Influence of biomass burning from Southeast Asia at a high-altitude mountain receptor site in China

Jing Zheng¹, Min Hu¹,*, Zhuofei Du¹, Dongjie Shang¹, Zhaoheng Gong²,a, Yanhong Qin¹, Jingyao Fang¹, Fangting Gu¹, Mengren Li¹, Jianfei Peng¹, Jie Li³, Yuqia Zhang³, Xiaofeng Huang², Lingyan He², Yusheng Wu¹, Song Guo¹

¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
²Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
³State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Nansen-Zhu International Research Center (NZC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

*Correspondence to: minhu@pku.edu.cn

Abstract

Highly time-resolved in-situ measurements of airborne particles were made at Mt. Yulong (3410 m above sea level) on the southeastern edge of the Tibetan Plateau in China from 20 March to 14 April in 2015. Detailed chemical composition was measured by a high-resolution time-of-flight aerosol mass spectrometer together with other online instruments. Average mass concentration of the submicron particles (PM₁) was 5.7±5.4 µg m⁻³ during the field campaign, ranging from 0.1 µg m⁻³ up to 33.3 µg m⁻³. Organic aerosol (OA) was the dominant component in PM₁, with a fraction of 68%. Three OA factors, i.e., biomass-burning organic aerosol (BBOA), biomass-burning-influenced oxygenated organic aerosol (OOA-BB) and oxygenated organic aerosol (OOA), were resolved using positive matrix factorization analysis. The two oxygenated OA factors accounted for 87% of the total OA mass. Three biomass burning events were identified by examining the enhancement of black carbon concentrations and the f₆₀ (the ratio of the signal at m/z 60 from the mass spectrum to the total signal of OA). Back trajectories of air masses and satellite fire map data were integrated to identify the biomass burning locations and pollutants transport. The western air mass from Southeast Asia with active biomass burning activities transported large amount of air pollutants, resulting in elevated organic concentrations up to 4-fold higher than that
Aerosols play an important role in the radiative balance in earth’s atmosphere, with its radiative forcing still having large uncertainties (IPCC, 2013). Biomass burning emission is one of the dominant sources of atmospheric particles (von Schneidemesser et al., 2015), contributing up to 90% of the primary organic aerosol in the global scale (Bond et al., 2004) and more than half of the total organic aerosol mass in areas with significant biomass burning influences (e.g. Yangtze River Delta region in China, and Indian Peninsula) (Zhang et al., 2015; Engling and Gelencser, 2010). Given the long atmospheric lifetime of aerosols, even remote areas can sometimes be influenced by the transportation of air pollutants from areas with active biomass burnings (Bougiatioti et al., 2014). In terms of the deterioration of air quality and climate change in those remote areas, great scientific interest has arisen focusing on the impacts on biomass burning (Lau et al., 2010; Qian et al., 2011).

