Interactive comment on “Study of Arabian Red Sea coastal soils as potential mineral dust sources” by P. Jish Prakash et al.

Anonymous Referee #1

Received and published: 25 April 2016

The study presents results from measurements of the mineral composition and other properties of soil, based on 13 samples at four locations in the Saudi Arabian coastal plane adjacent to the Red Sea. The region has been understudied so far, although it is an important source of wind blown dust with at least regional impact on human health, climate, and ecosystems. There is a great need for measurements of this kind, not just in the region studied here, but generally, to better understand the impact of dust aerosols as well as to have more data available, which can be used to evaluate and constrain dust aerosols in modeling studies. Thus, I very welcome this study with the new data. The manuscript is generally well written and well structured. Having said this, I see the potential for some improvement in the manuscript, which can be achieved by doing a minor revision. The study should be published after the recommendations have been taken into account.

The authors apply a variety of measurements techniques for studying the mineral properties of the collected soil samples. This is a good approach, since it allows to study the dust mineral properties from different viewpoints. It also reveals, though, that results from the different types of measurements can vary, allowing for ambiguity in the interpretation. This is most evident in the current study where the mineral composition is investigated for the same size range, i.e., < 38μm particle diameter. For instance, the results from the X-ray diffraction (XRD) analysis give a quartz fraction between about 20 and 40 % and a fraction of all the phyllosilicates of not more than 10%. In contrast, the single particle analysis, using computer controlled scanning electron microscopy, gives a quartz fraction of only
up to about 10%, whereas the phyllosilicates have the largest fraction compared to the other minerals, partially more than 50%. Which ones of the results from the two different measurement techniques are more reliable? The authors only report these contradicting results next to each other, but a discussion of the significant differences and how to interpret them is lacking. For instance, the possibility of the presence of phyllosilicates in the form amorphous material with poor crystallization is a known source for bias, when XRD analysis is used (Leinen et al., 1994; Formenti et al., 2008; Kandler et al., 2009). Could using this method have caused an overestimation of the quartz fraction? Knowing the answers to such questions would be necessary for properly using the data to constrain or evaluate simulations with dust models.

I recommend following modifications for improving the manuscript:

1. **Section 3, “Sampling and analysis”:** For each of the described measurement techniques applied in the study add information about known sources of bias.

 Authors’ Response:

 Information about known sources of bias has been added to each of the described measurement techniques applied in the study as shown below.

 Page 5, Line 23: Minerals with distinctive optical properties, including refractive indices, birefringence, extinction angles, pleochroism, and optical interference patterns, or those showing twinning, distinctive cleavage, and diagnostic extinction angles, can be readily be identified by optical microscopy (Kerr, 1959). Minerals readily identified in these samples by this method include quartz, various feldspars, amphiboles, pyroxenes, micas and carbonates. However, depending on the mineral type, particles <10 µm in diameter are often difficult to identify by this method, including clay minerals and other layered silicates. The method requires the samples preferably to be mounted in epoxy as a polished thin section. The method is biased towards easily identifiable and coarser minerals, especially those with twinning such as feldspars, and showing color and pleochroism such
as hornblende and biotite. The method, although one of the most practical for qualitative mineral analysis, does require mineralogical expertise.

Page 5, Line 31: Powder XRD is particularly suited for fine-grained crystalline mineral mixtures, <10 μm in diameter. The procedure measures the crystallinity of a sample, i.e. excludes amorphous phases such as clay-like colloids (Formenti et al., 2011; Leinen et al., 1994; Engelbrecht et al., 2016; Kandler et al., 2009), partly crystalline layered silicates such as some clays, and hydroxides. If an amorphous phase is present, it will not be fingerprinted by XRD. The assessment of mineral content of a powder sample by the relative intensity ratio (RIR) method suggested by Chung (1974), and as applied in our measurements, does not account for amorphous content.

Page 6, Line 7: This analytical method disperses soil aggregates which are potential dust particles, so shifting the particle size distribution curves towards the smaller particle sizes. This may introduce a bias into the actual size distribution of wind generated dust particles in the field.

Page 6, Line 17: The elemental composition of dust *per se* does not provide adequate information on its mineral content. However, with *a priori* knowledge of the mineral composition of the samples, from optical and XRD measurements, “normative” mineral compositions can be calculated. This provides a method for inter-comparing chemically analyzed samples with each other.

Page 7, Line 10: Due to the attenuation of the electron beam as it impinges the particle surface and loss of energy, the analysis is physically limited to an electron interaction volume of 2–5 μm below the mineral surface, depending on the primary beam voltage and the mineral density (Goldstein et al., 2003). Most of the investigated mineral dust particles have coatings of clay minerals and oxides, which results in an overestimation of the amounts of these minerals when analyzed by CCSEM (Engelbrecht et al., 2009a; Engelbrecht et al., 2016; Engelbrecht et al., 2009b).
2. **Sections 4.3 – 4.5, Figures 3 – 6**: Explicitly state both in the text and in the figures (at the axes or in the captions) the percentages of what variables are shown. Are these the percentages of mass, volume, or number of particles? I suppose it is the mass fraction in the case of the XRD analysis. It is not clear to me in the cases of the other methods.

Authors’ Response:

We agree to explicitly state both in the text and in the figures (in the captions) the percentages of variables in section 4.3-4.5 and Figures 3-6.

Section 4.3, Page 8, Line 9: XRD analysis of the thirteen, D<38μm sieved samples from the Red Sea coastal plain (Fig. 3) confirmed variable mass percentages of quartz (19 – 44%) and feldspars (plagioclase, K-feldspar) (31 – 48%), as well as of amphibole (and pyroxene) (4 – 31%), lesser amounts of calcite (0.4 – 6.2%), dolomite (1.9 – 6.6%), clays and chlorite (smectite, illite, palygorskite, kaolinite) (3.3 – 8.3%), with traces of gypsum (0 – 0.6%) and halite (0.2 – 4.8%).

Section 4.4, Page 8, Line 23: The sedimentary samples all contain major mass percentages of SiO₂, varying between 63% and 78% in the thirteen samples, mostly as the mineral quartz, and lesser mass percentages of Al₂O₃ (3.7 – 7.3 %) CaO (0.9 – 1.7 %), Na₂O (1.2 – 2.0 %), and K₂O (0.9 – 1.6 %), in plagioclase and potassium feldspars. SiO₂ together with Al₂O₃, Fe₂O₃ (6.5 – 11 %), TiO₂ (1.2 – 2.5 %), MnO (0.1 – 0.2 %) MgO (2.3 – 3.1 %), and some K₂O (0.9 – 1.6 %) is also contained in the previously identified amphiboles, clays and micas. Small amounts of CaO (0.9 – 1.7%) are contained in gypsum and calcite, and together with MgO (2.3 – 3.1%), in dolomite.

Section 4.5, Page 9, Line 13: For the total data set, the samples in the 0.5 – 38 μm size range contain by mass about 0.1 – 10.2% quartz, 5 – 54% feldspar, 45 – 72% clay minerals, as major components with lesser amounts of calcite (0.9 – 7.4 %), dolomite (0 – 0.8 %),
gypsum (0 –1.5 %), and iron oxides (0.2 –12.4 %).

Figure 3: Normalized mineral compositions by percentage of mass [quartz (19 – 44%), feldspars (plagioclase, K-feldspar) (31 – 48%), amphibole and pyroxene (4 – 31%), calcite (0.4 – 6.2%), dolomite (1.9 – 6.6%), clays and chlorite (smectite, illite, palygorskite, kaolinite) (3.3 – 8.3%), gypsum (0 – 0.6%) and halite (0.2 – 4.8%)] of thirteen D < 38μm sieved soil samples collected at four localities along the Red Sea coastal area, as measured by X-ray diffraction (XRD).

Figure 4: Compositional plot showing major oxides percentages by mass [SiO$_2$ (63 – 78%), TiO$_2$ (1.2 – 2.5 %), Al$_2$O$_3$ (3.7 – 7.3 %), Fe$_2$O$_3$ (6.5 – 11 %), MgO (2.3 – 3.1 %), CaO (0.9 – 1.7 %), Na$_2$O (1.2 – 2.0 %), K$_2$O (0.9 – 1.6 %)] from ICP-OES analysis of < 38 µm sieved soils.

