We are thankful to the reviewers and co-editor for their thoughtful and constructive comments on our study. The manuscript has been revised accordingly. Listed below is our point-to-point response to each comment.

Response to RC1

General comments:
The manuscript represents the results obtained by using a high-resolution time-of-flight aerosol mass spectrometer to monitor the chemical composition of submicron non-refractory aerosol at a high-altitude mountainous site at the edge of the Tibetan Plateau in China. The dominant component was found to be organic aerosol, with a contribution of 68%. Organic aerosol (OA) was found to be highly oxygenated and oxidized, depicting the secondary and processed nature of it. When deconvolving the organic aerosol to different factors, the two oxygenated factors, one originating from the processing of biomass burning and one highly oxidized, accounted for the 87% of the organic aerosol. The rest was identified as biomass burning organic aerosol (BBOA) originating from long-range transport both from neighboring countries (Myanmar) but also from nearby activities, exhibiting different degrees of processing according to its provenance. Concentrations of OA during the biomass burning influence were significantly higher than those during background conditions, denoting the important influence of long-range transport pollution at remote areas of the globe. Overall the manuscript is interesting and easy to follow. It focuses on an area of the globe that is not extensively studied, adding value to the reported results. Additionally, it demonstrates the importance of the influence from polluted areas to remote background sites situated away from local sources. Nevertheless there are some important details missing and more thorough discussion should be made in specific sections. Other than that the paper can be recommended for publication after addressing the issues listed below.

Specific comments:
Q1: It is listed in the measurements section (2.2) that a 7-wavelength aethalometer was also collocated at the site. Based on the approach of Sandradewi et al. (2008) a source apportionment of the black carbon (BC) measurements could be effectuated for the distinction between a wood burning and a fossil fuel component. This could significantly increase the confidence in the identification of the biomass burning events and could possibly improve the correlations between the time series of OOA-BB and BBOA with BC. Since the measurements are there, it is a pity not to take advantage of all the information.

Reply: We thanks the reviewer for the comment. It would be nice to be able to separate the fossil fuel component from the wood burning component, however in our study, the approach of Sandradewi et al. (2008) could not be a valid method. The approach needs accurate parameterization of α_{TR} for traffic and α_{WB} for wood burning, which can only be obtained when measurements were done near the sources. In the case of our study, as the BC underwent the transportation process, it got coated, thus its AAE decreased (Chung et al., 2012). Most of the BC measured at the site was from transportation, thus gives us big uncertainties on the α_{TR} and α_{WB} values. Besides, the measurement was taken at a high mountain
site, with the nearest city located 20 km to the south, and more than 1000 m below its altitude. The air masses were mainly from the west or southwest of the site, covering mostly remote areas. Thus the traffic source should play a minor role in this study.

Q2: In the same section (2.2) it is stated that a Scanning Mobility Particle Sizer (SMPS) was used to measure the size distributions during the measurement campaign. How did the integrated mass from the SMPS compare to the added masses from the AMS and BC measurements?

Reply: We thank the reviewer for this question. We have done this comparison, and is shown in Figure S1 in the supplementary materials part of this manuscript.

Other minor comments:

L36: with their radiative forcing ..

Reply: Revised.

L65: convincing evidence ..

Reply: Revised.

L66: Most of the previous studies ..

Reply: Revised.

L84: making it an ideal site ..(delete “to be”)

Reply: Revised.

L157: showed the highest probability ..

Reply: Revised.

L167: elemental composition was calculated ..

Reply: Revised.

L173: oxygenated fraction (instead of “oxygen”)

Reply: Revised.

L207: It is stated that the OOA-BB of the study correlated well with aged BBOA from 3 hours downwind of a forest fire. Yet, in L214 it is noted that m/z 60 is reduced after long periods of atmospheric processing. This is somehow contradictory as 3 hours seems quite quick. Similar to the observations of the current study, Minguillón et al. (2015) identified a quite oxygenated factor (named OOAm from mix) which was partially made up from processed BBOA quite quickly and that explained the fact that the time series of OOA tracked that of the BBOA. Therefore it is suggested to rephrase L214 as to reflect the quick nature
of this processing.

Reply: We thank the reviewer for the suggestion. We have revised Line 183 as follow.

“Compared with BBOA measured near sources, OOA-BB shows a higher oxygenated degree, with an O/C of 0.85, and a lower fraction of m/z 60 (0.6%), as a result of the oxidation of primary levoglucosan-type species (Jolleys et al., 2015). This oxidation process can be quick in elevating the oxidation state and reducing \(f_{60} \) (calculated as the ratio of the signal at m/z 60 to the total OA signal), which is also reported in another study by Minguillón et al. (2015).”

L254: Replace “It includes” maybe with “Among other”

Reply: We thank the reviewer for the suggestion. The sentence in Line 220 is revised as follow: “with the following criteria satisfied, i.e. (a) back…”

L257: from the south part ..