The Tibetan Plateau is the largest and highest plateau in the world, and is often regarded as the “Third Pole”. It is surrounded by a ring of high-elevated mountain ranges, which were considered as blocks for transportations of air pollutants from its vicinity (Wang and French, 1994). Since this vast land has a relatively low population density with minor anthropogenic influences, the Tibetan Plateau has been considered as a natural background of the Eurasian continent (Ming et al., 2010; Wan et al., 2015). In recent years, studies have presented convincing evidences for the transport route of air pollutants climbing over the Himalayas, especially during pre-monsoon season, coinciding with the annual intensive fire season in South and Southeast Asia (Streets et al., 2003; Marinoni et al., 2010; Cong et al., 2015b). A westerly dry circulation helps to build up the smoke plume against the Himalayan ridges, elevating to 3-5 km in altitude (Bonasoni et al., 2010; Xia et al., 2011). Subsequently, downward glacier wind of local mountain breeze circulation brings biomass burning related air pollutants down to the mountain valley (Cong et al., 2015b; Lü thi et al., 2015).
A host of studies based on field campaigns have amassed an impressive amount of information describing the biomass burning influence on different areas of the Tibetan Plateau (Decesari et al., 2010; Zhao et al., 2013; Xu et al., 2015). Those studies were mostly approached by analyzing the temporal and spatial variations of atmospheric composition based on filter measurements. The strong correlation of carbonaceous aerosol with biomass burning tracers K+ and levoglucosan pointed out the origins of aerosols (Cong et al., 2015a). Biomass burning organic aerosol (BBOA) was also found to be a major fraction of organic aerosol (OA), with a 15% contribution to the total OA mass (Du et al., 2015). Xu et al. (2013) and You et al. (2016) also presented convincing evidences about biomass burning impacts by analyzing chemical components in glaciers collected in the Tibetan Plateau. Most of previous studies were based on offline analysis using filter or glacier samples, which were limited to low time resolution, making it difficult to follow the aging process of biomass burning aerosol. Thus in-situ measurements of aerosol chemical characterization with high time resolution are needed, so as to have a deep understanding of the sources and evolution of the particulate matter.

In this study, the influence of biomass burning from Southeast Asia on the Tibetan Plateau will be analyzed. The results can serve as inputs or constraints for global climate model simulations. By examining the aerosol properties as a function of chemical compositions at Mt. Yulong at the southeastern edge of the Tibetan Plateau, this study sheds light on the evolution processes of OA. Positive matrix factorization analysis was conducted to resolve different sources of OA, and characterize the influence of biomass burning from Southeast Asia transported over long distances to the Tibetan Plateau background environment during pre-monsoon season.

2 Method

2.1 Site description and meteorological conditions during the campaign

In this study, we conducted an intensive observation at the site on Mt. Yulong (27.2N, 100.2E), with an altitude of 3410 m a.s.l., northwestern Yunnan Province, China (Fig.1). Since Mt. Yulong is lying in the transition zone extending from the low altitudes of the Yunnan Plateau (~ 3000 a.s.l.) to the high altitude of the Tibetan Plateau (~ 5000 a.s.l.), it is on the transport route of pollutants from Southeast Asia to inland China, making it to be an ideal site to observe the influence of regional and long-range transport
of polluted air masses. This station is a member of the National Atmospheric Watch Network coordinated by the Chinese Environmental Monitoring Center. The famous tourist attraction Lijiang Old Town locates more than 36 km away and 1000 m lower than the elevation of the station. The observation period was conducted during the pre-monsoon season of the Tibetan Plateau, from 22 March to 14 April 2015, corresponding to the annual biomass burning seasons in Southeast Asia. Since the season was cold with sparse visitors in Lijiang old city, the influence of local emissions from residents and visitors remained low compared with other seasons.

2.2 Measurements and data processing

A high resolution time-of-flight aerosol mass spectrometer (AMS hereafter) was deployed to measure the highly time-resolved chemical composition of sub-micron, non-refractory aerosols (Table S1). The standard operation procedures of the AMS has been described in detail in Canagaratna et al. (2007). During the field operation, the AMS alternated between V and W modes, allowing the acquirements of averaged chemical compositions of the non-refractory particles, as well as high resolution mass spectrum of organics. The detection limits (DL) of organic, sulfate, nitrate, ammonium and chloride were 0.07, 0.004, 0.003, 0.005 and 0.01 µg m⁻³, respectively. During most time of the campaign, the mass concentrations of chloride were below its DL, and including it would lower the total signal to noise ratio, therefore it is omitted from the analysis.

The AMS data was analyzed using the standard AMS data analysis software, i.e., SQUIRREL (version 1.57) for unit resolution mass spectrum data, and PIKA (version 1.16) for high resolution mass spectra data. Calibrations of the AMS on flow rate and ionization efficiency were conducted each week. To account for the particle loss due to the bounce of particles on the vaporizer, collection efficiencies were calculated and applied for data correction based on the method described by Middlebrook et al. (2012).