Figure 5: CCSEM based individual particle analysis for 0.5 – 38 µm chemical set, with the chemical bins labeled as minerals by mass percentage [Si-rich, Quartz (0.1 – 10.2 %), K Feldspar (2.7 –15.6 %), Ca Feldspar (1.1 – 25 %); Na Feldspar (1.5 – 13.4 %]; Si-Al, Clays (44.7 – 72.1 %); Si-Mg (0 – 3.7 %); Ca-Mg, Dolomite (0 – 0.8 %); Ca-Si (0.6 – 6.4 %); Ca-S, Gypsum (0 – 1.5 %); Ca-rich, Calcite (0.9 – 7.4 %); Fe-rich, Hematite (0.2 – 12.4 %); Salts (0 – 2.2 %); C-rich (0 – 5.5 %) and Misc.(0 – 5.9 %)]

Figure 6: CCSEM based individual particle analysis for 0.5 – 2.5 µm (fine) subset, with the chemical bins labeled as minerals by mass percentage [Si-rich, Quartz (2.1 – 4.9 %), K Feldspar (3.8 –9.0 %), Na Feldspar (3.8 – 12.9 %); Ca Feldspar (1.4 – 7.7 %); Si-Al, Clays (39.2 – 70.7 %); Si-Mg (0.2 – 1.7 %); Ca-Mg, Dolomite (0 – 0.7 %); Ca-Si (0.3 – 1.5 %); Ca-S, Gypsum (0.1 – 1.7 %); Ca-rich, Calcite (0.6 – 4.1 %); Fe-rich, Hematite (3.2 – 24.1 %); Salts (0.1 – 1.6 %); C-rich (0.4 – 10.5 %) and Miscellaneous.(1.2 – 10.1 %)]

3. Section 5, “Discussion and Conclusions”: Add a discussion of differences in the results
from the different measurement techniques and how these differences should be interpreted. How should the data be used, when they are applied in modeling studies?

Authors’ Response:

Discussion of differences in the results from the different measurement techniques has been added and interpreted as follows.

Page 9, line 32: The application of a range of techniques for the analysis of properties of soil samples allows for a better understanding of mineral dust. However, the different analytical methods often provide different results, as seen by comparing the XRD, electron microscopy and chemistry of the soils. In this study, the results from the XRD analysis gives a quartz percentage of between about 19 and 44% and sheet silicates (clays, micas) of between 3 and about 8%. In contrast, the single particle analysis by CCSEM gives a quartz fraction of only up to about 10%, whereas the sheet silicates always have the largest mineral percentage, of up to about 72%. This can lead to ambiguity in the interpretation of the mineralogical composition of the samples. This is evident even where the mineral composition is investigated for the same size range, i.e. < 38μm particle diameter. Biases in XRD results can be related to the presence of partly amorphous sheet silicates with poor crystallization (Leinen et al., 1994; Formenti et al., 2008; Kandler et al., 2009) and a subsequent overestimation of the quartz fractions. Knowing the answers to such questions would be necessary for properly using the data to constrain or evaluate simulations with dust models. Similarly, the individual particle analysis by CCSEM provides an overestimation of the clay fraction which can be attributed to surface coatings on the quartz and its underestimation (Engelbrecht et al., 2009a, b; Engelbrecht et al., 2016). What is of importance when considering the application of these results in models, health studies, and remote sensing, is not only the mineralogical composition of the dust, but also their mineralogical interrelationships such as mineral clusters, mineral coatings, and intergrowths.
4. **Section 4.1, Page 7, line 32:** Regarding the statement about the satellite images, I suppose this refers to the two references (Jiang et al. and Kalenderski et al.) that are mentioned elsewhere in the manuscript. Please explicitly reference the two papers once more at the end of the sentence.

Authors’ Response:

Two references (Jiang et al., 2009 and Kalenderski et al., 2013) have been added in the text as shown below:

Page 7, Line 32, Section 4.1: However, the satellite images (Jiang et al., 2009 and Kalenderski et al., 2013) show that these coastal dust sources are activated quite frequently.

References:

Formenti, P., Schütz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens, D., Weinbruch, S., and Zhang, D.: Recent progress in understanding physical and
chemical properties of African and Asian mineral dust, Atmospheric Chemistry and Physics, 11, 8231-8256, 10.5194/acp-11-8231-2011, 2011.

Interactive comment on “Study of Arabian Red Sea coastal soils as potential mineral dust sources” by P. Jish Prakash et al.

K. Kandler (Referee)
kzk@gmx.de

Received and published: 28 June 2016

The present publication deals with soils in potential dust sources close to the Arabian Sea, an area, of which only few data exists. Mineralogical and geochemical analyses of the potentially windblown size fraction have been investigated. The paper adds new data interesting for atmospheric research. Similar to the anonymous reviewer, I also would like to see a more critical assessment and comparison of the results from the different techniques. Moreover, a placement of the composition data with regard to other dust source regions would be desirable.

Authors’ response:
We added a critical assessment and comparison of the results, as also recommended by Reviewer 1 (see Authors’ Response to Reviewer 1). We also added a comparative chemical results from other dust regions.

Major remarks
page 4/lines 10-27: The “objectives” chapter apart from first and last sentence, doesn’t really contain any clear objectives, but a mixture of introduction and general information. I suggest rewriting it and clearly stating the goals of the present study. Any introductory information and motivation should go to chapter 1.

Authors’ response:
The introductory information was moved from the objectives to the introductory section. Parts of the objectives section were re-compiled to better describe our objectives.

9/31: As of now, I suggest terming it rather “Summary and conclusions”, as there is not much discussion here.

Authors’ response:
The heading was change to “Summary and conclusions” as suggested.

9/32-10/13: This information belongs rather in introduction. Please merge. In chapter 4 there is some detailed information of the separate samples, and some intercomparison of the samples. However, I’m somewhat missing a comparison with previous measurements from other regions. Are these sources different to Eastern and Western African, Sahelian, or even Chinese sources? There’s for example the reviews of Formenti et al. (2011) and Scheuvens et al. (2013), where data for comparison is readily available, e.g. in terms of mineral and elemental ratios. Or maybe the authors can provide more information on other sources by themselves or use the mentioned databases?

Authors’ response:
The mentioned text was moved to and re-compiled in the introduction. Comparative chemical results from adjacent regions, together with references were included in section 4.4 as suggested, specifically the Fe/Al ratios. Si/Al, Ca/Al, and Fe/Al ratios are included in the two tables in Appendix A.

Fig. 3 and 5: Data from SEM and XRD are apparently different, when displayed this way. If SEM data shows particle number percent, I would highly suggest calculating mass percentages from them (by assuming spherical or ellipsoidal particles and assigning an according bulk density) and compare again with XRD data. Differences should be discussed. Is there any chemical fingerprint that can be used to detect amphibole in SEM data?

Authors’ response:
The SEM results are in mass percentages. The headings of Figures 5 and 6 have been corrected to reflect this correction. We have added a discussion on the differences between the results generated by the different techniques. No chemical fingerprint for amphibole had been identified from our analyses.

Minor / corrections

Page 2/line 13: It’s not just the resolution of the databases limiting statements, but also the general lack of soil data.

Authors’ response:
The sentence was rephrased to include the general lack of soil data

2/14-34: The explanation of a source function doesn’t seem to contribute to the rest of the manuscript, except for explaining the particle size range of interest. As the latter can be done with a single reference, I suggest removing it.

Authors’ response:
We prefer to retain the source function, since it mentions parameters such as particle size distribution which we analyzed and consider to be important

2/19-29: Please discuss the parameters in order of appearance, and do not jump from one to the other and back.

Authors’ response:
We changed the order in which the parameters are discussed so as to be in the order that the appear in the equation

2/33-34: It seems to me that this motivation sentence should rather be at the beginning of the section.

Authors’ response:
We moved this to the beginning of the section, as suggested

3/4-26: This is a lot of information, which is difficult to assess for the reader. If you think it is necessary for the present manuscript, I would suggest trying a graphical representation. Otherwise, I suggest restricting it to the information relevant for the current sampling area.

Authors’ response:
We deleted the information not specifically close to the sampling region, retaining those on the southwestern part of the Arabian Peninsula.

3/27-4/9: I assume this information is from literature. Please add reference(s).

Authors’ response:
We believe the information presented in this part of the paper is sufficiently supported by the existing references

4/16-18: Which observation? Please be more specific and include references, if appropriate.