Reply: Revised.

L272: OA are represented by the left axis while other species are “represented” by the right axis.

Reply: Revised.

L275: were 10, 4 and 6-fold higher..

Reply: Revised.

L278: remained low..

Reply: Revised.

L282: Air mass or air masses (as mentioned before in the text)? Be consistent.

Reply: Revised.

L287: which could emit ..

Reply: Revised.
Response to RC2

General comments:

This paper reports the chemical composition of submicron non-refractory aerosol at Mt. Yulong, a mountainous site at the southeast edge of the Tibetan Plateau in China, by using a high-resolution time-of-flight aerosol mass spectrometer, with other instruments such as aethalometer, SMPS, GC-MS/FID. The aerosol at Mt. Yulong was dominant by organic aerosol, following by sulfate, BC. The manuscript paid more attention to deconvolve the organic aerosol into three factors, i.e. biomass-burning organic aerosol (BBOA), BBOA, biomass-burning-influenced oxygenated organic aerosol (OOA-BB) and oxygenated organic aerosol (OOA). OOA-BB and OOA accounted for about 87% of organic aerosol, which suggests that the OA is highly oxygenated in this remote site. This study also points out that the southeastern edge of the Tibetan Plateau is affected by transport of anthropogenic aerosols from Southeast Asia. This work will add some understanding of the influence of biomass burning on remote site of Tibetan Plateau. The manuscript could be accepted for publication after revision.

Specific comments:

Q1: The authors mentioned in abstract “: : is affected by transport of anthropogenic aerosols from Southeast Asia.” In fact, according to the back-trajectory, the aerosols were from South Asia, not Southeast Asia. Please check.

Reply: We thank the reviewer for the comment. We have revised “Southeast Asia” to “South Asia” in the title and in the manuscript.

Q2: In section “Measurements and data processing”, the authors should add more information about AMS size calibration, what the CE value were used, what the AMS data time resolution for data collection and later analysis were.

Reply: We thank the reviewer for the comment. We have revised section 2.2 "Measurements and data processing" with the information added in Line 82 and Line 91 as follow.

"The time resolution was 5 min for AMS measurement, with 2.5 min in V mode to obtain mass concentration, and 2.5 min in W mode for HR mass spectrum of organics."

"In this study, the collection efficiencies varied from 0.5 to 0.9."

Q3: In Fig.S1, the mass concentration of PM$_1$ measured by SMPS and that of AMS plus Aethalometer has compared. The authors mentioned the estimated composition-dependent density was used. Please add what the value of aerosol density used?

Reply: We thank the reviewer for the question. We have added this information regarding aerosol densities in the supplementary materials part by adding the following sentence in SI Line 21:

“The aerosol density used was 1.4 g cm$^{-3}$ for organics (Gysel et al., 2007), 1.75 g cm$^{-3}$ for sulfate, nitrate and ammonium, and 1.80 g cm$^{-3}$ for black carbon as suggested by Middlebrook et al. (2012).”
Q4: Biomass burning event 2 is different with the others, the contribution of BBOA is comparable to the background period. It would be better to have more evidence to support the explanation.

Reply: We thank the reviewer for the comment. We have added the following sentences in Line 245 – Line 246:

“Although the ratio of BBOA to the total OA during this event has a similar level to the background level, the mass concentrations of both OA and BBOA were more elevated than the background level.”

Q5: Pearson Correlation Coefficient has mentioned many times in this manuscript, as we know, this value is related with the data points, please make them clear.

Reply: We thank the reviewer for the comment. We have added the number of data points at places where we mentioned the Pearson R values.

Q6: Line 80 Mt. Yulong (27.2oN, 100.2oE)

Reply: Revised.

Q7: the authors mentioned “particle number size distribution for particle mobility diameters ranging from 3 to 780 nm, In Table S1 just list 3081DMA and CPC 3775? Do you use two SMPS in parallel or not?

Reply: We thank the reviewer for the comment. We have modified in Line 96: “… 3 – 760 nm…” to “… 15 – 760 nm…”, and have revised Table S1 as the follow.

"SMPS (3081-DMA and 3022-CPC)"

Q8: The carbonaceous species were very abundant in: : :”, Carbonaceous species should include BC.

Please rewrite this sentence.

Reply: We thank the reviewer for the comment. It is revised in Line 263 as follow: The carbonaceous species (OA+BC) were very abundant in PM1, with an average contribution of 77%, followed by sulfate (14%) and ammonium (5%).

Q9: Line 567, the authors mentioned the axis for different species in the text, but not in the figure caption, please make the figure self-readable.

Reply: We thank the reviewer for the suggestion. It is revised in Line 498: Organic aerosols are represented by the left axis while other species are represented by the right axis.
Chung, C. E., Kim, S. W., Lee, M., Yoon, S. C., and Lee, S.: Carbonaceous aerosol AAE inferred from in-situ aerosol measurements at the Gosan ABC super site, and the implications for brown carbon aerosol, Atmospheric Chemistry and Physics, 12, 6173-6184, 10.5194/acp-12-6173-2012, 2012.