The high resolution organic aerosol spectra were further apportioned to different sources by positive matrix factorization (PMF) analysis (Paatero and Tapper, 1994; Ulbrich et al., 2009). The solution was validated by the characteristics of resolved mass spectra, as well as the comparison of temporal variations between each factor and external species (e.g. acetonitrile).

Other online instruments were also deployed at the site (Table S1). A scanning mobility particle sizer
(SMPS) was used to measure particle number size distribution for particle mobility diameters ranging from 3 to 780 nm, with a time resolution of 5 min. An Aethalometer was deployed to measure the aerosol light absorption coefficients σ_{ap} at its seven wavelengths, ranging from 370 to 950 nm. Black carbon (BC) concentration is determined by σ_{ap} at 880 nm using the default mass attenuation cross sections of 16.6 m2 g$^{-1}$ (Fröhlich et al., 2015). Acetonitrile was measured by a gas chromatographer with mass spectrometer and flame ionization detectors (GC–MS/FID) with a time resolution of 1 hour. Technical details of this self-made instrument were described elsewhere (Wang et al., 2016).

Meteorological parameters, including relative humidity, temperature, wind direction and wind speed, are continuously monitored on the site during the campaign. The low temperature (5°C for the whole campaign average) and heavy snow eliminated the influence of biogenic emissions to this site during the campaign.

2.3 Back trajectory analysis and fire maps

To explore the influence of regional biomass burning activities on aerosol properties during the campaign, the Weather Research and Forecasting (WRF) model (version 3.61) was used to investigate the meteorological conditions and to compute trajectories of air mass arriving at Mt. Yulong. 48-h back trajectories were calculated every 6 hours from March 22 to April 14, using a starting height at 600 m above the ground level of the site.

Active fire points were obtained from the Fire Information for Resource Management System (FIRMS), which is provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite (https://firms.modaps.eosdis.nasa.gov/firemap/, last accessed on Aug. 26, 2016).

3 Results

3.1 Concentrations and chemical compositions of submicron aerosols

The time series of submicron aerosol compositions as well as meteorological conditions are shown in Fig. 2. The average PM$_1$ concentration was 5.7 ± 5.4 µg m$^{-3}$, with a range of 0.1 - 33 µg m$^{-3}$. This result was similar to previous observations at the Northern Tibetan Plateau, where Du et al. (2015) reported an
average PM$_1$ concentration of 11.4 μg m$^{-3}$ in the autumn of 2013, and Xu et al. (2014a) reported an annual average PM$_{2.5}$ concentration of 9.5 μg m$^{-3}$ from 2006 to 2007. The averaged PM$_1$ concentration was much lower than those measured at urban and downwind sites of China (e.g., (Huang et al., 2013; Xu et al., 2014b), but was three times higher than the 1.7 μg m$^{-3}$ at a background site in Europe in March 2004 (Sjogren et al., 2008), and ten times higher than at the same background site in Europe in the spring of 2013 (Fröhlich et al., 2015). These huge differences indicate that anthropogenic pollutions in Southeast Asia may have resulted in the elevation of aerosol concentrations to levels above the natural background level.

Averaged aerosol composition of PM$_1$ is shown in the pie chart (Fig.3(a)). The PM$_1$ chemical composition was dominated by organic components, which accounted for 68%, followed by sulfate (14%). The minor contribution of nitrate to PM$_1$ (4%) can be explained by the lack of nearby anthropogenic sources for precursors (e.g., HONO, N$_2$O$_5$) (Du et al., 2015). This result presents a similar picture as those observed at remote sites in the northern hemisphere (Zhang et al., 2011), as well as at a high altitude site in Europe (Ripoll et al., 2015). Compared with urban or regional areas in China, where secondary inorganic species including sulfate, nitrate and ammonium typically contribute to over one half of the total mass concentrations, the result at this site is quite unique (Huang et al., 2010; Huang et al., 2012; Xu et al., 2014b).

