We are grateful to Mr Taylor for his time and constructive comments on the discussion paper. We have made a number of minor corrections to the revised manuscript based on the referee comments.

Interactive comment on “Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, nonlinear regression and a radiative transfer based look-up table” by J. Huttunen et al. M. Taylor (Referee) patternizer@gmail.com

Received and published: 1 March 2016

GENERAL COMMENTS

I read the manuscript with interest, especially considering that it performs a comparison of several multivariate techniques for modeling/estimating aerosol optical depth (AOD) using surface solar radiation (SSR) measurements. As the authors point out, long time series of such measurements are available and this can be exploited to reconstruct a coincident record also of AOD. Extrapolation of AOD back in time is something that will be very useful in studies of radiative forcing but also climate change trends. The availability of long time series of AOD estimates will also help enrich models of other atmospheric variables that would benefit from inclusion of this important parameter.

The study of AOD in the context of SSR is a very active field (a CrossRef metadata search with +"aerosol optical depth" +"solar radiation" with the "journal article" flag on returns a large number of 953,336 results), and it is good to see a study that is targeted at AOD retrieval in particular. The authors idea of comparing machine learning...
models is timely, well grounded and relevant to the scope of the journal of Atmospheric
Chemistry and Physics (ACP). Several of the authors were instrumental in a recent ACP
paper to derive effective AOD from pyranometer measurements of SSR, by comparing
the capabilities of several modern approaches, the submitted manuscript builds on this
work and provides a useful feasibility study for the ballpark accuracy of AOD retrievals
from irradiances using advanced models.

Methodological issues:

1) On Page 4, lines 7-9, the authors describe how they have chosen to compare neural
network (NN), random forest (RF), Gaussian Process (GP) and Support Vector Ma-
chine (SVM) models of the AOD against look-up table (LUT) and nonlinear regression
models. Comparative studies of this type are becoming more popular in the literature,
but it should be born in mind that results are sensitive to model specification and, in
particular, the number of free parameters (e.g. Ljung, 1998). For example, in the con-
text of NN architectures alone, these include the number of neurons in hidden layers,
the number of such layers, training:validation data partition sizes, neuron activation
functions used). It is also rather challenging to find optimal values for model parame-
ters. For example, Meyer et al (2003) compared a SVM alone against 16 classification
methods and 9 regression methods in R. The same could be said for all of the methods
adopted in the submitted manuscript. With this in mind it would be good if the authors
could either:

a) increase the depth of the study by performing a thorough sensitivity analysis on the free parameters used in each of the nonlinear modeling approaches (NN, RF, GP, SVM, and NR) to help constrain the optimal values and number of free parameters needed to achieve different model performance, or

b) emphasize more how the study performs a feasibility type of analysis of the specific nonlinear models adopted for producing AOD retrievals of certain quality.

- It is true that option a) would amount to an interesting study. Unfortunately, a sensitivity study which would constrain the optimal values and number of free parameters for different machine learning methods, in our opinion would amount to a whole new article.

In this study the aim is to validate methods that could be used for retrieving AOD, a proxy for aerosol load, for several decades. As our study indicates, we get a good estimate for AOD with all of the machine learning methods used in this study and the study shows promise that these methods could be used for estimating past aerosol load. Thus our approach fall into category b) and we have emphasized in the revised manuscript that our study is more of a feasibility study.

2) On Page 6, lines 8-11, the authors describe how the training dataset for the machine learning methods contained years 2009-2014 and the validation (verification) dataset contained the previous years 2005-2008. I would like to see the authors describe why this partition was chosen (over others) as well as a short presentation of the basic exploratory statistics of these datasets: i.e. the means and standard deviations and
min-max values of the model input and output parameters. This will help the authors to make stronger claims about the generality of the models selected.

The main reason for choosing different time periods is that there may have been some change in the aerosol type between these two periods and this might cause problems for the methods to reproduce AOD's for one period when the learning data was from another period. Since the methods in this study are able to reproduce the AODs for a different time period than what they were trained for, it indicates that they have some capability in taking into account the changes in the aerosol type, i.e. change in the single scattering albedo.

We have also included some statistics on the data used, as the referee suggested. Table A1 shows the statistics between the training and validation datasets.

SPECIFIC COMMENTS

I would say that the level of technical English in the submitted manuscript is reasonably good, as is the level of scientific description. A couple of minor points:

3) On Page 3, lines 6-7, I disagree that AERONET has rather good spatial coverage. Even on a global grid of 1 degree resolution (180 x 360 pixels), the occupancy of global pixels, is extremely low despite there being of the order of 10^3 sites.

The referee is correct on this. We have rephrased this as follows: “Although, AERONET contains globally already over 700 stations, with a fairly good spatial coverage compared to many other observation networks,”

4) On Page 3, line 15, I would say that the (satellite and AERONET AOD) records extend a between 1 and 2 decades into the past. On the daily timescale, this could be
arguably be considered to be a fairly long time-series record.

- This is also correct. It now reads: ”It is therefore apparent that neither sun-photometer nor satellite records of AOD are available for all decades where industrialization has had a significant effect on the aerosol load.”

5) I would make the font size bigger in Figure 1 and Figure 6.

- This is fixed in the revised manuscript.

6) In Figure 5, colour is associated with WVC and the title would be better placed vertically on the colour bars as "WVC [cm] (LUT)" and "WVC [cm] (meas.)" or something along these lines.

- We agree with the referee and the colorbars' titles are now located at the top of the colorbars in Fig. 5. We did not place them vertically next to the colorbars, as the referee suggested, because that would have made the figure harder to read.

CONCLUDING REMARKS

Given the importance of accurate AOD estimation and the potential for increasing the capacity for monitoring long-term changes in climate forcing where AOD is a key parameter, the submitted manuscript is a useful addition to the literature and would benefit I hope from these minor revisions.

REFERENCES

102 Interactive comment on Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-58, 2016.