Authors’ response:
This section was moved to the introduction and references added “MODIS and SEVIRI satellite observations”

4/29-5/4: I would assume that precise geographical coordinates would be available for all sampling locations. Please add them, at least to a supplement. That could be done as a table.

Authors’ response:
These are listed in Table 1
5/5-9: This information should be location in the introduction, as it has nothing to do with sampling and analysis.
Authors' response:
Moved text to introduction

5/11: Which unwanted artifacts?
Authors' response:
Replaced the word with "detritus"

5/21-23: General information, omit or place in introduction.
Authors' response:
Moved to introduction

5/25-27: General information, omit or place in introduction.
Authors' response:
Moved to introduction

5/34-6/2: General information, omit or place in introduction.
Authors' response:
Moved to introduction

6/13-15 and 6/19-21: The chemical symbols are sufficient, there is no concern of ambiguity.
Authors' response:
For the benefit of non-chemists we prefer to retain the chemical names and symbols, e.g. iron (Fe)

6/24-25: General information, omit or place in introduction.
Authors' response:
Moved to introduction

6/33: rastering -> scanning?
Authors' response:
We retained the word "rastering" as it is used as such in electron microscopy, meaning scanning along a two dimensional grid

7/1: 0.5 μm < D < 38 μm
Authors' response:
Corrected

7/29: disaggregation?
Authors’ response:
Corrected to read “disaggregation”

8/3: eroded?
Authors’ response:
The spelling was corrected

9/6: Is it 2000 particles per sample?
Authors’ response:
We corrected this to read 2000 particles per sample

9/6-12: On which substrate this analysis was performed, and how were the C-rich identified, if on carbonaceous material?

Authors’ response:
Polycarbonate substrate was used for the CCSEM analysis. The C-rich particles often contain minor amounts of other elements such as sulfur and metals, allowing them to be identified by their backscattered electron image. However, we admit this can be a real challenge and of course impossible to identify if they contain only C.

Fig. B1 and B2: please combine them into a single (or two) color figure(s), as without any grid the small differences are hard to spot. I suggest giving the size and shape statistics as separate table.

Authors’ response:
Figure 7 provides an average size distribution and summary statistics. The statistics for individual samples are given in the two tables of Appendix A. Individual sample particle size distribution plots are moved out of the manuscript per se into Supplementary Information section.

Fig. B3: I suggest either removing, as 4 images do not really represent variation in composition and morphology, or making better use of, e.g. by discussion specific details and characteristics of the particles.

Authors’ response:
The 4 SEM images are moved out of the manuscript into Supplementary Information section.

Interactive comment on Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-113, 2016.
Arabian Red Sea coastal soils as potential mineral dust sources
P. Jish Prakash¹, Georgiy Stenchikov¹, Weichun Tao¹, Tahir Yapici¹, Bashir Warsama¹,
and Johann Engelbrecht²
[1] King Abdullah University of Science and Technology (KAUST), Physical Science and
Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia.
Correspondence to P. Jish Prakash (jishprakash@gmail.com)
Abstract

Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate, marine ecology, and air-quality studies.

Key words: Dust mineralogy; Dust chemistry; Chemical composition; Soil grab samples; Saudi Arabian dust

1. Introduction

Mineral dust is the most abundant atmospheric aerosol, primarily suspended from ground in arid and semi-arid regions of the globe (Buseck et al., 1999; Washington and Todd, 2005; Goudie, 2006; Muhs et al., 2014), including deserts of the Arabian Peninsula (Edgell, 2006). Dust aerosols profoundly affect climate, biogeochemical cycles in the ocean and over land, air-quality, atmospheric chemistry, cloud formation, visibility, and human activities (Prospero et al., 2002; Haywood and Boucher, 2000; Hsu et al., 2004; Sokolik and Toon, 1999; Kumar et al., 2014; De Longueville et al., 2010; Jickells et al., 2005; Mahowald, 2009; Huang et al., 2006; Huang et al., 2014; Fryrear, 1981; Nihlen and Lund, 1995; Hagen and Woodruff, 1973; Bennett et al., 2006; Bennion et al., 2007; Twomey et al., 2011; Wang et al., 2010). The Arabian Peninsula is one of Earth’s major sources of atmospheric dust, which contributes as much as 11.8% (22 – 500 Mt/a) of the total (1,877 – 4000 Mt/a) global dust emissions (Tanaka and Chiba, 2006). The Red Sea surrounded by African and Arabian deserts is strongly affected by dust. Along with profound impact on the surface energy budget over land and sea (Brindley et al., 2015; Kalenderski et al., 2013; Oslipov et al., 2015), dust is an important source of nutrients especially for the oligotrophic northern Red Sea region (Acosta et al., 2013). Dust affects marine life, also controlling incoming solar and terrestrial radiation. The coastal plains of the Arabian Peninsula along the Red Sea and Persian Gulf are among the most populated areas in this region hosting the major industrial and urban centers.
Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow Red Sea coastal belt is an important dust source region, augmented by the fine-scale sediment accumulations, scattered vegetation, and varying terrain. Dust hot spots are located within the narrow coastal region, and because of their proximity to the Red Sea, contribute to the dust/nutrient balance of the Sea, during both dusty and fair weather conditions. The coastal plains of the Arabian Peninsula along the Red Sea and Persian Gulf are among the most populated areas in the region hosting the major industrial and urban centers.

Airborne dust profoundly affects human activities, marine and land ecosystems, climate, air quality, and human health. The observations suggest that the narrow Red Sea coastal belt is an important dust source region, augmented by the fine-scale sediment accumulations, scattered vegetation, and varying terrain.

Dust emission rates from soils and sites of airborne particles strongly depend on the soil particle size distributions. Optical properties such as scattering, absorption and refractive indices vary by mineralogical content and particle size of the dust in the atmosphere. Dust reactivity in the seawater also depends on their mineralogy, e.g., carbonates (calcite, dolomite), evaporites (gypsum) and some oxides (hematite, goethite) are generally more soluble in water than for example most silicates (quartz, feldspars, micas, clays, amphiboles, or pyroxenes). Soils in arid regions are most susceptible to wind erosion, where particles are only loosely bound to the surface by the low soil moisture or being physically disturbed by agriculture or traffic. Dust uplifting occurs in a source region when the surface wind speed exceeds a threshold velocity (Gillette and Walker, 1977), which is a function of surface roughness elements, grain size, and soil moisture (Marticorena and Bergametti, 1995; Wang et al., 2000). Fine soil particles that can be transported over large distances are released by saltating coarse sand particles (Caquineau et al., 1997). Soil morphology, mineralogy, and chemical composition define the abundance and composition of airborne dust, however, not directly but through the series of complex fine-scale non-linear processes.

From preliminary observations it is estimated that 5 to 6 major dust storms per year impact the coastal region, depositing about 6 Mt of mineral dust into the Red Sea (Prakash et al., 2015). Simulations and satellite observations suggest that the coastal dust contribution to the total deposition flux into the Red Sea could be significant even during fair weather conditions (Jiang et al., 2009). However, the mineralogy, physical properties, and chemical composition of dust generated from the Red Sea coastal region remain uncertain. The coastal plain is a narrow highly geographically and petrographically heterogeneous piedmont area, and existing soil databases do not provide the have enough spatial resolution for the region to be to represent it adequately described (Nickovic et al., 2012).