Fig. 3(b) shows the relative contribution of major chemical components as a function of PM$_1$ mass concentrations, as well as the probability density of PM$_1$ mass loading. PM$_1$ concentrations below 5 μg m$^{-3}$ showed highest probability (68%). The fraction of organics and BC increase slightly with the increasing of PM$_1$ concentrations, showing that they were the main contributors to the pollution episode in Mt. Yulong.

The PM$_1$ components did not show distinct diel variations, but remained relatively constant during the whole day, as shown in Fig.3(c). This is similar to the findings at the Puy-de-Dôme station in central France, and the Montsec station in western Mediterranean Basin (Freney et al., 2011; Ripoll et al., 2015). Strong long-range transport of air mass with few local emissions could blur the diel cycles, since the air-mass transportations occurred regardless of the local time of the day.
3.2 Characterization of organic aerosol

3.2.1 Elemental composition of organic aerosol

The elemental composition were calculated from high resolution mass spectra of organics obtained by AMS, using the method developed by Canagaratna et al. (2015). Compared with the previous method (Aiken et al., 2007; 2008), the ratio of O/C and H/C are typically increased by 20% and 7%, respectively. Bulk OA was mainly composed of carbon and oxygen, with minor contributions from hydrogen and nitrogen, and had an average molecular formula of C\(_{11.4}\)H\(_{1.4}\)O\(_{1.1}\)N\(_{0.04}\). The fragments of organics were grouped into five types according to the existence of C, H, O or N atoms. C\(_{2}\)H\(_{4}\)O\(_{2}\)\(^{+}\) were only 21% of the total organic signal, while the oxygen fraction (C\(_{x}\)H\(_{y}\)O\(_{z}\)\(^{+}\)) accounted for 68% of the total OA, which is higher than those measured at urban and downwind site (30-41%) (Huang et al., 2011; Sun et al., 2011; Hu et al., 2013). The average OM/OC and O/C ratios for the whole campaign were 2.63 and 1.11, respectively, and were similar to those measured in the north eastern region of the Tibetan Plateau (OM/OC 2.75, O/C 1.16) (Xu et al., 2015). These results are slightly higher than the elemental ratios measured at another remote site (OM/OC: 2.4, O/C: 0.9) in the eastern Mediterranean (Bougiatioti et al., 2014), probably due to the mixture of free troposphere aerosol after a long time of processing before arriving at this high altitude site. The extremely high value of OM/OC reflects the highly oxidized nature of OA in the Tibetan Plateau.

3.2.2 Source apportionment of organic aerosol

PMF analysis was performed to investigate the sources of OA measured at Mt. Yulong. Three factors were resolved, including a biomass burning organic aerosol (BBOA), an oxygenated biomass-burning-influenced organic aerosol (OOA-BB), and an oxygenated organic aerosol (OOA). Details of the PMF analysis can be found in the supplement. The mass spectra of the three factors are shown in Fig. 4. The time series of the three factors and an external species (acetonitrile) are plotted in Fig. 5.

3.2.2.1 BBOA

BBOA has been frequently identified in previous studies at urban and regional sites (Zhang et al., 2011). The mass spectrum of BBOA has a notable contribution from m/z 60 (mainly C\(_{2}\)H\(_{4}\)O\(_{2}\)\(^{+}\), contributing 3.1% of the total mass spectra), which is from fragmentation of levoglucason. As shown in Table 1, the mass spectrum correlates well with the samples from an aircraft measurement above a large
forest fire (Brito et al., 2014), and well with the samples from biomass burning simulation system in the laboratory (He et al., 2010). BBOA has an O/C ratio of 0.37, presenting a similar level to previous studies (Aiken et al., 2008; He et al., 2010). The time series of BBOA correlates very well with K+ based on filter analysis (Pearson R=0.95). The factor was also confirmed to be BBOA by its strong correlation with acetonitrile, which is a gas phase tracer for biomass burning.

