metropolitana de Monterrey 2013, personal communication, Monterrey, N.L. México, 4 Sep 2015.

Table 1. Air quality limit values stated in the Mexican legislation.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Mexican Official Standard</th>
<th>Limit value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ (ppb)</td>
<td>NOM-020-SSA1-1993</td>
<td>110 (1-h), 80 (8-h)ᵃᵇ</td>
</tr>
<tr>
<td></td>
<td>NOM-020-SSA1-2014</td>
<td>95 (1-h), 70 (8-h)ᵃᵇ</td>
</tr>
<tr>
<td>PM₁₀ (µg m⁻³)</td>
<td>NOM-025-SSA1-1993</td>
<td>75 (24-h), 40 (1-yr)</td>
</tr>
<tr>
<td></td>
<td>NOM-025-SSA1-2014</td>
<td>50 (24-h), 35 (1-yr)</td>
</tr>
<tr>
<td>PM₂.₅ (µg m⁻³)</td>
<td>NOM-025-SSA1-1993</td>
<td>45 (24-h), 12 (1-yr)</td>
</tr>
<tr>
<td></td>
<td>NOM-025-SSA1-2014</td>
<td>30 (24-h), 10 (1-yr)</td>
</tr>
<tr>
<td>CO (ppm)</td>
<td>NOM-02-SSA1-1993</td>
<td>11 (8-h)ᵇ</td>
</tr>
<tr>
<td>NO₂ (ppm)</td>
<td>NOM-023-SSA1-1993</td>
<td>0.21 (1-h)</td>
</tr>
</tbody>
</table>

*Average period.
ᵃNot to be exceeded more than 4 times in a calendar year.
ᵇRunning average.
Table 2. Site description, location and instrumentation used during 1993 to 2014 within the MMA.

<table>
<thead>
<tr>
<th>Site</th>
<th>Code</th>
<th>Location</th>
<th>Elevation (m a.s.l.)</th>
<th>Site description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guadalupe</td>
<td>GPE</td>
<td>25° 40.110’ N, 100° 14.907’ W</td>
<td>492</td>
<td>Urban background site in the La Pastora park, surrounded by a highly populated area, 450 m from Pablo Rivas Rd.</td>
</tr>
<tr>
<td>San Nicolas</td>
<td>SNN</td>
<td>25° 44.727’ N, 100° 15.301’ W</td>
<td>476</td>
<td>Urban site surrounded by a large number of industries and residential areas, 450 m from Juan Diego Diaz de Beriagna Rd.</td>
</tr>
<tr>
<td>Obispado</td>
<td>OBI</td>
<td>25° 40.561’ N, 100° 20.314’ W</td>
<td>560</td>
<td>Urban site near the city centre of MMA, 250 m from Jose Eleuterio González Rd. and 250 m from Antonio L. Rodríguez Rd.</td>
</tr>
<tr>
<td>San Bernabe</td>
<td>SNB</td>
<td>25° 45.415’ N, 100° 21.949’ W</td>
<td>571</td>
<td>Urban site in a residential area downwind of an industrial area with high traffic volume, 140 m from Aztlan Rd.</td>
</tr>
<tr>
<td>Santa Catarina</td>
<td>STA</td>
<td>25° 40.542’ N, 100° 27.901’ W</td>
<td>679</td>
<td>Urban site downwind of industrial sources, 200 m from Manuel Ordoñez Rd.</td>
</tr>
</tbody>
</table>

Table 3. Growth rates by wind sector in annual averages of O₃ in ppb yr⁻¹ for 1993-2014 at the 5 sites within the MMA.

<table>
<thead>
<tr>
<th>Site</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPE</td>
<td>0.23</td>
<td>0.16</td>
<td>0.43 c</td>
<td>0.55 c</td>
<td>0.23 c</td>
<td>0.15 c</td>
<td>0.05 a</td>
<td>0.11 a</td>
</tr>
<tr>
<td>SNN</td>
<td>0.16</td>
<td>0.06</td>
<td>0.36 c</td>
<td>0.46 c</td>
<td>0.08</td>
<td>-0.05</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>OBI</td>
<td>0.08 a</td>
<td>0.22 c</td>
<td>0.50 c</td>
<td>0.66 c</td>
<td>0.32 c</td>
<td>0.18 c</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>SNB</td>
<td>0.36 c</td>
<td>0.43 c</td>
<td>0.43 c</td>
<td>0.16 a</td>
<td>-0.09</td>
<td>-0.06</td>
<td>-0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>STA</td>
<td>0.00</td>
<td>0.02</td>
<td>0.06</td>
<td>0.25 c</td>
<td>0.08 a</td>
<td>0.00</td>
<td>-0.05 a</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