The importance of keeping track of dust mineralogy during the atmospheric transport was recently recognized and implemented in the models (Perlirwitz et al., 2015a, b). Equation (1) relates the size-dependent soil dust properties with that emitted to the atmosphere, where dust size-distribution and compositional characteristics are further adjusted as dust particles atmospheric residence time depends on their particle size distribution and particle mass and weights. The atmospheric dust size distribution and mineralogical/chemical composition defines radiative, ecological, and health effects of dust. To explain the connection between soil properties and airborne dust abundance and composition we below discuss the physically-based dust generation parameterizations currently used in the advanced modeling systems (Grell et al., 2005; Zender et al., 2003). The vertical mass flux $F_j (\text{kg} \text{m}^{-2} \text{s}^{-1})$ of dust size component j, $E_j(t)$
Equation (1) relates the size-dependent soil dust properties with that emitted in the atmosphere where dust size distribution and compositional characteristics are further adjusted as dust particle atmospheric residence time depends on their size and weight. The atmospheric dust size distribution and mineralogical/chemical composition defines radiative, ecological, and health effects of dust. The importance of keeping track of dust mineralogy during the atmospheric transport was recently recognized and implemented in the models (Perlwitz et al., 2015a, b). The sample area in this study lies within the approximately 60–70 km wide Tihamah coastal plain, comprised of the Tihamah Asir in the south and the Tihamah Al-Hejaz to the north. The plain is bounded by the Red Sea in the west, with the mountains of Midyan, Ash Shifa and Asir forming an escarpment to the east (Edgell, 2006), with few breaks in the mountains in the northwest. The mountains form a 1,000 – 3,000 m elevation Red Sea escarpment, comprised of igneous, metamorphic and volcanic rocks of variable age, from Pre-cambrian (1,000 – 545 million years) to the less than 30 million years in age (Grainger, 2007). The Red Sea rift basin itself is overlain by the much younger sediments of Quaternary age (≤ 2.6 million years).

Minerals previously found in continental soils from dust generation regions include quartz, feldspars, calcite, dolomite, micas, chlorite, kaolinite, illite, smectite, palygorskite, mixed-layer clays, iron oxides, gypsum, and halite (Pye, 1987; Scheuveln and Kandler, 2014; Goudie, 2006). Engelbrecht and Moosmüller, 2011; Al-Farraj (2008) studied the soils from the Jazan region of southern Saudi Arabia, identifying smectite, kaolinite and illite as the predominant clay
minerals, together with lesser amounts of chlorite, quartz and feldspars. Shadfan et al. (1984) investigated mineralogical content and general characteristics of soils from some agricultural areas in Saudi Arabia. They found carbonate, quartz and gypsum to be the main constituents of the sand and silt fractions in soils of the eastern region, while quartz, carbonate and feldspars dominate soils in the central region. The soils in the west contain mainly quartz, feldspars, hornblende and mica. Palygorskite was found to be the main clay mineral in soils in the eastern region, kaolinite in the central region, and kaolinite, smectite and mica in the western region.

Abu-Husayn et al. (1980) mineralogically analyzed soils from the southwestern region of Saudi Arabia, along the mountainous Asir region between Mecca and Abha. They found major amounts of quartz, feldspars and micaceous minerals in the silt fractions, with the clay-size fractions of kaolinite, smectite, and vermiculite, with kaolinite in the well-drained highland areas. Viani et al. (1983) studied fourteen soils from alluvial basins in the Wadi ad Dawasir, and Wadi Najran areas of southwestern Saudi Arabia. Due to the fact that the alluvial clay-size fractions were from weathered igneous rocks of the surrounding mountains, they were found to be composed largely of smectite, mica, kaolinite, chlorite, palygorskite and vermiculite. A similar study on soils of the eastern region of Saudi Arabia (Lee et al., 1983) found smectite, palygorskite, kaolinite, chlorite, mica and vermiculite in the clay-size fractions. The fallen dust along the tracks of dust storms within major deserts in the world were collected and analyzed by Al-Douseiri and Al-Awadhi (2012). They showed that fallen dust from eastern zones (Taklimakan, Gobi, and Australian deserts) are characterized by higher percentage of feldspar and clay minerals in comparison to the western zones (Sahara and Arabian deserts) and western Sahara desert dust is differentiated by the highest average quartz percentage (66%). Al-Douseiri and Al-Awadhi (2012) showed dust pills and sand dunes in Iraq to be composed of quartz, feldspar, calcite, gypsum, dolomite and heavy minerals. Al-Dabbas et al. (2012) analyzed dust samples over Iraq and showed the minerals as quartz (58.6%), feldspar (17.3%), calcite (15.1%), and small amount of gypsum (5.5%). They also recognized clay minerals (chlorite, illite, montmorillonite, palygorskite and kaolinite).

The sample area in this study lies within the approximately 60–70 km wide Tihāmah coastal plain, comprised of the Tihāmah Asir in the south and the Tihāmah Al Hejaz to the north. The plain is bounded by the Red Sea in the west, with the mountains of Midyan, Asir Shīf and Asir forming an escarpment to the east (Edgell, 2006), with few breaks in the mountains in the northeast. The mountains form a 1,000–3,000 m elevation Red Sea escarpment comprised of igneous, metamorphic and volcanic rocks of variable age from Pre-cambrian (1,000–545 million years) to the less than 30 million years in age (Grainger, 2007). The Red Sea rift basin itself is overlain by the much younger sediments of Quaternary age (< 2.6 million years).

With the exception of the area around Jazan in the south, which is impacted by the Indian Ocean monsoon, the Red Sea coastal region has a desert climate characterized by extreme heat, reaching 39 °C during the summer days, with a drop in night-time temperatures of about 10 °C. Although the extreme temperatures are moderated by the proximity of the Red Sea, in summer the humidity is often 85% or higher during periods of the northwesterly Shamal winds. Annual rainfall diminishes from an annual average of 133 mm at Jazan to 56 mm at Jeddah, and 24 mm at Tabuk in the north. Vegetation is sparse, being restricted to semi-desert shrubs, and acacia trees along the ephemeral rivers (wadis), providing forage for small herds of goats, sheep and dromedary camels.

During infrequent but severe rainstorms, run-off from the escarpment along wadis often produce flash floods. With such events, fine silt and clays are deposited on the coastal plain, which are
transformed into dust sources during dry and windy periods of the year. The resultant dust is transported and deposited on the coastal plain and adjacent Red Sea by prevailing northwesterly to southwesterly winds, with moderate breezes (wind speed >5.5 m/s) from the north (http://www.windfinder.com/weather-maps/report/saudiarabia#6/22.999/34.980).

2. Objectives

The assumption is that at least part of the dust in the ambient atmosphere in the coastal region is from windblown and otherwise disturbed soils along the Red Sea coast. Jiang et al. (2009) and Kalenderski et al. (2013) found that the coastal area emits about 5–6 Mt of dust annually. Due to its close proximity, a significant portion of this dust is likely to be deposited to the Red Sea, which could be comparable in amount to the estimated annual deposition rate from remote sources during major dust storms (Prakash et al., 2015). Due to the limited compositional information of soils along the Red Sea coastal region, this study aims to provide mineralogical, chemical, and morphological information on compositions of thirteen surface soils collected at four areas within the central part of the Red Sea coastal plain of Saudi Arabia, (Fig. 1). The dust hot spots are located within the narrow coastal region, and because of their proximity to the Red Sea, contribute to the dust/fine balance of the Sea during both dusty and fair weather conditions. The coastal plains of the Arabian Peninsulas along the Red Sea and Persian Gulf are among the most populated areas in this region hosting the major industrial and urban centers. Airborne dust profoundly affects human activities, marine and land ecosystems, climate, air quality, and human health. The observations suggest that the narrow Red Sea coastal belt is an important dust source region, augmented by the fine scale sediment accumulations, scattered vegetation, and varying terrain. Limited compositional information is available on soils along the Red Sea coastal region.

The present study examines soil mineralogical and chemical compositions, and individual particle morphology from the samples taken at the hot-spot areas. This information will help to better quantify the ecological impacts, health effects, damage to property, and optical effects of dust blown from these areas (Engelbrecht et al., 2009a, b; Weese and Abraham, 2009). The mineralogical compositions of the soils tie into that of the parental rocks, weathering conditions and time. This research will also complement soil and dust studies performed in the Arabian Peninsula as well as globally (Engelbrecht and Moosmüller, 2014; Engelbrecht et al., 2009b). Knowledge of the mineralogy of the soils will provide data on refractive indices, particle size and shape parameters, which can be used to calibrate dust transport models, and help to assess the impact of dust events on the coastal plain and the Red Sea.