The average concentration of BBOA was 0.5 µg m⁻³ for the whole campaign, accounting for 13% of the total OA mass, with a maximum contribution at 61% (Fig. 6 (a)). The spikes in the time series of BBOA indicate that a fraction of BBOA was contributed by primary sources nearby, possibly occasional biomass burning activities for domestic heating and cooking. The increasing fraction of BBOA as a function of total OA concentrations points to contributions from biomass burning activities during the pollution episode (Fig. 6 (b)).

3.2.2.2 OOA-BB

The mass spectrum of OOA-BB factor was dominated by C_nH_{2n+y}O_z+ fragments, especially org29 (CHO+), org43 (C_2H_3O+) and org44 (CO_2+). The spectrum of OOA-BB in this study well correlated with aged BBOA obtained 3 hours downwind of a forest fire (Brito et al., 2014) (Pearson R=0.97). It is qualitatively similar to published OOA-BB spectra from aged BB plumes in China during the harvest seasons (Zhang et al., 2015), and also presented many similarities to those of OOA2-BBOA resolved in the metropolitan area of Paris (Crippa et al., 2013).

The average concentration of OOA-BB was 0.9 µg m⁻³ for the whole campaign, accounting for 22% of the total OA mass. Compared with BBOA measured near sources, OOA-BB shows a higher oxygenated degree, with an O/C of 0.85, and a lower fraction of m/z 60 (0.6%), as a result of the oxidation of primary levoglucosan-type species after long periods of atmospheric processing (Jolleys et al., 2015). As the plumes originated from Southeast Asia were measured at a distance of several hundred kilometers downwind, emissions would have undergone substantial aging prior to sampling. The aging process includes both the gas-phase oxidation of semi volatile species from biomass burning sources and heterogeneous or homogeneous reactions of existing particles during long-range transport (Bougiatioti et al., 2014). The time series of OOA-BB and BBOA yield modest correlations with BC (Pearson R=0.62 and 0.65). If we focus on the total biomass burning related organic aerosols (OOA-BB + BBOA), the R
value for its correlation with BC would increase to 0.76, indicating biomass burning-related OA originated from the same source as BC.

3.2.2.3 OOA

OOA is described as highly oxidized, aged particles formed after long-range transportation and processing. The mass spectral properties of OOA are defined by having a dominant peak at m/z 44 (mainly CO₂) and other ions of CₓHᵧOₓ⁺. The highly oxidized nature of OOA is also reflected by its high O/C ratio of 1.45. The mass spectrum of OOA resembles that of more oxidized OOA (MO-OOA) in Beijing well (Hu et al., 2016) (Pearson R=0.69).

OOA has an average concentration of 2.6 µg m⁻³, accounting for 65% of the total OA mass. Unlike previous studies at urban or regional sites (Jimenez et al., 2009; Li et al., 2015; Hu et al., 2016), the time series of OOA did not agree well with that of sulfate (Pearson R=0.32), which was also the case at the puy-de-Dome research station (1465 m a.s.l.) (Freney et al., 2011). The low Pearson correlation value can be partially explained by the extremely high concentration of OOA formed from the oxidation of organics emitted by biomass burning activities during the first week of the campaign. For the rest of the campaign, the correlation value for sulfate with respect to OOA factor increases to 0.77, which is consistent with previous studies.

As shown in Fig. 6(a), the two OOA factors (OOA-BB and OOA) were very abundant, with a predominantly contribution of 87% to the total OA mass. This is consistent with the high oxygen level in the total OA. During 80% of the observation period, OA concentrations were lower than 5 µg m⁻³, with strong contributions from secondary organic aerosols (OOA and OOA-BB) (Fig.6 (b)). This indicates that the background site was predominated by organic aerosols formed through regional transportation.