Response to co-editor:

Please add some technical details in sections 2.2 and 2.3 before uploading your files for production.

In section 2.2

- Manufacturers of AMS, SMPS, Aethalometer, GC-MS/FID, etc.

Reply: We thank the editor for the comment. The information about manufacturers of each instrument has been added in Line 80, 95 and 97. The details of main instruments are shown in Table S1 in the supplementary materials part of this manuscript.

In section 2.3

- URL for the WRF model.

- What model was used for calculating back trajectories? What meteorological data were used for the calculations? Links should also be provided for both.

Reply: We thank the editor for the question. We have revised section 2.3 with the information added in Line 107 and Line 109 as follow:

… the Weather Research and Forecasting (WRF) model (version 3.61, www.wrf-model.org/index.php) ...

The original data for WRF model are available from National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data (http://rda.ucar.edu).
Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China

Jing Zheng¹, Min Hu¹,* Zhuofei Du¹, Dongjie Shang¹, Zhaoheng Gong²,a, Yanhong Qin¹, Jingyao Fang¹, Fangting Gu¹, Mengren Li¹, Jianfei Peng¹, Jie Li³, Yuqia Zhang³, Xiaofeng Huang², Lingyan He², Yusheng Wu¹, Song Guo¹

¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
²Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
³State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Nansen-Zhu International Research Center (NZC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

*Correspondence to: minhu@pku.edu.cn

Abstract

Highly time-resolved in-situ measurements of airborne particles were made at Mt. Yulong (3410 m above sea level) on the southeastern edge of the Tibetan Plateau in China from 22nd March to 14th April in 2015. Detailed chemical composition was measured by a high-resolution time-of-flight aerosol mass spectrometer together with other online instruments. Average mass concentration of the submicron particles (PM₁) was 5.7 ± 5.4 µg m⁻³ during the field campaign, ranging from 0.1 µg m⁻³ up to 33.3 µg m⁻³. Organic aerosol (OA) was the dominant component in PM₁, with a fraction of 68 %. Three OA factors, i.e., biomass-burning organic aerosol (BBOA), biomass-burning-influenced oxygenated organic aerosol (OOA-BB) and oxygenated organic aerosol (OOA), were resolved using positive matrix factorization analysis. The two oxygenated OA factors accounted for 87 % of the total OA mass. Three biomass burning events were identified by examining the enhancement of black carbon concentrations and the 𝑓₆₀ (the ratio of the signal at m/z 60 from the mass spectrum to the total signal of OA).
Back trajectories of air masses and satellite fire map data were integrated to identify the biomass burning locations and pollutants transport. The western air masses from South Asia with active biomass burning activities transported large amount of air pollutants, resulting in elevated organic concentrations up to 4-fold higher than that of the background condition. This study at Mt. Yulong characterizes the tropospheric background aerosols of the Tibetan Plateau during pre-monsoon season, and provides clear evidence that the southeastern edge of the Tibetan Plateau was affected by transport of anthropogenic aerosols from South Asia.

1 Introduction

Aerosols play an important role in the radiative balance in earth’s atmosphere, with their radiative forcing still having large uncertainties (IPCC, 2013). Biomass burning emission is one of the dominant sources of atmospheric particles (von Schneidemesser et al., 2015), contributing up to 90 % of the primary organic aerosol in the global scale (Bond et al., 2004) and more than half of the total organic aerosol mass in areas with significant biomass burning influences (e.g. Yangtze River Delta region in China, and Indian Peninsula) (Zhang et al., 2015;Engling and Gelencser, 2010). Given the long atmospheric lifetime of aerosols, even remote areas can sometimes be influenced by the transportation of air pollutants from areas with active biomass burnings (Bougiatioti et al., 2014). In terms of the deterioration of air quality and climate change in those remote areas, great scientific interest has arisen focusing on the impacts on biomass burning (Lau et al., 2010;Qian et al., 2011).

The Tibetan Plateau is the largest and highest plateau in the world, and is often regarded as the “Third Pole”. It is surrounded by a ring of high-elevated mountain ranges, which were considered as blocks for transportations of air pollutants from its vicinity (Wang and French, 1994). Since this vast land has a relatively low population density with minor anthropogenic influences, the Tibetan Plateau has been considered as a natural background of the Eurasian continent (Ming et al., 2010;Wan et al., 2015). In recent years, studies have presented convincing evidence for the transport route of air pollutants climbing over the Himalayas, especially during pre-monsoon season, coinciding with the annual intensive fire season in South and Southeast Asia (Streets et al., 2003;Marinoni et al., 2010;Cong et al., 2015b). A westerly dry circulation helps to build up the smoke
plume against the Himalayan ridges, elevating to 3-5 km in altitude (Bonasoni et al., 2010; Xia et al., 2011). Subsequently, downward glacier wind of local mountain breeze circulation brings biomass burning related air pollutants down to the mountain valley (Cong et al., 2015b; Lüthi et al., 2015).

