We thank reviewer #1 for the helpful comments. In what follows, we respond (in italics) to each point raised in the review.

Specific Comments:

Introduction: Significance of research is clearly stated, and the authors are familiar with the associated literature. The authors may want to discuss or cite the following article that recently appeared in ES&T: Ye et al. “Photolysis of Nitric Acid and Nitrate on Natural and Artificial Surfaces.” DOI: 10.1021/acs.est.5b05032

We have added this paper as a citation.

Experimental: Methods and procedures are comprehensible and clear. Ion Analysis: Please provide more details of the composition of the surface grime, if possible—including which ions were analyzed for and found.

A table has been added to the supplementary information of the ion content of grime samples used for the photochemistry experiments. The ion content of the grime samples used for the water uptake normalization will be presented and discussed in detail in an upcoming publication.

Results: Photochemical production of nitrogen oxides: Pg. 5, s 26: I don’t find an Eq. 1; perhaps delete “via Eq. (1)” in this sentence?

This equation should have appeared in the pdf file submitted; we will ensure it does not get omitted in the final version.

Pg. 5, s 31: This sentence is unclear to me. When the products decreased in the light vs dark by 60%, are you referring to the NO2 controlled experiment? If so, it might be helpful to explicitly state it. Also, the NO2 controlled experiments were carried out with high NO2 concentrations that do not necessarily reflect possible NO2/HONO levels in the photolysis experiments.

We have clarified that we are talking about the NO2 control experiments in the manuscript. The concentrations used for these control experiments are quite close to those detected in the grime experiments. In the control light experiments approximately 6×10^{11} molecules/cm3 are detected in comparison to a range of 3.5×10^{11} molecules/cm3 to 6.5×10^{11} molecules/cm3 for the initial illumination of grime samples at a relative humidity of 35%. Thus, we expect these control experiments to reflect what is happening in the grime experiments. We have clarified that it is this diluted concentration that we are using.

Once nitrite is formed, it needs to be protonated for it to be desorbed as HONO (g). It would be interesting to know the pH of the urban grime coated on the glass beads. Since HONO is the dominate nitrogen (III) species below pH 3 (and HONO is emitted in this study), I’m guessing that the urban grime coated on glass beads would be more on the acidic side. The reason why I mention pH is because I am wondering how much nitrite is on the surface; and I am thinking about it in regards to surface pH and to the acid
displacement process proposed by VandenBoer. If the photolyzed urban grime contains liberal amounts of nitrite, and if exposed to gas phase acids, there is potential for additional HONO production.

*In a previous study (ES&T, 2015), we have suggested that the grime may actually be somewhat basic due to a complete loss of ammonium, something that we would not expect from an acidic film. If HONO is being formed directly in the photochemistry (which we cannot confirm with the present study), we anticipate that it is not via the protonation of nitrite but rather arises from secondary chemistry of NO₂ formed from nitrate photolysis, for example, photoreduction of NO₂ or NO₂ hydrolysis, or perhaps due to photochemistry of any organic nitrogen species within the film. We have expanded the discussion of possible ways in which HONO could be formed."

Pg. 6, s 8-11: Clarify the rationale for using nitrate to sulfate ratios as an indicator. If I am understanding this correctly, there was a depletion in gas phase reactive nitrogen oxides, but no change in the amount of nitrate, yet there was a decrease in the amount of sulfate? It would be helpful to have a table in the SI showing concentration of the ions before and after illumination.

*Sulfate is not anticipated to be photolabile and thus we use sulfate as a means to normalize the nitrate concentration to the amount of grime. The bulk of the mass measured is due to the mass of beads, so normalizing to an ion within the film is a more precise method for seeing changes in nitrate rather than normalizing to the mass of sample. This ratio was used in our previous study, which showed a depletion of the nitrate to sulfate ratio when the grime was exposed to light. We have clarified the wording of this section."

Discussion: Pg. 7, s 25: The growth of the non-photoactive proportion of the films is dependent on the duration of the collection time and probably also dependent on it being shielded from precipitation.

We have included being shielded from precipitation as another factor that could influence the non-photoactive fraction.

Pg. 8: In the results section, the change in the nitrate to sulfate ratio is reported, but there is no mention of the ratio in the discussion. Is there a link between the nitrate to sulfate ratio and the water content of the film?

The nitrate to sulfate ratio was introduced to show that no nitrate loss was detected from samples that were illuminated. This lack of detected loss is discussed on pg 7. The link between nitrate to sulfate ratio and water content is an interesting question, but goes beyond the scope of this study. We will hopefully investigate this in the future.

In the Supplement: Sentence 8: The authors refer to an “Equation 1,” but I did not find this anywhere.

See above about equation 1
Figure S1a: This figure is somewhat unclear. The figure is showing the amount of NO2 and HONO measured when 6 ppm of NO2 is flowed through the chamber and cell as a function of RH? If so, the NO2 to HONO conversion is higher than I would have thought. I am surprised to see more HONO than NO2. Is this related to the very high concentrations of NO2 used (6 ppm)?

We have added some clarification concerning the NO2 concentration being flowed through the chamber. The conversion is indeed surprising! The concentrations we used led to similar concentrations when the NO2 stream was illuminated as when the grime was illuminated, and thus this suggests is a reasonable expectation that a similar high conversion would be happening for sample illumination.
We thank reviewer #2 for the helpful comments. In the following, we respond (in italics) to each point raised in the review.

Specific Questions: 1. Page 6, line 180. In photolysis experiments, authors allowed the signal to return to baseline for 60 min. Highlighting that gas phase NO2 decrease as a function of RH, have authors considered any secondary reactions of HONO or NO2, i.e. acid hydrolysis of NO2, during the 60min dark periods of the experiment?

