Supplementary materials for Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer based source apportionment using radiocarbon measurements of ambient aerosol

P. Zotter¹,², H. Herich², M. Gysel¹, I. El-Haddad¹, Y.L. Zhang¹,³,⁴,⁵,†, G. Močnik⁶,⁷, C. Hüglin², U. Baltensperger¹, S. Szidat³,⁴, A.S.H. Prévôt¹

¹Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
²Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, 8600 Dübendorf, Switzerland
³Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
⁴Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
⁵Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland
⁶Aerosol d.o.o., Research and Development Department, Ljubljana, Slovenia
⁷Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia

#now at: Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Bioenergy Research, Technikumstrasse 21, CH-6048 Horw, Switzerland
†now at: Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, 210044, Nanjing, China

Correspondence to: A.S.H. Prévôt (andre.prevot@psi.ch)
Figure S1: Residuals of $\text{BC}_{\text{TR}}/\text{BC}$ compared to EC_f/EC ($\Delta\text{BC}_{\text{TR}}/\text{BC}$) as a function of $\text{BC}_{\text{TR}}/\text{BC}$ calculated with $\alpha_{\text{TR}} = 0.90$ and $\alpha_{\text{WB}} = 1.68$ and using the wavelength pair 470 nm and 950 nm. The brown and black dashes lines denote the residuals of $\text{BC}_{\text{TR}}/\text{BC}$ with respect to an error of α_{WB} and α_{TR} ($\Delta\alpha_{\text{WB}}$ and $\Delta\alpha_{\text{TR}}$), respectively, and the solid coloured lines represent the errors in $\text{BC}_{\text{TR}}/\text{BC}$ with respect to errors in both α_{WB} and α_{TR}.
Figure S2: Residuals of $\Delta B_{\text{TR}}/B_{\text{C}}$ compared to $E_{\text{CF}}/E_{\text{C}}$ ($\Delta B_{\text{TR}}/B_{\text{C}}$) as a function of $E_{\text{CF}}/E_{\text{C}}$ for $\alpha_{\text{TR}} = 0.8$ and $\alpha_{\text{WB}} = 1.4-2.2$ and using the wavelength pair 470 nm and 950 nm. Average $\Delta B_{\text{TR}}/B_{\text{C}}$ values for $E_{\text{CF}}/E_{\text{C}}$ bins of 0.1 are displayed. The dashed grey line denotes the best α pair ($\alpha_{\text{TR}} = 0.9$ and $\alpha_{\text{WB}} = 1.68$) as obtained in Sect. 3.2.1 and the dark and light grey shaded areas mark the 1σ (standard deviation) and 3σ of $\Delta B_{\text{TR}}/B_{\text{C}}$ per $E_{\text{CF}}/E_{\text{C}}$ bin for this best α pair.
Figure S3: Diurnal cycles of BC for the stations MAG, PAY and ZUR - 1h averages from 2009 to 2012. BC\textsubscript{WB} and BC\textsubscript{TR} were calculated using the best α pair (α\textsubscript{TR} = 0.9 and α\textsubscript{WB} = 1.68) as obtained in Sect. 3.2.1 and using the wavelength pair 470 nm and 950 nm. The split uncertainty between BC\textsubscript{WB} and BC\textsubscript{TR} (ΔBC\textsubscript{TR}/BC) is max. 0.04 μg m$^{-3}$.

Figure S4: Diurnal cycles of BC for ZUR - 1h averages for winter week days from 2009 to 2012 calculated with different α combinations and using the wavelength pair 470 nm and 950 nm.