4 Discussion

4.1 Identification of biomass burning events

Enhanced BC concentrations were used to help identifying periods influenced by biomass burning plumes (Bougiatioti et al., 2014). The BC concentration of 85 ng m⁻³ was taken as the background concentration at this site. It is the average concentration observed in the beginning of April (1 April to 4

April), when the strong wind scavenged pollutants of the whole region. Back trajectory and fire maps illustrate that the dominant air mass for this period was from north India with minor biomass burning activities (see Fig.7(d)). This concentration is consistent with the two-year averaged background level measured at Southern Himalayas (Marinoni et al., 2010), and comparable to the lowest BC concentrations found over the southeastern Tibetan Plateau in the pre-monsoon season (Engling et al., 2011).

During the sampling period, three episodes were identified as being influenced by biomass burning, with the following criteria satisfied. It includes: (a) Back trajectory analysis shows a uniform source region; (b) Fire map shows fire spots in the region during the episode; (c) BC concentrations were higher than the background level of 85 ng m$^{-3}$ determined above. One long-lasting and strong episode was from 22 March to 30 March. The air mass arrived at the site during this period was from south part of Myanmar, and covered active biomass burning areas (see Fig.7(a)). As shown on the fire map, the site may also be influenced by wildfires in the vicinity. Two less intense events were observed on 5 - 6 April and 11 - 12 April, with slightly elevated BC concentrations. During the third event (11 - 12 April), the site experienced heavy snow. The back trajectory shows that air mass to this region was transported from regions with few fire spots. The enhanced BC concentration was probably emitted by biomass burning activities nearby for domestic heating and cooking.

These three biomass burning events were further validated by the increase of the fraction of biomass burning tracers, f_{60}, calculated as the ratio of the signal at m/z 60 to the total OA signal. During the first and second events, the average f_{60} were 0.98% and 0.61%, respectively. These values were much lower than the f_{60} of 1.4% during the third event, which was influenced by fires in the vicinity. This showed the decay of f_{60} in ambient plumes transported from sources to the receptor site. During the clean episode, the f_{60} decreased to about 0.4%, indicating minor biomass burning influence (Cubison et al., 2011).

The box plot (Fig.8) shows the concentrations of different chemical components of biomass burning events and background conditions. The aerosol concentrations corresponding to the background condition is highlighted by light gray. Organic aerosols use the left axis while other species use the right axis, since concentration of OA were much higher than others. Aerosols corresponding to biomass burning events were at high concentrations. The concentrations of organic aerosol during three biomass burning events were 10, 4 and 6 folders higher than that of the background condition. During the first
event, due to co-occurrence of biomass burning activities in the vicinity together with the long-range transport of biomass burning plume, the concentration of BC reached 14 times higher than that of the background condition. All species remained at low and sustained background concentrations during the clean episode, with an average PM$_1$ concentration of 1.2 μg m$^{-3}$.

4.2 Characteristic of three Biomass burning events

The comparison of OA fractions of different biomass burning events is shown in Fig. 9. Since the air masses arriving at Mt. Yulong during the second event was transported from active biomass burning areas in Myanmar within 48h, most of the freshly emitted BBOA were processed and transformed to more oxidized OA, with OOA and OOA-BB together accounting for 90% on average of the total organic mass. In contrast, the fraction of BBOA had strong enhancement during the third event, reaching 23%.

It is consistent with the previously mentioned identification that the biomass burning plumes were mainly from residential heating nearby, which could emitted large amount of fresh BBOA.

The aging and/or mixing processes of different biomass burning plumes are further characterized in terms of the f_{44} vs. f_{60} triangle plot (Cubison et al., 2011). f_{44}, similarly defined to f_{60} as the ratio of the signal at m/z 44 to the total OA signal, is used here as an indicator of atmospheric aging, since OA and their gas phase precursor evolve in the atmosphere by becoming increasingly oxidized with higher CO$_2^+$ fraction (Jimenez et al., 2009; Ng et al., 2010). BBOA can be clearly distinguished from oxidized OA in the triangle plot. With the aging process of biomass burning plumes, OA evolved toward higher f_{44} and lower f_{60}, and gained more similar signature with OOA.