The drop off in detected HONO is quite rapid, with time taken to reach baseline thought to be due to the lifetime of the carrier gas pass through the apparatus rather than significant secondary chemistry. Since the source of HONO/NO2 is turned off in the light, even if secondary chemistry is happening, the products would quickly decrease in concentration because the primary source has been removed. Secondary chemistry is possible, but with the data we currently have, it would be difficult to say with any certainty.

2. Page 7, line 234. Since the inorganic nitrate does not show a direct link to the source of gas-phase nitrogen species and authors speculate that organo-nitrate may have a role, have authors considered investigating the change in the total nitrogen in grime samples before and after photochemical experiments.

This is an interesting suggestion for further study.

3. Page 8, line 267. The work cited here by Grassian and co-workers have reported decrease in %nitrate loss between %RH 20 and 80, due to increase in re-adsorption of gas phase NO2 at higher RHs. Did authors notice similar observation(s) in the current study? Can this be one of the dark reaction occurring during the above mentioned 60 min dark period?

We only studied nitrate loss from samples illuminated at an RH of 35%, however, the gas phase products do not suggest that this re-adsorption is as important, as it was in the Grassian study. We do not see the decrease in products at higher relative humidities, only a leveling off. However, such a process cannot be ruled out as possibly contributing to this leveling off. We have included this possibility in the manuscript in an expanded discussion of the product formation above 35%.

4. Page 7, line 215. The water uptake on grime seems to follow more like a condensation isotherm rather than a typical water adsorption isotherm with a monolayer formation. If this is the case, does the multilayers formation of water block surface sites or limit photolysis products after %RH 35?

We do not see a decrease in products, only a leveling off. This suggests that the water is not playing a significant role in hindering the photolysis products. Further study looking at relative humidities beyond 60% could help determine this aspect in the role of water for the chemistry.
We thank reviewer #3 for the helpful comments. In the following, we respond (in italics) to each of the points raised in the review.

Only gaseous HONO has been observed, and the authors argue that it might be due to NO2 undergoing wall losses in their reactor (acting also as a HONO source). However, HONO is lost more efficiently on surfaces than NO2. Therefore the same argument holds for HONO too i.e., this compound should also then be lost on the walls of the reactor. Also, wall losses are expected to increase with increasing humidity, and therefore the yield of products should decrease with increasing RH, while the authors do observed opposite trends. Maybe they could/should comment describe in slightly more details potential wall losses.

This was a surprising observation, but the hypothesis of NO\textsubscript{2} wall hydrolysis was due to the observations from flowing NO\textsubscript{2} through the apparatus. In these experiments, although NO\textsubscript{2} was entering the system, only HONO was observed under illumination. Moreover, the HONO concentration did not change with relative humidity for this control experiment. These were the observations that led to the conclusion that NO\textsubscript{2} and HONO could not be distinguished under the experimental conditions. We have updated the wording to make this more clear.

It is possible that the observation made here is real i.e., only HONO is photochemical produced from urban grime as previously discussed for proxy of urban grime made of PAHs?

We have included this as one of the possible mechanisms that could explain the product formation. It is definitely possible that only HONO is being produced, we just cannot confirm this with our present set up.

Also, no nitrate loss was observed in contradiction with previous studies from the same group. It is argued that this due to the age of the film (aged vs. fresh). Do the authors mean that with ageing nitrate anions are converted into something else? Do the authors point toward the formation of organo-nitrate, and subsequent photochemistry? Otherwise, I do not follow the argument in which ageing prevents nitrate loss. . . Maybe the authors could comment on that?

When we integrated the amount of gas-phase products and convert to the corresponding nitrate mass loss expected from the film, the expected loss is below our detection limit and thus we cannot conclude that no nitrate was loss, it is just a lower percentage than what has been previously seen. We discuss ageing as a possibility for this low
percentage nitrate loss in addition to the possibility of organic nitrogen playing a role. Ageing could result in the film growing in thickness and thus photoactive sites and photoactive components may be buried becoming unreactive, with only the fresh deposits reacting. This explanation has been added to the manuscript.

Altogether, the two arguments above may suggest that HONO formation is not just due to nitrate anions photolysis, but could involve also organo nitrate or metallic complexes. Maybe the authors could strengthen their discussion on this possible pathway.

We have broadened the discussion around formation mechanisms for HONO.

Increasing humidity creates less acidic surfaces (as shown in Figure 4) but more HONO. Is this not a contradiction, as HONO would stick more to less acidic surfaces? Was NO2 measured at higher RH?

An increase in humidity results in a more dilute mixture of ions, however the above statement assumes an initially acidic film. From previous measurements (ES&T, 2015), we have concluded that the film may actually be basic due to the complete loss of ammonium from the film, which would not be expected in an acidic environment. A mention of this was added to the manuscript.