A host of studies based on field campaigns have amassed an impressive amount of information describing the biomass burning influence on different areas of the Tibetan Plateau (Decesari et al., 2010; Zhao et al., 2013; Xu et al., 2015). Those studies were mostly approached by analyzing the temporal and spatial variations of atmospheric composition based on filter measurements. The strong correlation of carbonaceous aerosol with biomass burning tracers K⁺ and levoglucosan pointed out the origins of aerosols (Cong et al., 2015a). Biomass burning organic aerosol (BBOA) was also found to be a major fraction of organic aerosol (OA), with a 15% contribution to the total OA mass (Du et al., 2015). Xu et al. (2013) and You et al. (2016) also presented convincing evidence about biomass burning impacts by analyzing chemical components in glaciers collected in the Tibetan Plateau. Most of previous studies were based on offline analysis using filter or glacier samples, which were limited to low time resolution, making it difficult to follow the aging process of biomass burning aerosol. Thus in-situ measurements of aerosol chemical characterization with high time resolution are needed, so as to have a deep understanding of the sources and evolution of the particulate matter.

In this study, the influence of biomass burning from South Asia on the Tibetan Plateau has been analyzed. The results can serve as inputs or constraints for global climate model simulations. By examining the aerosol properties as a function of chemical composition at Mt. Yulong at the southeastern edge of the Tibetan Plateau, this study sheds light on the evolution processes of OA. Positive matrix factorization analysis has been conducted to resolve different sources of OA. And the influence of biomass burning from South Asia transported over long distances to the Tibetan Plateau background environment during pre-monsoon season has been characterized.
2 Method

2.1 Site description and meteorological conditions during the campaign

In this study, we conducted an intensive observation at the site on Mt. Yulong (27.2° N, 100.2° E), with an altitude of 3410 m a.s.l., northwestern Yunnan Province, China (Fig. 1). Since Mt. Yulong is lying in the transition zone extending from the low altitudes of the Yunnan Plateau (~ 3000 a.s.l.) to the high altitude of the Tibetan Plateau (~ 5000 a.s.l.), it is on the transport route of pollutants from South Asia to inland China, making it an ideal site to observe the influence of regional and long-range transport of polluted air masses. This station is a member of the National Atmospheric Watch Network coordinated by the Chinese Environmental Monitoring Center. The famous tourist attraction Lijiang Old Town locates more than 20 km away and 1000 m lower than the elevation of the station. The observation period was conducted during the pre-monsoon season of the Tibetan Plateau, from 22nd March to 14th April 2015, corresponding to the annual biomass burning seasons in South Asia. Since the season was cold with sparse visitors in Lijiang old city, the influence of local emissions from residents and visitors remained low compared with other seasons.

2.2 Measurements and data processing

A high resolution time-of-flight aerosol mass spectrometer (AMS, Aerodyne Research Inc.) was deployed to measure the highly time-resolved chemical composition of sub-micron, non-refractory aerosols (Table S1). The standard operation procedures of the AMS has been described in detail in Canagaratna et al. (2007). The time resolution was 5 min for AMS measurement, with 2.5 min in V mode to obtain mass concentration, and 2.5 min in W mode for HR mass spectrum of organics. The detection limits (DL) of organic, sulfate, nitrate, ammonium and chloride were 0.07, 0.004, 0.003, 0.005 and 0.01 μg m\(^{-3}\), respectively. During most time of the campaign, the mass concentrations of chloride were below its DL, and including it would lower the total signal to noise ratio, therefore it is omitted from the analysis.

The AMS data was analyzed using the standard AMS data analysis software, i.e., SQUIRREL (version 1.57) for unit resolution mass spectrum data, and PIKA (version 1.16) for high resolution mass spectra data. Calibrations of the AMS on
flow rate and ionization efficiency were conducted each week. To account for the particle loss due to the bounce of particles on the vaporizer, collection efficiencies were calculated and applied for data correction based on the method described by Middlebrook et al. (2012). In this study, the collection efficiencies varied from 0.5 to 0.9.

The high resolution organic aerosol spectra were further apportioned to different sources by positive matrix factorization (PMF) analysis (Paatero and Tapper, 1994; Ulbrich et al., 2009). The solution was validated by the characteristics of resolved mass spectra, as well as the comparison of temporal variations between each factor and external species (e.g. acetonitrile).