The OA clusters of three biomass burning events are shown clearly in the f_{44}-f_{60} triangle plot (Fig. 10). The OA clusters of the first and third events both present OA peaks with high f_{60} values, since the site was possibly influenced by residential heating in the surrounding regions during these two episodes. The OA cluster of the second event present more similar oxidative properties to OOA and OOA-BB, due to loss of biomass burning marker through aging process during transport.

5 Conclusions

During the pre-monsoon season the aerosol evolution was explored at a high altitude receptor site on Mt. Yulong (3410 m a.s.l.) in the Tibetan Plateau in Southwestern China. The average concentration of...
PM$_1$ was 5.7 μg m$^{-3}$, which was far below that measured in urban and suburban as well as regional sites of China. The carbonaceous species were very abundant in PM$_1$, with an average contribution of 68%, followed by sulfate (14%) and BC (9%). This high altitude mountain site is suitable for tracing the influence of pollution plumes transported from the large areas of Southeast Asia.

Using PMF analysis, organic aerosol was resolved into three factors, BBOA, OOA-BB and OOA. OOA-BB formed after atmospheric process of BBOA during long-range transport. The two oxygenated OA factors (OOA and OOA-BB) accounted for 87% of the total OA, showing the highly oxidized nature of aerosol at the Mt. Yulong.

Different types of biomass burning events were identified by examining organic tracer in mass profiles and BC concentrations. The origins of biomass burning plumes were verified by analyzing the back trajectories of air mass as well as fire maps. Elevated PM$_1$ concentrations due to the transport of air pollutants from active biomass burning areas in Southeast Asia were observed. Domestic heating activity also had interference on the background condition of Mt. Yulong.

This study provides clear evidence on the influence of the transport of pollutants emitted by biomass burning activity in Southeast Asia on the southeastern edge of the Tibetan Plateau in China. The chemical characteristics of aerosols observed by in situ measurement can serve as inputs for model validations of aerosol-cloud processes and long-range transports. This study also highlights the impact of anthropogenic emissions to the pristine region of the Tibetan Plateau, which may influence global climate.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (91544214, 21190052 and 41121004) and the China Ministry of Environmental Protection’s Special Funds for Scientific Research on Public Welfare (20130916). We also thank China National Environmental Monitoring Center for the support to the field campaign.

References

2007.

Marinoni, A., Cristofanelli, P., Laj, P., Duchi, R., Calzolari, F., Decesari, S., Sellegri, K., Vuillermoz, E.,
Verza, G. P., Villani, P., and Bonasoni, P.: Aerosol mass and black carbon concentrations, a two year
record at NCO-P (5079 m, Southern Himalayas), Atmos. Chem. Phys., 10, 8551-8562, doi: 10.5194/acp-
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of Composition-
Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data,
Ming, J., Xiao, C., Sun, J., Kang, S., and Bonasoni, P.: Carbonaceous particles in the atmosphere and
precipitation of the Nam Co region, central Tibet, J. Environ. Sci., 22, 1748-1756, doi: 10.10
16/s1001742(09)60315-6, 2010.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty,
K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M.,
components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem.
Paatero, P., and Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal
utilization of error estimates of data values, Environmetrics, 5, 111-126, doi: 10.1002/env.3170050203,
1994.
Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the impacts of Tibetan
Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys.,
S. H., Querol, X., and Alastuey, A.: Long-term real-time chemical characterization of submicron aerosols
at Montsec (southern Pyrenees, 1570ma.s.l.), Atmos. Chem. Phys., 15, 2935–2951, doi: 10.5194/acp-
Sjogren, S., Gysel, M., E. Weingartner, Alfarra, M. R., Duplissy, J., Cozić, J., Crosier, J., Coe, H., and
Baltensperger, U.: Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch,
Streets, D. G., Yarber, K. F., Woo, J. H., and Carmichael, G. R.: Biomass burning in Asia: Annual and
seasonal estimates and atmospheric emissions, Global Biogeochem. Cycles, 17, 1759-1768, doi:
Sun, Y. L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W. N., Bae, M. S., Hung, H. M., Hogrefe,
O., Frank, B., Rattigan, O. V., and Lin, Y. C.: Characterization of the sources and processes of organic
and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass spectrometer,
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of
organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos.
von Schneidemesser, E., Monks, P. S., Allan, J. D., Bruehwiler, L., Forster, P., Fowler, D., Lauer, A.,
Morgan, W. T., Paasonen, P., Righi, M., Sindelarova, K., and Sutton, M. A.: Chemistry and the Linkages
between Air Quality and Climate Change, Chem. Rev., 115, 3856-3897, doi:
10.1021/acs.chemrev.5b00089, 2015.