3. Sampling and analysis

A total of thirteen samples were collected at four localities along the Red Sea coastal plain (Fig. 1). Three samples (S1–S3) collected at 25 km northeast of Mastorah near washland of Wadi Hazahiz located 26 km from Red Sea. Samples (S4–S6) collected at 30 km east of Ar Rayis near Ushash, which is a village in Al Madinah province located 32 km from Red Sea. Samples (S7–S9) collected at 27 km north of Yanbu at washland of Wadi al Wazrah with an elevation of 158 m above sea level and located 30 km from Red Sea. Four samples (S10–S13) collected at 28 km southwest of Mecca near Wadi An Numman located 45 km from Red Sea. The coordinates of the sample sites are provided in Table 1. All thirteen samples can be classed as Leptosols (Regosols) (http://www.fao.org/ag/agn/agr/wrb/soilres.stm).
The assumption is that at least part of the dust in the ambient atmosphere in this coastal region is from windblown and otherwise disturbed soils along the Red Sea coast. Jiang et al. (2009) and Kalenderski et al. (2013) found that the coastal area emits about 5-6 Mt of dust annually. Due to its close proximity, a significant portion of this dust is likely to be deposited to the Red Sea, which could be comparable in amount to the estimated annual deposition rate from remote sources during major dust storms (Prakash et al., 2015).

The grab soil samples collected in the field were sieved to D<1 mm to remove pebbles, plant material and other detritus unwanted artifacts. Where necessary, they were air-dried in the laboratory, before being labeled, catalogued and stored in capped plastic bottles. Sub-sets of these samples were screened to D<38 μm for mineral analysis by X-ray powder diffraction (XRD), chemical analysis, and Scanning Electron Microscopic (SEM) based individual particle analysis. Further samples of 75 μm < D < 125 μm were sieved for mineralogical investigation by optical microscopy, and D < 600 μm for Laser particle size analysis (LPSA).

Petrographic microscopy is particularly suited to the optical identification of mineral grains larger than about 10 μm (Kerr, 1959). It remains a cost effective and accurate technique to obtain mineralogical information which is otherwise difficult to obtain, e.g. the identification of feldspars, amphiboles and pyroxenes. The 75 μm < D < 125 μm sieved soil fraction grains were mounted in epoxy on a glass slide and ground to a thickness of approximately 30 μm, for transmitted light optical microscopy. Mineral optical properties such as texture, color, pleochroism, birefringence, relief, and twinning were used to identify silicate minerals and to estimate their abundance in the samples. Minerals with distinctive optical properties, including refractive indices, birefringence, extinction angles, pleochroism, and optical interference patterns, or those showing twinning, distinctive cleavage, and diagnostic extinction angles, can be readily be identified by optical microscopy (Kerr, 1959). Minerals readily identified in these samples by this method include quartz, various feldspars, amphiboles, pyroxenes, micas and carbonates. However, depending on the mineral type, particles ≤ 10 μm in diameter are often difficult to identify by this method, including clay minerals and other layered silicates. The method requires the samples preferably to be mounted in epoxy as a polished thin section. The method is biased towards easily identifiable and coarser minerals, especially those with twinning such as feldspars, and showing color and pleochroism such as hornblende and biotite. The method, although one of the most practical for qualitative mineral analysis, does require mineralogical expertise.

Optical properties such as scattering, absorption and refractive indices vary, depending on the mineralogical content of the dust in the atmosphere.

X-ray diffraction (XRD) is a non-destructive technique for characterization of minerals, including quartz, feldspars, calcite, dolomite, clay minerals, and iron oxides, particularly for the fine soil and dust fractions. Dust reactivity in the seawater as well as optical properties depend on their mineralogy, e.g. carbonates and some silicates are generally more soluble in water than for example feldspars, amphiboles, pyroxenes or quartz. A Bruker D8® X-ray powder diffraction (XRD) system was used to analyze the mineral content of the soil samples. The diffractometer was operated at 40 kV and 40 mA, with Cu Kα radiation, scanning over a range of 4° to 50° 2θ. The Bruker Topas® software and relative intensity ratios were applied for semi-quantitative XRD analyses of the D < 38 μm screened dust samples (Rietveld, 1969; Chung, 1974; Esteve et al., 1997; Caquineau et al., 1997; Sturges et al., 1989). Powder XRD is particularly suited for fine-grained crystalline mineral mixtures, ≤ 10 μm in diameter. The procedure measures the...
crystallinity of a sample, i.e. excludes amorphous phases such as clay-like colloids!!!

INVALID CITATION !!! (Formenti et al., 2011;Leinen et al., 1994;Engelbrecht et al.,
2016;Kandler et al., 2009), partly crystalline layered silicates such as some clays, and
hydroxides. If an amorphous phase is present, it will not be fingerprinted by XRD. The
assessment of mineral content of a powder sample by the relative intensity ratio (RIR) method
suggested by Chung (1974), and as applied in our measurements, does not account for
amorphous content.

Laser particle size analysis (LPSA) was performed on the thirteen soil samples. The LPSA
system measures the size-class fractions of a soil or sediment sample in an aqueous suspension,
based on the principle that light scatters at angles inversely proportional to, and with intensity
directly proportional to particle size (Gee and Or, 2002). Dust emission rates from soils and sites
of airborne particles strongly depend on the soil particle size distributions. The optical properties
of airborne particles, such as scattering and absorption, depend on their particle sizes. The grab
samples were sieved to D < 600 µm before being introduced to the laser analyzer (Micromeritics
Saturn DigiSizer 5200®) in an aqueous medium solution of 0.005% surfactant (sodium
metaphosphate). The suspensions were internally dispersed by applying ultra-sonication, and
circulated through the path of the laser light beam. The measured size-class fractions were
grouped as clay (D < 2 µm), silt (2 µm < D < 62.5 µm) and sand (62.5 µm < D < 600 µm),
(Engelbrecht et al., 2012). This analytical method disperses soil aggregates which are potential
dust particles, so shifting the particle size distribution curves towards the smaller particle sizes;
This may introduce a bias into the actual size distribution of wind generated dust particles in the
field.

The D < 38 µm sieved samples were chemically analyzed for elemental composition by
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), and their water soluble
ions by Ion Chromatography (IC). For ICP-OES, splits of 0.1g of each of the samples were
digested in a 1:3:1 mixture of concentrated hydrofluoric acid (HF), hydrochloric acid (HCl) and
nitric acid (HNO₃), in a microwave oven (Milestone Ethos1®) operated at a temperature up to
195 °C for 15 minutes. The solutions were diluted from 25 ml to 250 ml before being analyzed
on a ICP-OES (Varian 720-ES®), for sodium (Na), magnesium (Mg), aluminum (Al), silicon
(Si), phosphorus (P), sulfur (S), potassium (K), calcium (Ca), titanium (Ti), vanadium (V),
chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn),
strontium (Sr), cadmium (Cd), barium (Ba) and lead (Pb). The accuracy of the analyses was
monitored by analyzing the National Institute of Standards and Technology (NIST) standard
reference material 1646a with each batch of soil samples. The elemental composition of dust per
se does not provide adequate information on its mineral content. However, with a priori
knowledge of the mineral composition of the samples, from optical and XRD measurements,
“normative” mineral compositions can be calculated. This provides a method for inter-comparing
chemically analyzed samples with each other.

Further splits (approx. 0.01 g) of the D < 38 µm sieved samples were sonicated in 15 ml of de-
ionized distilled water, the suspension left to settle overnight, and the extractions analyzed by IC
(DIONEX ICS-3000®). The water soluble cations of sodium (Na⁺), potassium (K⁺), calcium
(Ca²⁺) and magnesium (Mg²⁺), and anions of sulfate (SO₄²⁻), chloride (Cl⁻), phosphate (PO₄³⁻)
and nitrate (NO₃⁻) were analyzed by this method.