As stated by the reviewer, a less acidic surface would favour HONO to stick. Because this is not what was observed, the role of water seems to be less in controlling the pH, but rather in controlling the viscosity or mobility of reactants as discussed within the manuscript. Another possibility is that the HONO being measured is all from surface hydrolysis of an NO2 photoproduct on the walls of the apparatus, rather than from direct formation from grime photochemistry. In that case a much smaller pH dependence would be expected. NO2 was never detected in the grime experiments and in the control experiments less NO2 was detected at higher RH.
Formation of Reactive Nitrogen Oxides from Urban Grime

Photochemistry

Alyson M. Baergen1 and D. J. Donaldson1,2

1Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
2Department of Physical and Environmental Science, University of Toronto at Scarborough, Toronto, M1C 1A4, Canada

Correspondence to: D. J. Donaldson (jdonalds@chem.utoronto.ca)

Abstract. Impervious surfaces are ubiquitous in urban environments and constitute a substrate onto which atmospheric constituents can deposit and undergo photochemical and oxidative processing, giving rise to “urban grime” films. HNO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5} are important sinks for NO\textsubscript{x} in the lower atmosphere and may be deposited onto these films, forming nitrate through surface hydrolysis. Although such deposition has been considered as a net loss of NO\textsubscript{x} from the atmosphere, there is increasing evidence that surface-associated nitrate undergoes further reaction. Here, we examine the gas phase products of the photochemistry of real, field-collected urban grime using incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS). Gas phase nitrogen oxides are emitted upon illumination of grime samples and their production increases with ambient relative humidity (RH) up to 35\% after which the production becomes independent of RH. These results are discussed in the context of water uptake onto and evaporation from grime films.

1. Introduction

Atmospheric NO\textsubscript{x} (=NO+NO\textsubscript{2}) is an important reactant in the formation of urban pollutants such as ground level O\textsubscript{3}, while HONO is an important photochemical source of OH (Finlayson-Pitts and Pitts, 1999). Therefore, in order to quantify the local atmospheric oxidative capacity, it is important to understand the processes mediating the concentrations of these species in the urban atmosphere. A major sink for nitrogen oxides in the troposphere is the formation of gas phase HNO\textsubscript{3} or N\textsubscript{2}O\textsubscript{5}, followed by the deposition of these species to surfaces and their subsequent hydrolysis to form nitrate. This anion is considered to be a sink for the gas phase NO\textsubscript{x} because its aqueous phase photochemistry is very slow. However, there is an increasing body of literature which suggests that surface bound nitrate and HNO\textsubscript{3} are not terminal sinks, but rather can undergo further recycling back to the gas phase. For example, HNO\textsubscript{3} has been shown to react on surfaces with gas phase NO and HONO to form NO\textsubscript{2} (Mochida and Finlayson-Pitts, 2000; Rivera-Figueroa et al., 2003; Saliba et al., 2001) and photochemical mechanisms for the conversion of HNO\textsubscript{3} and nitrate anion to gaseous nitrogen oxide species have been proposed on a variety of surfaces including glass (Zhou et al.,
2003), snow (Grannas et al., 2007; Mochida and Finlayson-Pitts, 2000; Rivera-Figueroa et al., 2003; Saliba et al., 2001), organic films (Handley et al., 2007), leaves (Zhou et al., 2011), plants (Ye et al., 2016), building materials (Ye et al., 2016) and mineral oxide surfaces such as aluminum oxide and zeolite (Gankanda and Grassian, 2013; Nanayakkara et al., 2014; Rubasinghege and Grassian, 2009; Shuttlefield et al., 2008). There is particular interest surrounding whether such processes could explain an as of yet unconfirmed source of daytime HONO in urban centers. Field studies have indicated that this missing source is photochemical in nature and acts at or near ground level (Lee et al., 2015; Wong et al., 2013; 2012; Young et al., 2012). Other processes, such as reactions of NOy (total reactive nitrogen) on aerosols (Ma et al., 2013) and soil mediated processes (Oswald et al., 2013; Scharko et al., 2015), have also been proposed but have not been confirmed at this time.

When studying atmospheric surface reactions, an often-overlooked surface is that of human-made structures (eg. buildings, roadways). These surfaces, when exposed to the atmosphere, become coated in a complex surface film over time due to the deposition and subsequent processing of atmospheric constituents (Chabas et al., 2008; 2012; Diamond et al., 2000; Duigu et al., 2009; Favez et al., 2006; Ionescu et al., 2006; Lam et al., 2005; Law and Diamond, 1998; Liu et al., 2003; Lombardo et al., 2010; 2005; Simpson et al., 2006; Wu et al., 2008a; 2008b). Referred to as “urban grime”, these films have generally been thought of as merely a surface for deposition as a terminal sink for species. However, there is increasing understanding that these films could also play a role in mediating environmental cycling. Most attention has been brought to the idea that the films can sequester gas phase compounds and enhance pollutant concentrations in rainfall runoff (Diamond et al., 2010; 2001; Priemer and Diamond, 2002), but there is evidence suggesting that they can also impact the reactivity of species contained within the film, such as PAHs (Ammar et al., 2010; Kwamena et al., 2007), and nitrate/HNO3 (Baergen and Donaldson, 2013; Baergen et al., 2015).

Additionally, it has been predicted that there is enough water present on all environmental surfaces, even those hydrophobic in nature, to influence heterogeneous reactions (Sumner et al., 2004). Rubasinghege and Grassian have discussed the role of water on environmental surfaces outlining a wide range of mechanisms through which water can impact reactivity (Rubasinghege and Grassian, 2013). These include altering reaction pathways, promoting hydrolysis reactions, ionic dissociation and solvation of ions, inhibiting reactivity through blocking reactive sites, enhancing ion mobility on the surface and altering the stability of surface species. For example, both the extent of reaction and the distribution of products change as a function of relative humidity (RH) for nitrate photolysis on aluminum oxide and Pyrex substrates but their response is substrate dependant (Rubasinghege and Grassian, 2009; Zhou et al., 2003). Such studies have generally investigated the impact of water on atmospheric surface chemistry by varying the ambient RH. However, because different surfaces have different water affinities, they may be expected to display different responses to changes in relative humidity. For example, a study by Nguyen et al. shows that estimating water content in the aerosol, rather than just using RH data, is important for predicting the

2
formation of biogenic secondary organic aerosol (Nguyen et al., 2015). Related to grime surfaces, Sumner et al. have shown how different surfaces, representing building surfaces, vary in their water uptake behaviour (Sumner et al., 2004). There are only minimal studies performed looking at water interactions with grime, but they show that grime films impact water uptake on surfaces (Baergen and Donaldson, 2013; Chabas et al., 2014). Thus it is important to characterize the change in surface water content as a function of RH as well as grime photochemistry. In the following we present results of experiments, which monitor the photochemical release of gas phase nitrogen oxides from urban grime as a function of RH, in conjunction with water uptake measurements on grime.