Other online instruments were also deployed at the site (Table S1). A scanning mobility particle sizer (SMPS, TSI Inc.) was used to measure particle number size distribution for particle mobility diameters ranging from 15 to 760 nm, with a time resolution of 5 min. An Aethalometer (Magee Scientific) was deployed to measure the aerosol light absorption coefficients \(\sigma_{ap} \) at its seven wavelengths, ranging from 370 to 950 nm. Black carbon (BC) concentration is determined by \(\sigma_{ap} \) at 880 nm using the default mass attenuation cross sections of 16.6 m\(^2\) g\(^{-1}\) (Fröhlich et al., 2015). Acetonitrile was measured by a gas chromatographer with mass spectrometer and flame ionization detectors (GC–MS/FID) with a time resolution of 1 hour. Technical details of this self-made instrument were described elsewhere (Wang et al., 2016).

Meteorological parameters, including relative humidity, temperature, wind direction and wind speed, were continuously monitored on the site during the campaign. The low temperature (5º C for the whole campaign average) and heavy snow eliminated the influence of biogenic emissions to this site during the campaign.

2.3 Back trajectory analysis and fire maps

To explore the influence of regional biomass burning activities on aerosol properties during the campaign, the Weather Research and Forecasting (WRF) model (version 3.61, www.wrf-model.org/index.php) was used to investigate the meteorological conditions and to compute trajectories of air masses arriving at Mt. Yulong. The original data for WRF model are available from National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data (http://rda.ucar.edu). 48-h back trajectories were calculated every 6 hours from March 22nd to April 14th, using a starting
height at 600 m above the ground level of the site.

Active fire points were obtained from the Fire Information for Resource Management System (FIRMS), which is provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite (https://firms.modaps.eosdis.nasa.gov/firemap/, last accessed on Aug. 26, 2016).

3 Results

3.1 Concentrations and chemical compositions of submicron aerosols

The time series of submicron aerosol compositions as well as meteorological conditions are shown in Fig. 2. The average PM$_1$ concentration was 5.7 ± 5.4 μg m$^{-3}$, with a range of 0.1 μg m$^{-3}$ – 33.3 μg m$^{-3}$. This result was similar to previous observations at the Northern Tibetan Plateau, where Du et al. (2015) reported an average PM$_1$ concentration of 11.4 μg m$^{-3}$ in the autumn of 2013, and Xu et al. (2014a) reported an annual average PM$_{2.5}$ concentration of 9.5 μg m$^{-3}$ from 2006 to 2007.

The averaged PM$_1$ concentration was much lower than those measured at urban and downwind sites of China (e.g., Huang et al., 2013; Xu et al., 2014b), but was three times higher than the 1.7 μg m$^{-3}$ at a background site in Europe in March 2004 (Sjogren et al., 2008), and ten times higher than that measured at the same background site in the spring of 2013 (Fröhlich et al., 2015). These huge differences indicate that anthropogenic pollutions in South Asia may have resulted in the elevation of aerosol concentrations to levels above the natural background level.

Averaged aerosol composition of PM$_1$ is shown in the pie chart (Fig. 3(a)). The PM$_1$ chemical composition was dominated by organic components, which accounted for 68 %, followed by sulfate (14 %). The minor contribution of nitrate to PM$_1$ (4 %) can be explained by the lack of nearby anthropogenic sources for precursors (e.g., HONO, N$_2$O$_5$) (Du et al., 2015). This result presents a similar picture as those observed at remote sites in the northern hemisphere (Zhang et al., 2011), as well as at a high altitude site in Europe (Ripoll et al., 2015). Compared with urban or regional areas in China, where secondary inorganic species including sulfate, nitrate and ammonium typically contribute to over one half of the total mass concentrations, the result at this site is quite unique (Huang et al., 2010; Huang et al., 2012; Xu et al., 2014b).
Figure 3(b) shows the relative contribution of major chemical components as a function of PM$_{1}$ mass concentrations, as well as the probability density of PM$_{1}$ mass loading. PM$_{1}$ concentrations below 5 μg m$^{-3}$ showed the highest probability (68 %). The fractions of organics and BC increase slightly with the increasing of PM$_{1}$ concentrations, showing that they were the main contributors to the pollution episodes in Mt. Yulong.

The PM$_{1}$ components did not show distinct diel variations, but remained relatively constant during the whole day, as shown in Fig. 3(c). This is similar to the findings at the Puy-de-Dôme station in central France, and the Montsec station in western Mediterranean Basin (Freney et al., 2011; Ripoll et al., 2015). Strong long-range transport of air masses with few local emissions could blur the diel cycles, since the air-mass transportations occurred regardless of the local time of the day.