Electron microscopy provides information on the individual particle size, shape, chemical
composition, and mineralogy of micron-size particles, important for determining the optical
parameters for modeling of dust (Moosmüller et al., 2012). The individual particle chemistry,
especially of the soluble minerals such as carbonates, is often of importance in medical geology and to marine life. The Scanning Electron Microscope (SEM) based individual particle analysis was performed on the D < 38 µm sieved sample splits. A dual approach was followed, the first being the computer controlled scanning electron microscopy (CCSEM) and the second, secondary electron imaging by high resolution scanning electron microscopy (SEM). For each sample, a portion of soil was suspended in isopropanol and dispersed by sonication. The suspension was vacuum filtered onto a 0.2 µm pore size polycarbonate substrate. A section of the substrate was mounted onto a metal SEM stub with colloidal graphite adhesive. The sample mounts were sputter-coated with carbon to dissipate the negative charge induced on the sample by the electron beam. The automated CCSEM analysis was conducted on a Tescan MIRA 3™ field emission scanning electron microscope (FE-SEM). The CCSEM analysis was performed by rastering the electron beam over the sample while monitoring the resultant combined backscattered electron (BE) and secondary electron (SE) signals. The BE intensities were applied to set grayscale levels, to distinguish particles of interest from background. The system was configured to automatically measure the size and the elemental composition for about 2,000 individual particles of 0.5 > D < 38 µm sizes. Individual particles were classified into particle types according to their elemental compositions. A digital image was acquired of each particle for measurement, and stored for subsequent review. Size measurements were based on diameters obtained from the projected area of each particle, by tracing their outer edges. Compositional information was determined through collection and processing of characteristic X-rays by energy dispersive spectroscopy (EDS) using a silicon drift detector (SDD). The elements identified in the spectrum were processed to obtain their relative concentrations. The particles were grouped into “bins” by their particle size and chemical ratios. From the chemical measurements, and a priori knowledge of the sample mineralogy (from optical microscopy and XRD), the mineralogy of individual particles can often be inferred, e.g. Si particles being quartz, Ca particles being calcite, Ca plus S particles being gypsum. Due to the attenuation of the electron beam as it impinges the particle surface and loss of energy, the analysis is physically limited to an electron interaction volume of 2–5 µm below the mineral surface, depending on the primary beam voltage and the mineral density (Goldstein et al., 2003). Most of the investigated mineral dust particles have coatings of clay minerals and oxides, which results in an overestimation of the amounts of these minerals when analyzed by CCSEM (Engelbrecht et al., 2009a; Engelbrecht et al., 2016; Engelbrecht et al., 2009b).

The field emission electron source allows for high magnifications and sharp secondary electron images (SEI). This technique allows for the detailed study of particle shape, surface features, and chemical compositions. Approximately five SEI’s with energy dispersive spectra (EDS) for each of the thirteen samples were collected. Fig. B3 (Appendix B) shows SEM secondary electron images and EDS spectra of D <38 µm soil particles from the sampling site.

4. Results

4.1 Particle Size Analysis

Particle volume size plots of the D < 600 µm sieved samples are listed in Table 2 and graphically presented in Fig. 2. The Ah thirteen soils are composed of on average close to 89% sand fractions. Also, the silt makes up approximately 10% and the clay on average less than 1.5% of the sample volume. Field and laboratory measurements on dust from the western U.S.A. (Engelbrecht et al., 2012) showed that dust emissions are largely controlled by their soil particle size distributions (Kok,
of 78% in the thirteen samples. The sedimentary samples all contain major elements expressed as oxides. XRD analysis of the thirteen, D<38 µm sieved samples from the Red Sea coastal plain (Fig. 3) confirmed variable mass percentages of quartz (19 – 44%) and feldspars (plagioclase, K-feldspar (31 – 48%), as well as of amphibole (and pyroxene) (4 – 31%), lesser amounts of calcite (0.4 – 6.2%), dolomite (1.9 – 6.6%), clays and chlorite (smectite, illite, palygorskite, kaolinite) (3.3 – 8.3%), with traces of gypsum (0 – 0.6%) and halite (0.2 – 4.8%). For this and other localities, the mineralogy resembles that of the igneous and metamorphic rocks of the adjacent mountainous escarpment and Arabian Shield (Edgell, 2006). The average amphibole content for the four samples taken at the southernmost locality (Fig. 1, S10 – S13) is substantially higher than for the nine samples taken at the other three localities (Fig. 1, S1 – S9), being approximately 26% for the former and 11% for the later. This can be attributed to differences in the mineral composition of the Arabian Shield rocks, distance of the sampling sites from the source regions, and the extent of weathering in the surface soils.

4.4 Chemistry (ICP-OES and IC)

Chemical analysis of the D < 38 µm sieved bulk samples by ICP-OES and IC are presented in Tables A1 & A2 (appendix A) and a plot of the major elements expressed as oxides, shown in Fig 4. The soils are of consistent chemical compositions throughout the sampled region. The sedimentary samples all contain major mass percentages of SiO₂, varying between 63% and 78% in the thirteen samples, mostly as the mineral quartz, and lesser mass percentages amounts of Al₂O₃, CaO, Na₂O, and K₂O, in plagioclase and potassium feldspars. SiO₂ together with
Al₂O₃, Fe₂O₃, TiO₂, MnO, MgO, and some K₂O is also contained in the previously identified
amphiboles, clays and micas. Small amounts of CaO (0.9 – 1.7%) are contained in gypsum and
calcite, and together with MgO (2.3 – 3.1%) in dolomite.

The water soluble ions account for a small percentage of the total mass of the soils, varying
between 0.1% and 0.7% for the total cations, and 0.03% and 0.8% for the total anions. These
account primarily for calcite and dolomite (~ 0.3%), and gypsum (~ 0.2%), with lesser amounts
of halite and other chlorides from sea salt. This unexpectedly low concentration of halite and
other soluble salts in the soils of the coastal plains can be ascribed to the fact that all the samples
were collected at distances varying between 21 and 42 km from the Red Sea coast, and the
absence of local playas or other saline soils close to the four sampling areas. It is also expected
that the salts had been leached from the soil samples collected from surface. Also of importance
to dust borne nutrients likely to be deposited in the Red Sea is the low concentration of water
soluble PO₄³⁻ (avg. 0.003 %) in comparison to the total P₂O₅ (avg. 0.4%) in the soils. The
phosphorus is largely bound in the low soluble mineral apatite, commonly found in the
sediments throughout the Arabian Peninsula.

The Fe/Al mass ratios for the suite of 13 samples from the Red Sea coastal plain vary between
1.26 and 3.59, with a geometric mean 2.41 (Appendix A). These measurements partly overlap
with the Fe/Al ratios of 0.53 – 1.71 measured for dust samples from the Bodélé Depression in
Chad (Bristow et al., 2010), and included in the range of 0.41 – 3.78 for 136 re-suspended soil
samples from global dust sources (Engelbrecht et al., 2016). In contrast, soil samples collected
from ferricrete along the southern Sahel in northern Africa have Fe/Al ratios in the range of
2.95 to 3.43 (Roquin et al., 1990).

4.5 SEM chemical analysis

Approximately 2000 individual dust particles per sample in the 0.5 – 38 µm size range were
analyzed automatically by CCSEM, for chemical composition, particle morphology and size.
The particles were classified into 14 bins as per their chemical compositions. Mineral labels were
assigned to these chemical bins, e.g. Fe-rich as hematite (Fe₂O₃) (also possibly goethite,
magnetite or ferrihydrite), Ca-S rich as gypsum (CaSO₄·2H₂O), Ca-Mg rich as dolomite
(CaMg(CO₃)₂), Ca rich as calcite (CaCO₃), Ca-Al-Si rich as anorthite (CaAl₂Si₂O₈), Na-Al-Si
rich as albite (NaAlSi₃O₈), K-Al-Si rich as K-feldspar (KAlSi₃O₈), and Si-rich as quartz (SiO₂).
The CCSEM results for the 0.5 – 38 µm analyzed set as well as the 0.5 – 2.5 µm (fine) subset are
presented in Fig. 5 and 6.

For the total data set, the samples in the 0.5 – 38 µm size range contain by mass about 0.1 –
10.2% Si₄O₉·quartz, 5 – 54% feldspar, 45 – 72% clay minerals, as major components with lesser
amounts of calcite, dolomite, gypsum, and iron oxides. The clay minerals can occur as individual
minerals but largely as coatings on other silicates (Engelbrecht et al., 2009a). The 0.5 – 38 µm
set shows a substantial variability in chemical composition, but no distinct differences between
the samples within the four localities. The 0.5 – 2.5 µm (fine) subsets of the three samples (S7,
S8, and S9) are different from the others in their higher Fe-rich (goethite, hematite) and carbon
(carbonates) components, and corresponding smaller amounts of clay (Fig. 6). This can be
ascribed to a local difference in the mineralogical composition of the undifferentiated source
rocks (Edgell, 2006), as well as weathering conditions.

The size and shapes of the thirteen, D < 38 µm sieved samples are given in Tables A1&AC2
(appendix A), with the size distributions graphically displayed in Fig. B1&B2 (appendix B).
Fig. 7 shows the average particle size distributions, as well as size and shape (aspect ratio)
statistics for D < 38 µm sieved samples, as measured by scanning electron microscopy.