2. Experimental

2.1 Sample collection

Grime samples were collected by placing the substrate, either 3 mm diameter glass beads (Fisher Scientific) or quartz crystal microbalance (QCM) crystals, outside in downtown Toronto, Canada for up to one year. The beads were placed on metal mesh shelves underneath a building overhang, sheltering the sampler from precipitation. Sunlight was blocked with a black cloth covering the front of the sample and a building blocking the sunlight from the other direction. The QCM crystals were placed in holders where the face of the crystal was facing the ground while the back was within the holder, preventing the collection of grime on this backside, which would impact the QCM response. In this way both types of samples were shielded from light and precipitation while still being open to the atmosphere.

2.2 Incoherent Broad Band Cavity Enhanced Spectroscopy (IBBCEAS)

Gas phase product formation was determined using IBBCEAS. The system is described in full elsewhere (Reeser et al., 2013). Briefly, a 10 W LED with a maximum intensity at 372 nm, was focused into a 100 cm cell. The cell was sealed with two highly reflective mirrors (>99.95% between 367 nm and 380 nm). The light escaping through the back mirror was collected by a lens and focused onto a fiber optic bundle, which was directed into a spectrograph with a CCD detector. The mirrors were continually purged using a flow rate of 25 mL/min of N₂ directed onto the mirror surfaces. Transmission spectra were collected for 30 s (averages of 30 scans with an integration time of 1 s each) over a wavelength range of 362 nm to 385 nm.

The concentrations of HONO and NO₂ were calculated using the method described by Fiedler and Gherman (Fiedler et al., 2003; Gherman et al., 2008) and previously used by us (Reeser et al., 2013). This uses measured mirror reflectivity (Washenfelder et al., 2008), Rayleigh cross sections of the carrier gas (Bodhaine et al., 2010) and the absorption cross sections of NO₂ (Vandaele et al., 1998) and HONO (Stutz et al., 2000) to fit the experimental spectra with DOASIS software (Lehmann, 2009). DOASIS uses a linear least-squares method to fit the absorption bands to reference spectra and a polynomial to fit broad features such as those from Rayleigh scattering, Mie scattering and temperature drifts. The fit is optimized by including terms that allow for small shifts in absorption wavelengths and spread of peaks. A sample fit is
displayed as the solid line in Fig. 1. Calculated detection limits (signal/noise = 3) are 1.50×10^{11} molecules cm$^{-3}$ (~6ppb) for NO$_2$ and 6.5×10^{10} molecules cm$^{-3}$ (~3ppb) for HONO.

2.3 Photochemistry

Samples of 10.0g of exposed glass beads were weighed into a glass petri dish for illumination. These were placed within a stainless steel chamber (3.2” x 2.2” x 1.5”) and nitrogen was flowed through the chamber into the IBBCEAS cell at a rate of 0.3 L/min. RH and temperature in the chamber were monitored using a Traceable® Memory Hygrometer/Thermometer. The reported accuracy is ± 2% at mid-range and ± 4% elsewhere in the range of 10 to 95% RH. The calibration was checked by measuring the RH above a series of saturated salt solutions in comparison to the known deliquescent RH and was the same as the reported values within the stated uncertainties.

Nitrogen was flowed through the system for one hour prior to illumination to establish a stable background in the spectrum, and equilibrate the water vapour in the chamber for the RH used in the experiment. The samples, initially at a RH of 35%, were illuminated through a quartz window at the top of the sample chamber with a Xe arc lamp ($\lambda >$295nm) for 60 min. The light was then blocked, the signal allowed to return to baseline, and the RH adjusted for the next illumination period. After 60 min the sample was again illuminated for 60 min before blocking the light and repeating the cycle for a third time. Average concentrations were calculated for the second 30 min of illumination, where the signal appeared to reach steady state, and then normalized to the initial steady state value at the RH of 35% to adjust for experiment variability such as variations in sample, light intensity and temperature. These experiments were carried out without temperature control, with the chamber operating at a temperature between 28 and 34 °C during illumination.

Control experiments were carried out in which 10.0 g of clean beads were illuminated for one hour at a relative humidity of 35%. In addition, 10.0 g of the grime coated beads were subjected to heating up to 36°C to study the impact of increased temperature on product formation. Both of these tests were completed in triplicate with a different sample being used each time. Neither experiment showed detectable levels of HONO or NO$_2$.

The set up was further tested by flowing a known concentration of NO$_2$ through the empty chamber and IBBCEAS cell. A flow containing 6.0 ppm NO$_2$ in N$_2$ was diluted in a stream of N$_2$ down to $(4.76 \pm 2.4) \times 10^{12}$ molecules/cm3 at varying RHs. NO$_2$ and HONO steady state concentrations measured at each RH were used to characterize the IBBCEAS response to changes in humidity and the efficiency of NO$_2$ hydrolysis to HONO on the walls of the reaction chamber and IBBCEAS cell.