3.2 Characterization of organic aerosol

3.2.1 Elemental compositions of organic aerosol

The elemental composition was calculated from high resolution mass spectra of organics obtained by AMS, using the method developed by Canagaratna et al. (2015). Compared with the previous method (Aiken et al., 2007; 2008), the ratio of O/C and H/C are typically increased by 20 % and 7 %, respectively. Bulk OA was mainly composed of carbon and oxygen, with minor contributions from hydrogen and nitrogen, and had an average molecular formula of $C_{1.4}H_{1.1}O_{1.1}N_{0.04}$. The fragments of organics were grouped into five types according to the existence of C, H, O or N atoms. $C_xH_y^+$ were only 21 % of the total organic signal, while the oxygenated fraction ($C_xH_yO_z^+$) accounted for 68 % of the total OA, which is higher than those measured at urban and downwind site (30-41 %) (Huang et al., 2011; Sun et al., 2011; Hu et al., 2013). The average OM/OC and O/C ratios for the whole campaign were 2.63 and 1.11, respectively, and were similar to those measured in the north eastern region of the Tibetan Plateau (OM/OC 2.75, O/C 1.16) (Xu et al., 2015). These results are slightly higher than the elemental ratios measured at another remote site (OM/OC: 2.4, O/C: 0.9) in the eastern Mediterranean (Bougiatioti et al., 2014), probably due to the mixture of free troposphere aerosol after a long time of processing before arriving at this high altitude site. The extremely high value of OM/OC reflects the highly oxidized nature of OA in the Tibetan Plateau.
3.2.2 Source apportionment of organic aerosol

PMF analysis was performed to investigate the sources of OA measured at Mt. Yulong. Three factors were resolved, including a biomass burning organic aerosol (BBOA), an oxygenated biomass-burning-influenced organic aerosol (OOA-BB), and an oxygenated organic aerosol (OOA). Details of the PMF analysis can be found in the supplement. The mass spectra of the three factors are shown in Fig. 4. The time series of the three factors and an external species (acetonitrile) are plotted in Fig. 5.

3.2.2.1 BBOA

BBOA has been frequently identified in previous studies at urban and regional sites (Zhang et al., 2011). The mass spectrum of BBOA has a notable contribution from m/z 60 (mainly C_2H_4O_2^+, contributing 3.1% of the total mass spectra), which is from fragmentation of levoglucosan. As shown in Table 1, the mass spectrum correlates well with the samples from an aircraft measurement above a large forest fire (Brito et al., 2014), and well with the samples from biomass burning simulation system in the laboratory (He et al., 2010). BBOA has an O/C ratio of 0.37, presenting a similar level to previous studies (Aiken et al., 2008; He et al., 2010). The time series of BBOA correlates very well with K^+ based on filter analysis (Pearson R=0.92, N=13). The factor was also confirmed to be BBOA, since it has a similar temporal variation to that of acetonitrile (Fig. 5), a gas phase tracer for biomass burning.

The average concentration of BBOA was 0.5 μg m⁻³ for the whole campaign, accounting for 13% of the total OA mass, with a maximum contribution at 61% (Fig. 6 (a)). The spikes in the time series of BBOA indicate that a fraction of BBOA was contributed by primary sources nearby, possibly occasional biomass burning activities for domestic heating and cooking.

The increasing fraction of BBOA as a function of total OA concentrations points to contributions from biomass burning activities during the pollution episodes (Fig. 6 (b)).

3.2.2.2 OOA-BB

The mass spectrum of OOA-BB factor was dominated by C_xH_yO_z^+ fragments, especially org29 (CHO^+), org43 (C_2H_3O^+) and org44 (CO_2^+). The spectrum of OOA-BB in this study well correlated with aged BBOA obtained 3 hours downwind of a
forest fire (Brito et al., 2014) (Pearson R=0.97, N=100). It is qualitatively similar to published OOA-BB spectra from aged BB plumes in China during the harvest seasons (Zhang et al., 2015), and also presented many similarities to those of OOA2-BBOA resolved in the metropolitan area of Paris (Crippa et al., 2013).

The average concentration of OOA-BB was 0.9 µg m\(^{-3}\) for the whole campaign, accounting for 22 % of the total OA mass. Compared with BBOA measured near sources, OOA-BB shows a higher oxygenated degree, with an O/C of 0.85, and a lower fraction of m/z 60 (0.6 %), as a result of the oxidation of primary levoglucosan-type species (Jolleys et al., 2015). This oxidation process can be quick in elevating the oxidation state and reducing \(f_{60}\) (calculated as the ratio of the signal at m/z 60 to the total OA signal), which is also reported in another study by Minguillón et al. (2015). As the plumes originated from South Asia were measured at a distance of several hundred kilometers downwind, emissions would have undergone substantial aging prior to sampling. The aging process includes both the gas-phase oxidation of semi volatile species from biomass burning sources and heterogeneous or homogeneous reactions of existing particles during long-range transport (Bougiatioti et al., 2014). The time series of OOA-BB and BBOA yield modest correlations with BC (Pearson R=0.62 and 0.65, N=5940). If we focus on the total biomass burning related organic aerosols (OOA-BB + BBOA), the R value for its correlation with BC would increase to 0.76 (N=5940), indicating biomass burning related OA originated from the same source as BC.