aLevel of significance p < 0.1.
bLevel of significance p < 0.05.
cLevel of significance p < 0.001.
Fig. 1(a). The MMA, MCMA and GMA in the national context. **(b).** Topography of the MMA and distribution of the 5 monitoring sites over the area. **(c).** The 5 monitoring sites in relation to primary and secondary motorways, industries and major residential areas. The red arrows show the predominant wind direction at each site from 1993 to 2014.
Fig. 2. Frequency of counts of measured wind direction occurrence by season and site within the MMA during 1993-2014.
Fig. 3. 1-h averages of O₃ mixing ratios recorded from Jan 1993 to Dec 2014 within the MMA. The continuous lines show the monthly 5th (green) and 95th (orange) percentiles, medians (blue) and averages (red) of O₃ derived from daily data.
Fig. 4. Long-term trends of daily maximum 1-h values for NO$_x$, O$_3$ and O$_x$ observed at the 5 monitoring sites during 1993-2014 within the MMA. The slopes show annual rates of change expressed in units of ppb yr$^{-1}$. The dashed lines represent the Sen slopes. Statistical significance is expressed as $p<0.1 = ^{*}$, $p<0.05 = ^{*}$, $p<0.01 = ^{**}$ and $p<0.001 = ^{***}$.
Fig. 5. Average daily profiles for O_3, O_x, NO, NO$_2$, and SR within the MMA during 1993-2014. The shading shows the 95% confidence intervals of the average.

Fig. 6. O_3 de-trended daily profiles by season observed within the MMA during 1993-2014. De-trended O_3 daily cycles were constructed by subtracting daily averages from hourly averages to remove the impact of the long-term trends.
Fig. 7. Long-term trends of AV$_4$ O$_3$ annual averages at the 5 sites within the MMA during 1993-2014. The dashed lines represent the Sen slopes. Statistical significance is expressed as $p<0.1 = ^*; p<0.05 = ^*; p<0.01 = ^{**}$ and $p<0.001 = ^{***}$.
Fig. 8a. Annual cycles of O_3, temp., rain, RH and SR constructed by averaging records from 1993 to 2014 for a 1-year period. **b.** Average seasonal cycles in O_3 and SR within the MMA, constructed from monthly averages filtered with the STL technique developed by Cleveland et al. (1990). **c.** Trends in AV_s of O_3 recorded at the 5 monitoring sites within the MMA from 1993 to 2014. The decline in AV_s observed is due to the economic crisis experienced in Mexico during 1994-1996, followed by persistent increases in AV_s since 1998. **d.** Annual rates of change in O_3 AV_s by site, before and after the 1994-1996 economic crisis.
Fig. 9. Long-term trends of de-seasonalised annual O₃ data at the 5th %ile, median, average and 95th %ile, for the 5 sites within the MMA during 1993-2014. The dashed lines represent the Sen slopes. Statistical significance is expressed as \(p < 0.1 = ^{+} \), \(p < 0.05 = ^{*} \), \(p < 0.01 = ^{**} \) and \(p < 0.001 = ^{***} \).
Fig. 10. Long-term trends of de-seasonalised annual averages for NO\textsubscript{x} and CO at the 5 monitoring sites within the MMA during 1993-2014. The dashed lines represent the Sen slopes. Statistical significance is expressed as $p<0.1$ = *, $p<0.05$ = *, $p<0.01$ = ** and $p<0.001$ = ***.
Fig. 11. Emission estimates for anthropogenic NO$_x$, CO and VOCs within the MMA. The estimates from 1995 and 2013 correspond to State emission inventories and the ones from 1999, 2005 and 2008 correspond to the NEI. (Source: SEMARNAT, 2006, 2011, 2014; SDS, 2015).

Fig. 12. Average weekly cycles of O$_3$ at the three major metropolitan areas in Mexico during 1993-2014 for the MCMA and the MMA, and between 1996-2014 for the GMA. The shading shows the 95% confidence intervals of the average.
Fig. 13. Long-term trends of de-seasonalised annual averages of O$_3$, NO$_x$ in ppb, and CO in ppm for the MCMA and MMA during 1993-2014, and for the GMA during 1996-2014. The dashed lines represent the Sen slopes. Statistical significance is expressed as $p<0.1=^*$, $p<0.05=^*$, $p<0.01=^{**}$ and $p<0.001=^{***}$.

Fig. 14. Annual exceedances of the O$_3$ NOM for 1-h averages (110 ppb) and 8-h running averages (80 ppb) at the 5 monitoring sites within the MMA from 1993 to 2014.