2.4 Ion analysis
Two different ion extraction techniques were used. For ion analysis of the illuminated beads, 4.0 g of grime-coated beads were shaken for 5 minutes with 3.00 mL of deionized water with a resistivity of greater than 18 MΩcm (Baergen et al., 2015). For ion analysis to accompany water uptake measurements, samples were collected on 5 cm x 7.6 cm pieces of window glass over the same time period as the quartz crystals and extracted with 45 mL deionized water. Glass samples were first placed in 25 mL of water and sonicated for 1 min. Each side of the glass was then washed twice with 5 mL of water. Solutions were filtered through a 0.2 µm IC Millex®-LG syringe filter before being analyzed by ion chromatography on a Dionex ICS-2000. 1.33 mL samples were injected onto a concentrator/analytical column system: Ionpac® TAC-ULP1/AS19 with KOH eluent for anion detection and Ionpac® TCC-ULP1/CS17 with methanesulfonic acid eluent for cation detection. A second extraction resulted in concentrations of less than 10% of the first extraction for all ions. The inorganic ion content of the grime used for photochemistry experiments is given in Table S1.

2.5 Water Uptake

The mass of water taken up onto an urban grime film as a function of RH was measured using a quartz crystal microbalance (QCM), as described in Demou et al (Demou et al., 2003). Grime was collected directly onto a quartz crystal and then placed in the QCM. The QCM was housed in a plexiglass chamber whose humidity was increased by flowing air through a water bubbler at room temperature at a variable flow rate to maintain a rate of change of RH of 1%/min and decreased by flowing dry air through the chamber at variable flow rates to maintain a rate of change of -1%/min. The frequency change of the microbalance from the change in water content of the film was converted to a mass using the Sauerbrey equation (Δm=CΔf) where Δm is the mass change, C is a proportionality constant and Δf is the frequency change from the deposited mass. In a previous study, the Sauerbrey relationship was confirmed to hold for this apparatus only up to 1% of the fundamental frequency of the crystal (Demou et al., 2003). Due to this mass restriction, samples for QCM analysis were collected for only four weeks instead of the 1 year for the photochemistry samples. The value of the constant C is reported to be 8.147x10^7 Hz cm^2 g^-1 for the 0.550 inch, 6 MHz crystals used in this study (Sauerbrey, 1959). The RH was measured using a Traceable® Memory Hygrometer/Thermometer.

3 Results

3.1 Photochemical Production of nitrogen oxides

Figure 1 shows a typical absorption spectrum collected upon illumination of a grime sample. One can see two features, typical of HONO absorption, a stronger signal at 368 nm, and a second peak appearing at 384 nm, at the longer edge of our wavelength range. The IBBCEAS is also sensitive to NO_2, which absorbs in this wavelength region. However, this molecule was not detected in any of the photochemical experiments performed here. We argue in the Supplementary Information that NO_2 hydrolysis on the walls of the chamber and/or IBBCEAs cell via Eq. (1) (Finlayson-Pitts et al., 2002) would prevent NO_2 from...
being detected even if it was originally formed in the chamber. Because of this hydrolysis there is an uncertainty as to whether the HONO we observe in the illumination experiments was originally NO₂, which was hydrolyzed prior to detection, or if it is HONO being produced directly from the sample. Therefore, we cannot attribute the observed HONO product exclusively to direct photochemistry of the grime sample; rather we use the HONO signal to indicate the combined total emission of NO₂ and HONO. We further note that the total product detected decreases when NO₂ is flowed through the apparatus in the light as compared to in the dark by approximately 60%, indicating gas phase photolysis of products (see Fig. S1). This highlights the importance of such considerations to be made whenever HONO and NO₂ are being measured. Each system needs to be classified individually over a range of RH conditions.

Figure 2 depicts the results of a typical experiment where a grime sample is placed within the chamber and exposed to three separate 60 min illumination periods at different relative humidities. The yellow highlighted regions indicate illumination. It is clear that nitrogen oxides are released to the gas phase during illumination and that the amount of products formed is dependent on the relative humidity. A repeat illumination of a sample at an RH of 35% showed an average ratio of 0.88 ± 0.06 compared to the original illumination. This provides evidence of some precursor depletion due to illumination, however, the much smaller signals at 20% RH indicate that the RH dependence, apparent in Fig. 2, is related to the formation of nitrogen oxides and not merely due to sample depletion. The nitrate to sulfate ratio of the grime before and after illumination was used to examine nitrate behaviour. Sulfate is not expected to have any photoreactivity on the film and thus was used to account for sample variability as was done in our previous work (Baergen et al., 2015). No nitrate loss was detected between water extracts of beads before and after illumination at 35% for three one-hour periods. The average change in the nitrate to sulfate ratio from before to after illumination was 3.6 ± 6.6 %. There was also no nitrate loss detected for the samples that were heated for three hours; these show an average change in the nitrate to sulfate ratio from before to after heating of 1.0 ± 3.6 %. The amount of nitrate loss expected during illumination, based on the integrated amount of gas phase nitrogen oxides produced, is in agreement with the above results.

In order to further investigate the RH dependence on product formation, the initial illumination period at 35% RH was used to normalize the concentrations detected for the next illumination periods. This data is shown for a range of RH values in Fig. 3. Up to an RH of approximately 35% the amount of products formed increases, after which product formation becomes independent of RH. At a RH of 0%, no products were detected. However, from the NO₂ control experiments, there was evidence that gas phase NO₂/HONO is lost to the chamber walls for these dry conditions, and thus this value was not reported.