28
Mineralogical interrelationships such as mineral clusters, mineral coatings, and intergrowths.

The importance when considering the application of these results in models, however, not directly but through the series of complex fine-scale non-linear processes.

The impact of soil dust from natural and anthropogenic sources on climate and air quality has been recognized on a global scale (Sokolik and Toon, 1996; Tegen and Fung, 1995). However, the regional fine-scale processes of mineral dust emissions and their effect on the environmental processes and human health are poorly quantified in the study region because the spatial distribution of detailed mineralogical, physical and chemical properties of the surface soils at coastal dust source regions (“hot-spots”) were previously not available.

The application of a range of techniques for the analysis of properties of soil samples allows for a better understanding of mineral dust. However, the different analytical methods often provide different results, as seen by comparing the XRD, electron microscopy, and chemistry of the soils.

In this study, the results from the XRD analysis gives a quartz percentage of between about 19 and 44% and sheet silicates (clays, micas) of between 3 and about 8%. In contrast, the single particle analysis by CCSEM gives a quartz fraction of only up to about 10%, whereas the sheet silicates always have the largest mineral percentage, of up to about 72%. This can lead to ambiguity in the interpretation of the mineralogical composition of the samples. This is evident even where the mineral composition is investigated for the same size range, i.e. < 38 μm particle diameter. Biases in XRD results can be related to the presence of partly amorphous sheet silicates with poor crystallization (Leinen et al., 1994; Formenti et al., 2008; Kandler et al., 2009; Engelbrecht et al., 2016) and a subsequent overestimation of the quartz fractions. Knowing the answers to such questions would be necessary for properly using the data to constrain or evaluate simulations with dust models. Similarly, the individual particle analysis by CCSEM provides an overestimation of the clay fraction which can be attributed to surface coatings on the quartz and its underestimation (Engelbrecht et al., 2009a, b; Engelbrecht et al., 2016). What is of importance when considering the application of these results in models, health studies, and remote sensing, is not only the mineralogical composition of the dust, but also their mineralogical interrelationships such as mineral clusters, mineral coatings, and intergrowths.
From satellite images we identified four Red Sea coastal areas from which dust was frequently
distributed (Jiang et al., 2009; Kalenderski et al., 2013). The thirteen soil grab samples were
collected from these areas for analysis and their mineralogy, chemical composition and particle
distributions were studied. We found that the Red Sea coastal samples collected in this study
contain major components of quartz and feldspar (plagioclase, orthoclase), as well as lesser but
variable amounts of amphibole (hornblende), pyroxene (aegerine-augite), carbonate (calcite,
dolomite), clays (illite, palygorskite, kaolinite, smectite), and micas (muscovite, biotite), with
traces of gypsum, halite, chlorite, epidote and oxides. The range of identified minerals is ascribed
to the variety of igneous and metamorphic provenance rocks along the escarpment to the east of
the Red Sea coastal plain (Edgell, 2006). Similarly high fractions of quartz and feldspars were
reported for Kuwait (Engelbrecht et al., 2009b) and to a lesser extent for Tallil, Tikrit and Taji in
Iraq. The samples from the Red Sea coastal region of Saudi Arabia differ substantially from
those from Afghanistan, Qatar, UAE, Iraq and Kuwait in that they contain substantially less
calcite. They also contain much less dolomite than the sample from Al Asad in Iraq. These
deviations in composition could be ascribed to differences in provenance and geology. The
coastal plain is bounded by the Red Sea in the west, with the mountains of Midyan, Ash Shifa
and Asir forming an escarpment to the east and the provenance for water borne sediments to the
wadis along the coastal plain. Since the igneous and metamorphic source rocks are composed of
a wide range of minerals including quartz, feldspars, amphiboles, pyroxenes, and micas, it can be
assumed that the partially weathered sediments transported to the coastal plain during flash
floods will contain similar minerals, which can in turn be suspended as mineral dust. In contrast
the samples collected in Kuwait, Iraq and Afghanistan are from extensive flat lying areas, and to
some extent contain minerals such as quartz, calcite, and dolomite from local sedimentary rocks.
Djibouti lies along the African Rift Valley along the west coast of the Gulf of Aden and close to
igneous and metamorphic rock formations of the Nubian Plate, separated from the
petrographically similar Arabian Plate by the Red Sea, both regions containing rock formations
with substantial amounts of pyroxene, amphibole, and plagioclase. This at least in part explains
the similarity of soils and dust at Djibouti to those along the coastal plain of Saudi Arabia. The
mineralogical content of the soils was found to be closely related to the regional geology.
Particle size analysis on the sampled soils showed them to contain too much sand and too little
silt to be considered major globally important sources of airborne dust, compared to renowned
global sources such as the Bodélé Depression, and silt covered regions of northwest U.S.A.
(Engelbrecht et al., 2012; Engelbrecht and Moosmüller, 2014). The low silt content in the
investigated samples suggests that the dust plume generated from the Red Sea coastal region is
enriched by the coarse dust fraction that deposits quickly. As seen from atmospheric
observations, the coastal region is the origin of frequent dust plumes over the Red Sea, probably
due to frequent strong wind gusts. These mostly coarse dusts could not be transported the vast
distances to the Red Sea and directly deposited there, affecting marine life. Our analysis has
revealed that the samples contain compounds of nitrogen, phosphorus and iron, that are essential
nutrients to marine life (Guerzoni et al., 1997; Migon et al., 2001). The integration of analytical
information on dust mineralogy and mineralogical interrelationships, chemistry, and physical
properties of soils provides a better understanding of their potential impact on the communities
living along the Red Sea (Edgell, 2006; UCAR/NCAR, 2003; Washington et al., 2003). The
results from this study can also provide improvements to the input of climate forecasting and
dust emission models. The thirteen chemical source profiles will complement those of soil
samples collected in other regions of the Middle East (Engelbrecht et al., 2009b), in source attribution studies. Analytical methods developed in this phase of the dust program will be applied for analysis of dust samples deposited from the atmosphere for aerosol characterization studies in the Red Sea coastal region. These will allow further assessing the impact of elevated dust concentrations on regional climate, marine ecology, air quality, and health.

Data Availability
The mineralogical and chemical data from this study are available upon request from Georgiy Stenchikov (Georgiy.Stenchikov@kaust.edu.sa).

Author Contributions
Georgiy Stenchikov formulated the problem, designed the research project, and supported experimental activities; Johan Engelbrecht advised on aerosol analysis and instrumentation; Weichun Tao defined the dust source areas using satellite observations; Jish Prakash conducted measurements, analysed and combined results; Tahir Yapici and Bashir Warsama helped with instrumentation in the Kaust Core Lab. Prakash, Engelbrecht, and Stenchikov wrote different parts of the paper.

Acknowledgements
This research, including the chemical and mineralogical analysis is supported by internal funding from the King Abdullah University of Science and Technology (KAUST). For chemical analyses, this research used the resources of the KAUST core lab. We acknowledge the contribution from the collaborating laboratories of the RJ Lee Group and Desert Research Institute.
References

Table 1. Localities of soil sampling sites along the Red Sea coastal plain.

<table>
<thead>
<tr>
<th>Site</th>
<th>Proximity</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>SE of Al Nasaif</td>
<td>23.3322° N</td>
<td>38.9481° E</td>
<td>94</td>
</tr>
<tr>
<td>S2</td>
<td>SE of Al Nasaif</td>
<td>23.2961° N</td>
<td>38.9385° E</td>
<td>68</td>
</tr>
<tr>
<td>S3</td>
<td>SE of Al Nasaif</td>
<td>23.2920° N</td>
<td>38.9100° E</td>
<td>46</td>
</tr>
<tr>
<td>S4</td>
<td>E of Ar Rayis</td>
<td>23.5876° N</td>
<td>38.9243° E</td>
<td>128</td>
</tr>
<tr>
<td>S5</td>
<td>E of Ar Rayis</td>
<td>23.5746° N</td>
<td>38.9213° E</td>
<td>118</td>
</tr>
<tr>
<td>S6</td>
<td>E of Ar Rayis</td>
<td>23.5656° N</td>
<td>38.9193° E</td>
<td>115</td>
</tr>
<tr>
<td>S7</td>
<td>N of Yanbu</td>
<td>24.3334° N</td>
<td>38.0205° E</td>
<td>113</td>
</tr>
<tr>
<td>S8</td>
<td>N of Yanbu</td>
<td>24.3239° N</td>
<td>38.0254° E</td>
<td>60</td>
</tr>
<tr>
<td>S9</td>
<td>N of Yanbu</td>
<td>24.3195° N</td>
<td>38.0245° E</td>
<td>56</td>
</tr>
<tr>
<td>S10</td>
<td>SW of Mecca</td>
<td>21.3197° N</td>
<td>39.5763° E</td>
<td>128</td>
</tr>
<tr>
<td>S11</td>
<td>SW of Mecca</td>
<td>21.3232° N</td>
<td>39.5711° E</td>
<td>124</td>
</tr>
<tr>
<td>S12</td>
<td>SW of Mecca</td>
<td>21.3211° N</td>
<td>39.5593° E</td>
<td>133</td>
</tr>
<tr>
<td>S13</td>
<td>SW of Mecca</td>
<td>21.3253° N</td>
<td>39.5508° E</td>
<td>118</td>
</tr>
</tbody>
</table>