3.2.2.3 OOA

OOA is described as highly oxidized, aged particles formed after long-range transportation and processing. The mass spectral properties of OOA are defined by having a dominant peak at m/z 44 (mainly CO\(_2^+\)) and other ions of C\(_x\)H\(_y\)O\(_z^+\). The highly oxidized nature of OOA is also reflected by its high O/C ratio of 1.45. The mass spectrum of OOA resembles that of more oxidized OOA (MO-OOA) in Beijing well (Pearson R=0.69, N=100) (Hu et al., 2016).

OOA has an average concentration of 2.6 µg m\(^{-3}\), accounting for 65 % of the total OA mass. Unlike previous studies at urban or regional sites (Jimenez et al., 2009;Li et al., 2015;Hu et al., 2016), the time series of OOA did not agree well with that of sulfate (Pearson R=0.32, N=5940), which was also the case at the puy-de-Dôme research station (1465 m a.s.l.) (Freney et al.,
The low Pearson correlation value can be partially explained by the extremely high concentration of OOA formed from the oxidation of organics emitted by biomass burning activities during the first week of the campaign. For the rest of campaign, the correlation value for sulfate with respect to OOA factor increased to 0.79 ($N=3878$), which is consistent with previous studies.

As shown in Fig. 6(a), the two OOA factors (OOA-BB and OOA) were very abundant, with a predominantly contribution of 87% to the total OA mass. This is consistent with the high oxygen level in the total OA. During 80% of the observation period, OA concentrations were lower than 5 μg m$^{-3}$, with strong contributions from secondary organic aerosols (OOA and OOA-BB) (Fig. 6(b)). This indicates that the background site was predominated by organic aerosols formed through regional transportation.

4 Discussion

4.1 Identification of biomass burning events

Enhanced BC concentrations were used to help identifying periods influenced by biomass burning plumes (Bougiatioti et al., 2014). The BC concentration of 85 ng m$^{-3}$ was taken as the background concentration at this site. It is the average concentration observed in the beginning of April (1st April to 4th April), when the strong wind scavenged pollutants of the whole region. Back trajectory and fire maps illustrate that the dominant air masses for this period was from north India with minor biomass burning activities (see Fig. 7(d)). This concentration is consistent with the two-year averaged background level measured at Southern Himalayas (Marinoni et al., 2010), and comparable to the lowest BC concentrations found over the southeastern Tibetan Plateau in the pre-monsoon season (Engling et al., 2011).

During the sampling period, three episodes were identified as being influenced by biomass burning, with the following criteria satisfied, i.e. (a) Back trajectory analysis shows a uniform source region; (b) Fire map shows fire spots in the region during the episode; (c) BC concentrations were higher than the background level of 85 ng m$^{-3}$ determined above. One long-lasting and strong episode was from 22nd March to 30th March. The air masses arrived at the site during this period were from
the north part of Myanmar, and covered active biomass burning areas (see Fig. 7(a)). As shown on the fire map, the site may also be influenced by wildfires in the vicinity. Two less intense events were observed on 5th – 6th April and 11th – 12th April, with slightly elevated BC concentrations. During the third event (11th – 12th April), the site experienced heavy snow. The back trajectory shows that air masses to this region were transported from regions with few fire spots. The enhanced BC concentration was probably emitted by biomass burning activities nearby for domestic heating and cooking.

These three biomass burning events were further validated by the increase of the fraction of biomass burning tracers, \(f_{60} \). During the first and second events, the average \(f_{60} \) were 0.98 % and 0.61 %, respectively. These values were much lower than the \(f_{60} \) of 1.4 % during the third event, which was influenced by fires in the vicinity. This showed the decay of \(f_{60} \) in ambient plumes transported from sources to the receptor site. During the clean episode, the \(f_{60} \) decreased to about 0.4 %, indicating minor biomass burning influence (Cubison et al., 2011).

The box plot (Fig. 8) shows the concentrations of different chemical components of biomass burning events and background conditions. The aerosol concentrations corresponding to the background condition is highlighted by light gray. Organic aerosols are represented by the left axis while other species are represented by the right axis. Aerosols corresponding to biomass burning events were at high concentrations. The concentrations of organic aerosol during three biomass burning events were 10, 4 and 6-fold higher than that of the background condition. During the first event, due to co-occurrence of biomass burning activities in the vicinity together with the long-range transport of biomass burning plume, the concentration of BC reached 14 times higher than that of the background condition. All species remained low and sustained background concentrations during the clean episode, with an average PM\(_1\) concentration of 1.2 \(\mu \)g m\(^{-3}\).