3.2 Water uptake by grime samples
This interesting RH dependence of the amount of nitrogen oxides emitted photochemically from urban grime motivates the study of water uptake onto grime. Grime-water interaction has been reported before using ATR-FTIR with 1 week old grime, showing equilibrium with ambient water vapour (Baergen and Donaldson, 2013). Chabas et al also reported that mass measurements on 100 month old films showed enhanced water uptake on grime-coated substrates compared to clean ones (Chabas et al., 2014). Here we use 4 week old samples collected throughout the year-long collection onto the glass beads, and look at both water uptake and evaporation, to better probe water-grime interactions. The uptake and loss curves displayed in Fig. 4 are an average of 16 curves collected at different time points through the year normalized to the mass of major ions in the film (Cl$,^-$, NO$_3^-$, SO$_4^{2-}$, Na$^+$, K$^+$, Mg$^{2+}$ and Ca$^{2+}$), extracted from a glass slide exposed to the atmosphere for the same length of time as the quartz crystal and scaled to the same area as the crystal. The shaded region indicates the 95% confidence interval. The water uptake onto a clean crystal was subtracted from each sample uptake before averaging, so the figure displays the mass of water taken up mediated by the grime itself. The degree of uncertainty captures some of the seasonality of grime water uptake, which will be discussed in an upcoming paper along with the seasonality of grime ion content. The water uptake onto and evaporation from grime are both smooth curves, with no indication of phase changes over the RH values spanned here. The lack of hysteresis also gives confidence that the illumination experiments reflect the true state of the “real” urban grime, as the film remains equilibrated with the ambient RH as this changes.

4. Discussion

The illumination of urban grime results in the release of gas phase nitrogen oxides in the form of NO$_2$ and/or HONO. While previously predicted (Baergen and Donaldson, 2013; Baergen et al., 2015), this is one of the first observation of such gas phase products. Field-collected grime samples were illuminated, without any alteration, clearly showing that urban grime is a source of nitrogen oxides back into the atmosphere. Our previous work, as well as that of others, has shown that nitrate is present within urban grime films (Favez et al., 2006; Lam et al., 2005) and that this nitrate is photolabile (Baergen and Donaldson, 2013; Baergen et al., 2015; Ye et al., 2016). Nitrate photolysis is known to form NO$_2$ within other media. Recent work by Ye et al also looked at surfaces exposed to the atmosphere for much shorter exposure times detecting HONO and NO$_2$ at varying ratios depending on the surface(Ye et al., 2016). If HONO is a product of this chemistry one possible source is via the protonation of nitrite, another known product of aqueous nitrate photochemistry. However, our previous study was consistent with an alkaline film due to the loss of ammonium, therefore we do not expect the film to be acidic enough for this mechanism to be important (Baergen et al., 2015).The organic fraction of the film could also play a role in the conversion of NO$_2$ to HONO, such as has been seen on organic surfaces such as humic acid (Stemmler et al., 2006) and PAH films (Ammar et al., 2010). NO$_2$ to HONO conversion could also occur through NO$_2$ hydrolysis within the film. Although it seems likely that nitrate is responsible for the observed chemistry due to its high concentration and known photoactivity on other surfaces, it is also possible that
photochemically active organo-nitrogen compounds may be present, though they have yet to be detected within grime films. If present, these compounds may react as indicated by Han et al (Han et al., 2013) who have reported the formation of R-NO, R-NO$_2$, and R-ONO$_2$ species on NO$_2$ exposed soot, which can photolyze to form NO and HONO.

In contrast to our previous studies showing the photolability of nitrate in grime (Baergen and Donaldson, 2013; Baergen et al., 2015), the current study does not show nitrate depletion upon illumination. This apparent discrepancy can be explained by the difference in experimental methods between studies. In both previous studies, the films were “younger”, with between 1 and 6 weeks of collection time, in comparison to the year-long collection here. In addition, for the Leipzig samples described in Baergen et al (Baergen et al., 2015) the “light” sample was continually exposed to ambient sunlight, whereas in the present experiment, like the previous Toronto study (Baergen and Donaldson, 2013), the samples were shielded from the light for the entire collection and then illuminated in a controlled laboratory setting. Both of the previous studies suggested that only a portion of the film is photolabile and the current result indicates that this non-photoactive proportion of the film forms a greater proportion of the film over time. Continued growth of the film may block photoactive sites or bury photoactive components of the film, making a smaller portion available for reaction. Ye et al found a logarithmic relationship between surface density of nitrate/HNO$_3$ and reaction rate (Ye et al., 2016) which could also indicate only nitrate/HNO$_3$ on the surface remains reactive in comparison to the nitrate/HNO$_3$ within the film. Whether a film grown under continual exposure to ambient light would show the same trend is an open question. Exposure to precipitation could also impact the photoactive fraction, both in potential compositional changes as different fractions are removed from the film during precipitation and in preventing such long-term film growth. This large non-photoactive fraction may also explain the disparity between the depletion of gas phase products over time and the lack of a corresponding nitrate drop; the photolabile fraction is small enough that the approximately 12% loss of reactive precursor implied by the gas phase result is too small of a proportion of the total nitrate to be detected within the extracts of the whole film.

The photochemical release of gas phase NO$_2$ and/or HONO is clearly dependant on relative humidity and therefore, as seen through the water uptake experiments, on the water content of the film. In particular, the product formation increases as the amount of water on the film increases, up to a relative humidity of 35% after which case, the chemistry is not impacted by further addition of water up to 60%. This behaviour is different from what has been seen from nitrate photolysis experiments on other surfaces. In a study performed on HNO$_3$ deposited on pyrex glass, the combined NO$_x$ and HONO formation rate was highest at 0% and decreased for 20% and 50% while the reported HONO production rate was lowest at 0% and then increased up to 80% (Zhou et al., 2003). However, the authors assumed a constant NO$_2$ to HONO wall conversion independent of relative humidity taken from a measurement in a different system and thus the determined ratios may not reflect the real distribution of products emitted as a result of the photochemistry.
(Zhou et al., 2003). Humidity dependence has also been seen for nitrate photochemistry on mineral dust surfaces. In this case, a minimum was seen for nitrate loss and NO$_2$ production at 0% and a maximum at 20% which subsequently decreased between 20 and 80%, while NO production continually decreased from 0 to 80% (Rubasinghege and Grassian, 2009). HONO production was not reported in this study.