Table 2. The volume particle size fraction (%) of the D < 600 µm sieved soil samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sand (600–62.5 µm)</th>
<th>Silt (62.5–2 µm)</th>
<th>Clay (< 2 µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>78.0</td>
<td>19.2</td>
<td>2.8</td>
</tr>
<tr>
<td>S2</td>
<td>77.2</td>
<td>20.5</td>
<td>2.3</td>
</tr>
<tr>
<td>S3</td>
<td>93.3</td>
<td>5.7</td>
<td>1.0</td>
</tr>
<tr>
<td>S4</td>
<td>96.3</td>
<td>3.0</td>
<td>0.7</td>
</tr>
<tr>
<td>S5</td>
<td>88.4</td>
<td>10.0</td>
<td>1.7</td>
</tr>
<tr>
<td>S6</td>
<td>88.5</td>
<td>9.8</td>
<td>1.6</td>
</tr>
<tr>
<td>S7</td>
<td>94.3</td>
<td>5.2</td>
<td>0.5</td>
</tr>
<tr>
<td>S8</td>
<td>93.5</td>
<td>6.0</td>
<td>0.5</td>
</tr>
<tr>
<td>S9</td>
<td>87.1</td>
<td>12.1</td>
<td>0.9</td>
</tr>
<tr>
<td>S10</td>
<td>87.8</td>
<td>10.6</td>
<td>1.6</td>
</tr>
<tr>
<td>S11</td>
<td>86.6</td>
<td>11.4</td>
<td>1.9</td>
</tr>
<tr>
<td>S12</td>
<td>91.1</td>
<td>7.6</td>
<td>1.2</td>
</tr>
<tr>
<td>S13</td>
<td>92.7</td>
<td>6.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Fig. 1 (a). Map showing the mass percentage of fine sand in soils, based on STATSGO-FAO soil texture data (Nickovic et al., 2012; Menut et al., 2013), in the Arabian Peninsula, as well as the four localities and thirteen (S1–S13) sampling sites. (b) Modis satellite image of dust storm over the Arabian Peninsula captured on February 22, 2008 (NASA Modis web site). (c) Sampling site S1 showing the typical *acacia* trees growing along the wadi in the foreground, with the Hejaz mountain range and escarpment in the distance.
Fig 2. US Department of Agriculture (USDA) soil textural triangle showing the grain size plot of the thirteen samples collected for this study. Volume size-class fractions grouped as clay (< 2 µm), silt (2 – 62.5 µm) and sand (62.5 – 600 µm).
Fig 3. Normalized mineral compositions by percentage of mass (quartz (19 – 44%), feldspars (plagioclase, K-feldspar) (31 – 48%), amphibole and pyroxene (4 – 31%), calcite (0.4 – 6.2%), dolomite (1.9 – 6.6%), clays and chlorite (smectite, illite, palygorskite, kaolinite) (3.3 – 8.3%), gypsum (0 – 0.6%) and halite (0.2 – 4.8%)) of thirteen D < 38μm sieved soil samples collected at four localities along the Red Sea coastal area, as measured by X-ray diffraction (XRD).
Fig. 4. Compositional plot showing major oxides percentages by mass [SiO$_2$ (63 – 78%), TiO$_2$ (1.2 – 2.5 %), Al$_2$O$_3$ (3.7 – 7.3 %), Fe$_2$O$_3$ (6.5 – 11 %), MgO (2.3 – 3.1 %), CaO (0.9 – 1.7 %), Na$_2$O (1.2 – 2.0 %), K$_2$O (0.9 – 1.6 %)] from ICP-OES analysis of < 38 µm sieved soils.
Fig. 5. CCSEM based individual particle analysis for 0.5 – 38 µm chemical set, with the chemical bins labeled as minerals by normalized mass percentage [Si-rich, Quartz (0.1 – 10.2 %), K Feldspar (2.7 – 15.6 %), Ca Feldspar (1.1 – 25 %); Na Feldspar (1.5 – 13.4 %); Si-Al, Clays (44.7 – 72.1 %); Si-Mg (0 – 3.7 %); Ca-Mg, Dolomite (0 – 0.8 %); Ca-Si (0.6 – 6.4 %); Ca-S, Gypsum (0 – 1.5 %); Ca-rich, Calcite (0.9 – 7.4 %); Fe-rich, Hematite (0.2 – 12.4 %); Salts (0 – 2.2 %); C-rich (0 – 5.5 %) and Misc. (0 – 5.9 %)] CCSEM based individual particle analysis for 0.5 – 38 µm chemical set, with the chemical bins labeled as minerals.
Fig. 6. CCSEM based individual particle analysis for 0.5 – 2.5 µm (fine) subset, with the chemical bins labeled as minerals by normalized mass percentage [Si-rich, Quartz (2.1 – 4.9 %), K Feldspar (3.8 – 9.0 %), Na Feldspar (3.8 – 12.9 %); Ca Feldspar (1.4 – 7.7 %); Si-Al Clays (39.2 – 70.7 %); Si-Mg (0.2 – 1.7 %); Ca-Mg, Dolomite (0 – 0.7 %); Ca-Si (0.3 – 1.5 %); Ca-S, Gypsum (0.1 – 1.7 %); Ca-rich, Calcite (0.6 – 4.1 %); Fe-rich, Hematite (3.2 – 24.1 %); Salts (0.1 – 1.6 %); C-rich (0.4 – 10.5 %) and Miscellaneous (1.2 – 10.1 %)]
Fig. 7. Average and standard deviations of particle sizes, as well as size and shape statistics for thirteen D < 38 µm sieved samples, as measured by scanning electron microscopy (CCSEM).

Appendix A.C

Table A.C1. Major, minor and trace element compositions by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), and water soluble ions by Ion Chromatography (IC) of grab samples, S1 to S3 collected near Al Nasaif, and S4 to S6 collected near Ar Rayis, all along the Red Sea coastal region. Also tabulated are elemental mass ratios, statistics of the individual particle sizes and morphology as measured by CCSEM.
<table>
<thead>
<tr>
<th>Sample #</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major and minor elements as oxides (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conc.</td>
<td>88.649</td>
<td>92.744</td>
<td>98.667</td>
<td>84.444</td>
<td>97.020</td>
<td>98.038</td>
</tr>
<tr>
<td>Concentration (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water soluble ions (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1.42</td>
<td>1.41</td>
<td>1.48</td>
<td>1.45</td>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>Water soluble ions (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean aspect ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A1. Major, minor and trace element compositions by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), and water soluble ions by Ion Chromatography (IC) of grab samples S7 to S9 collected near Yanbu, and S10 to S13 near Mecca, all along the Red Sea coastal region. Also tabulated are elemental mass ratios, statistics of the individual particle size and morphology as measured by CCSEM.
Supplementary Information Appendix B

Fig. B1. Particle size distributions, as well as size and shape statistics for D<38 µm sieved samples S1 – S6, as measured by scanning electron microscopy (SEM).
Particle size distributions, as well as size and shape statistics for D<38 µm sieved samples S7 – S13, as measured by scanning electron microscopy (SEM).
Fig. B3. Secondary electron images and energy dispersive spectra (EDS) of soil particles (a) sample S5, Fe bearing clay mineral possibly illite. (b) sample S8, albite feldspar crystal. (c) sample S11, rounded quartz grain with minor amount of clay. (d) sample S11, cluster of calcite crystals with small amounts of clay and gypsum.