Table 1. Comparison between mass spectra of different OA with reference spectra.

<table>
<thead>
<tr>
<th>Reference spectra</th>
<th>Pearson Correlation Coefficient</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BBOA</td>
<td>OOA-BB</td>
</tr>
<tr>
<td>Ambient measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900m above fire</td>
<td>0.91</td>
<td>0.56</td>
</tr>
<tr>
<td>3h downwind</td>
<td>0.51</td>
<td>0.97</td>
</tr>
<tr>
<td>MO-OOA</td>
<td>0.69</td>
<td>0.86</td>
</tr>
<tr>
<td>BBOA</td>
<td>0.85</td>
<td>0.38</td>
</tr>
<tr>
<td>Laboratory simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood of pine</td>
<td>0.91</td>
<td>0.61</td>
</tr>
<tr>
<td>rice straw</td>
<td>0.94</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Fig.1 The location of the sampling site at Mt. Yulong (27.2N 100.2E, 3410 m a.s.l.).
Fig. 2 Time series of (a) relative humidity and temperature; (b) total mass concentrations from AMS plus black carbon (c) mass fractions of different chemical species; (d) concentrations of black carbon and f/0. The gray background denotes three biomass burning events (identified in Section 4.1).

Fig. 3 (a) average chemical composition of the whole campaign; (b) the mass fractions of PM$_1$ species as a function of PM$_1$ mass loading (left axis), with the white line representing the probability density of PM$_1$ mass loadings (right axis); (c) the diel cycle of different species, with the left axis for organics, and the right axis for the rest components.
Fig. 4 The mass spectra of each factor resolved by PMF, together with atomic ratios of each factor.

Fig. 5 The time series of three OA factors resolved by PMF, together with acetonitrile, a gas phase tracer for biomass burning. The grey background areas denote the biomass burning events (identified in Section 4.1).

Fig. 6 (a) contribution of each factor to the total OA mass; (b) fractions of OA factor (left axis) and probability density of OA concentration (white line, right axis) as a function of OA mass loading.
Fig. 7 Occurrence of wildfire derived from MODIS images and back trajectories (blue lines) from WRF model (a) first biomass burning event: March 22nd – 30th; (b) second biomass burning event: April 5th – 6th; (c) third biomass burning event: April 11th – 12th; (d) background: April 1st – 4th.

Fig. 8 Comparison of chemical compositions between three biomass burning events (BB1, BB2, BB3) and background conditions (BG, highlighted by light gray color). Boxes denote median, 25th and 75th percentiles; whiskers represent 5th and 95th percentiles; crosses represent mean values.
Fig. 9 The relative contribution of different types of OA during three biomass burning events and background condition.

Fig. 10 f_{44} as a function of f_{60} (f_{44} vs. f_{60} triangle plot) of the three biomass burning events, sized by OA concentration.