The difference in nitrate photolysis behaviour between grime and other surfaces as a function of RH is indicative of the grime providing a unique environment for the photochemistry. Many different mechanisms for the role of water in surface reactions have been discussed, such as enhancing the mobility of reagents, allowing them to move to more photolabile positions within the film or enhanced hydrolysis and dissociation of species such as HNO$_3$, NH$_4$NO$_3$ or N$_2$O$_5$ producing more of the photolabile precursors (Rubasinghege and Grassian, 2013). The increased reactivity could also be the result of a viscosity change within the film. It is known that the viscosity of the particles changes based on relative humidity (Renbaum-Wolff et al., 2013), and therefore, it is expected that the same would be true for the grime, with particles being a source to the film. The film’s water uptake/evaporation curve is consistent with continuous viscosity change rather than phase transitions over the RH region studied. In a highly viscous film, the photochemical products are more likely to be trapped and thus recombine. However, a less viscous film would allow for faster diffusion and thus the release of products could become competitive and then dominate in comparison to recombination. Such an impact has recently been suggested to explain a smaller mass loss from illuminated SOA under low RH conditions in comparison to high (Wong et al., 2014), and faster PAH ozonation within an SOA coated particles at high RH as compared to lower RH (Zhou et al., 2013). This sort of behaviour would not be anticipated for a clean glass, or metal oxide surface. The levelling off of product formation at relative humidities greater than 35% could indicate that a critical amount of water has been reached. In the case of a viscosity effect, that would suggest that the process is no longer diffusion limited. Another process that could be playing a role is the re-adsorption of the products to the film, as discussed by Rubasinghege and Grassian (Rubasinghege and Grassian, 2009), which would compete with further growth causing a net levelling off of product formation.

While specific atmospheric implications require a better speciation of products, the production of such species can be discussed in the context of multiple recent field studies. In SHARP 2009, field measurements that there was a photolytic source of HONO within 20m of the ground (Wong et al., 2012; 2013). Studies done in other urban centers such as London (Lee et al., 2015) and Los Angeles (Young et al., 2012) also suggest there is an unknown photochemical HONO source. Many suggest that this source is correlated to NO$_2$ however, in a study carried out in Bakersfield and Pasadena, the HONO source does not correlate with NO$_2$ (Pusede et al., 2015). As discussed by those authors, the formation of HNO$_3$ and its subsequent incorporation into aerosol as ammonium nitrate can extend the lifetime of airborne nitrate, causing the nitrate which is deposited to not correlate temporally with NO$_2$(g). Grime would likely have a similar delayed response; in addition, the RH dependence of the grime photochemistry could serve as a
further mechanism for an offset in NO\textsubscript{2} values and HONO production, due to the cycling of RH conditions in the atmosphere and therefore, the cycling of this source strength. However, more quantification and speciation is required to evaluate the importance of such a grime source.

5 Conclusions

Urban grime was collected onto glass substrates without modification and illuminated. Grime photochemistry produced nitrogen oxides in the form of NO\textsubscript{2} and/or HONO. Such chemistry is not currently included in urban air models, but could impact NO\textsubscript{x} and/or HONO levels in these centers. The production of these species is dependent on RH, again highlighting the need to consider water content when studying environmental surfaces.

Acknowledgements

This work was funded by NSERC. AMB thanks NSERC for a CGS-D award and the Government of Ontario for an Ontario Graduate Scholarship.

References

Diamond, M. L., Gingrich, S. E., Fertuck, K., McCary, B. E., Stern, G. A., Billeck, B., Grift, B., Brooker,

Han, C., Liu, Y. and He, H.: Heterogeneous photochemical aging of soot by NO\textsubscript{2} under simulated sunlight, Atmos Environ, 64(C), 270–276, doi:10.1016/j.atmosenv.2012.10.008, 2013.

Pusede, S. E., VandenBoer, T. C., Murphy, J. G., Markovic, M. Z., Young, C. J., Veres, P. R., Roberts, J.
Wooldridge, P. J., Graham, A. R., Weber, R., Goldstein, A. H., Dusanter, S., Griffith, S. M., Stevens, P. S.,
Lefer, B. L. and Cohen, R. C.: An Atmospheric Constraint on the NO$_2$ Dependence of Daytime Near-

Dioxide Production from Aqueous Nitrate Photolysis, J Phys Chem C, 117, 22260–22267,

Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M., Murray, B. J., Shilling, J. E.,

Rivera-Figueroa, A. M., Sumner, A. L. and Finlayson-Pitts, B. J.: Laboratory Studies of Potential
Mechanisms of Renoxification of Tropospheric Nitric Acid, Environ Sci Technol, 37(3), 548–554,

Rubasinghege, G. and Grassian, V. H.: Photochemistry of Adsorbed Nitrate on Aluminum Oxide Particle

Rubasinghege, G. and Grassian, V. H.: Role(s) of adsorbed water in the surface chemistry of environmental

Saliba, N. A., Yang, H. and Finlayson-Pitts, B. J.: Reaction of Gaseous Nitric Oxide with Nitric Acid on
Silica Surfaces in the Presence of Water at Room Temperature, J Phys Chem A, 105(45), 10339–10346,

Scharko, N. K., Schuette, U. M. E., Berke, A. E., Banina, L., Peel, H. R., Donaldson, M. A., Hemmerich,
C., White, J. R. and Raff, J. D.: Combined Flux Chamber and Genomics Approach Links Nitrous Acid
Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil, Environ Sci
Technol, 49(23), 13825–13834, doi:10.1021/acs.est.5b00838, 2015.

Schuttlefield, J., Rubasinghege, G., El-Maazawi, M., Bone, J. and Grassian, V. H.: Photochemistry of

magnetic resonance spectroscopy, Chemosphere, 63(1), 142–152, doi:10.1016/j.chemosphere.2005.07.013,
2006.

Stemmler, K., Ammann, M., Donders, C., Kleffmann, J. and George, C.: Photosensitized reduction of
nitrogen dioxide on humic acid as a source of nitrous acid, Nature, 440(7081), 195–198,

Stutz, J., Kim, E. S., Platt, U., Bruno, P., Perrino, C. and Febo, A.: UV-visible absorption cross sections of

M., Brauers, T. and Finlayson-Pitts, B. J.: The nature of water on surfaces of laboratory systems and
implications for heterogeneous chemistry in the troposphere, Phys Chem Chem Phys, 6(3), 604–613,

Figure 1: Experimental absorption spectrum fit with a reference HONO spectrum (Stutz et al., 2000) using DOASIS (Lehmann, 2009). This spectrum was measured at RH = 37% and represents a concentration of 2.17×10^{11} molecules cm$^{-3}$.

Figure 2: Time trace of an experiment where the sections highlighted in yellow indicate when the sample is exposed to light. The relative humidity in the chamber during each illumination period is indicated. The HONO detection limit is indicated by the dashed line.
Figure 3: HONO production as a function of relative humidity. Values are normalized to the steady state concentration of HONO formed during an initial illumination period at a relative humidity of 35%. The average of at least 3 measurements on different samples is shown; error bars represent 1 standard deviation.

Figure 4: Average ratio of water mass to total ion mass within grime as a function of relative humidity. Water uptake onto clean crystals was subtracted from the grime uptake curves and thus only grime-mediated uptake is shown here. The shaded region indicates a 95% confidence interval based on 16 measurements of different samples.
S1. Characterization of Experimental Chamber

Known amounts of NO\textsubscript{2} in N\textsubscript{2} were flowed through the sample illumination chamber and IBBCEAS cell in order to characterize the observed HONO for different experimental variables. The current set up facilitates an efficient NO\textsubscript{2} surface hydrolysis, forming HONO. Results are shown in Fig. S1 for both dark and light experiments as a function of RH. An input NO\textsubscript{2} concentration of 6.0 ppm, based on the reported value from the supplier (Linde), was further diluted with N\textsubscript{2} using needle valves and mass flow meters with uncertainties of ± 0.5 mL/min to a concentration of (4.76 ± 2.4) \times 10^{12} molecules/cm3. The figure displays the measured NO\textsubscript{2} and HONO concentrations detected by the IBBCEAS as a function of RH. The calculated total concentration measured from the sum of NO\textsubscript{2} and twice the HONO following the mass balance implied by Equation 1 was (3.6 ± 0.3) \times 10^{12} molecules/cm3 which is within error of that calculated from the NO\textsubscript{2} concentration coming from the cylinder reported above. This suggests that this technique can quantify the total concentration of NO\textsubscript{2} + HONO here, though cannot accurately speciate NO\textsubscript{2} and HONO. Fig. S1b shows that the total concentration decreases upon illumination, due to the photolysis of NO\textsubscript{2} and HONO. The HONO concentration measured is independent of relative humidity within the 30% coefficient of variability measured between samples. No NO\textsubscript{2} was detected. This shows that the NO\textsubscript{2} to HONO conversion is complete within error, and that there is no significant impact on the IBBCEAS NO\textsubscript{2} + HONO response as a function of relative humidity. We note that if the photochemical product distribution between NO\textsubscript{2} and HONO changes with relative humidity, this will impact the total amount measured, because it takes two NO\textsubscript{2} molecules to make one HONO molecule. Thus a change from only NO\textsubscript{2} production to only HONO production would appear as a 50% change in the total amount detected as HONO. However, the changes measured as a function of RH are larger than can be explained by this mechanism.

Thus the total product concentrations from grime photochemistry may be safely compared as a function of RH. No values are shown below 13% in Fig. 3 and Fig. S1 because the RH meter is not sensitive below 10% and thus we cannot accurately report RH values. As well, when N\textsubscript{2} is flowed through the chamber without humidification, the total signal for NO\textsubscript{2} and HONO does not reach a plateau even after one hour. This indicates that the NO\textsubscript{2} is being irreversibly lost to the walls, likely forming complexes with the metal (Nishino and Finlayson-Pitts, 2012).
Figure S1: Concentrations of HONO and NO$_2$ for NO$_2$ flowed through the chamber and IBBCEAS cell as a function of RH a) in the dark and b) in the light. Only HONO concentrations are shown in Fig. S1b because no NO$_2$ was detected. The error bars represent one standard deviation of the average of three experiments.

| Table S1: Inorganic ion content of grime used for photochemistry experiments (n=3) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Chloride | Nitrate | Sulfate | Sodium | Potassium | Magnesium | Calcium |
| Concentration | 4.8 | 0.73 | 4.27 | 4.9 | 0.34 | 1.27 | 2.11 |
| (μg/cm2) | | | | | | | |
| Standard | 0.1 | 0.01 | 0.04 | 0.2 | 0.01 | 0.05 | 0.05 |
| Deviation | | | | | | | |