4.2 Characteristic of three Biomass burning events

The comparison of OA fractions of different biomass burning events is shown in Fig. 9. Since the air masses arriving at Mt. Yulong during the second event were transported from active biomass burning areas in Myanmar within 48h, most of the freshly emitted BBOA were processed and transformed to more oxidized OA, with OOA and OOA-BB together accounting
for 90 % on average of the total organic mass. Although the ratio of BBOA to the total OA during this event has a similar level to the background level, the mass concentrations of both OA and BBOA were more elevated than the background level. In contrast, the fraction of BBOA had strong enhancement during the third event, reaching 23 %. It is consistent with the previously mentioned identification that the biomass burning plumes were mainly from residential heating nearby, which could emit large amount of fresh BBOA.

The aging and/or mixing processes of different biomass burning plumes are further characterized in terms of the f_{44} vs. f_{60} triangle plot (Cubison et al., 2011). f_{44}, similarly defined to f_{60} as the ratio of the signal at m/z 44 to the total OA signal, is used here as an indicator of atmospheric aging, since OA and their gas phase precursors evolve in the atmosphere by becoming increasingly oxidized with higher CO$_2^+$ fraction (Jimenez et al., 2009; Ng et al., 2010). BBOA can be clearly distinguished from oxidized OA in the triangle plot. With the aging process of biomass burning plumes, OA evolved toward higher f_{44} and lower f_{60}, and gained more similar signature with OOA.

The OA clusters of three biomass burning events are shown clearly in the f_{44}-f_{60} triangle plot (Fig. 10). The OA clusters of the first and third events both present OA peaks with high f_{60} values, since the site was possibly influenced by residential heating in the surrounding regions during these two episodes. The OA cluster of the second event presents more similar oxidative properties to OOA and OOA-BB, due to loss of biomass burning marker through aging process during transport.

5 Conclusions

During the pre-monsoon season the aerosol evolution was explored at a high altitude receptor site on Mt. Yulong (3410 m a.s.l.) in the Tibetan Plateau in Southwestern China. The average concentration of PM$_1$ was 5.7 µg m$^{-3}$, which was far below that measured in urban and suburban as well as regional sites of China. The carbonaceous species (OA+BC) were very abundant in PM$_1$, with an average contribution of 77 %, followed by sulfate (14 %) and ammonium (5 %). This high altitude mountain site is suitable for tracing the influence of pollution plumes transported from the large areas of South Asia.

Using PMF analysis, organic aerosol was resolved into three factors, BBOA, OOA-BB and OOA. OOA-BB formed after
atmospheric process of BBOA during long-range transport. The two oxygenated OA factors (OOA and OOA-BB) accounted for 87% of the total OA, showing the highly oxidized nature of aerosol at the Mt. Yulong.

Different types of biomass burning events were identified by examining organic tracer in mass profiles and BC concentrations. The origins of biomass burning plumes were verified by analyzing the back trajectories of air masses as well as fire maps. Elevated PM$_1$ concentrations due to the transport of air pollutants from active biomass burning areas in South Asia were observed. Domestic heating activity also had interference on the background condition of Mt. Yulong.

This study provides clear evidence on the influence of the transport of pollutants emitted by biomass burning activity in South Asia on the southeastern edge of the Tibetan Plateau in China. The chemical characteristics of aerosols observed by in situ measurement can serve as inputs for model validations of aerosol-cloud processes and long-range transports. This study also highlights the impact of anthropogenic emissions to the pristine region of the Tibetan Plateau, which may influence global climate.

6 Data availability

The data presented in this article are available from the authors upon request (minhu@pku.edu.cn).

Acknowledgements

This study was supported by the National Natural Science Foundation of China (91544214, 21190052 and 41121004) and the China Ministry of Environmental Protection’s Special Funds for Scientific Research on Public Welfare (20130916). We also thank China National Environmental Monitoring Center for the support to the field campaign.

References

a aircraft and laboratory studies, Atmospheric Chemistry and Physics, 11, 12049-12064, 10.5194/acp-11-12049-2011, 2011.

Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry, Atmospheric Chemistry and Physics, 14, 12593-12611, 10.5194/acp-14-12593-2014, 2014b.

Table 1. Comparison between mass spectra of different OA with reference spectra.

<table>
<thead>
<tr>
<th>Reference spectra</th>
<th>Pearson Correlation Coefficient (N=100)</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BBOA</td>
<td>OOA-BB</td>
</tr>
<tr>
<td>Ambient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900m above fire</td>
<td>0.91</td>
<td>0.56</td>
</tr>
<tr>
<td>3h downwind</td>
<td>0.51</td>
<td>0.97</td>
</tr>
<tr>
<td>MO-OOA</td>
<td>0.69</td>
<td>0.86</td>
</tr>
<tr>
<td>BBOA</td>
<td>0.85</td>
<td>0.38</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood of pin</td>
<td>0.91</td>
<td>0.61</td>
</tr>
<tr>
<td>rice straw</td>
<td>0.94</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Figure 1. The location of the sampling site at Mt. Yulong (27.2° N 100.2° E, 3410 m a.s.l.).

Figure 2. Time series of (a) relative humidity and temperature; (b) total mass concentrations from AMS plus black carbon (c) mass fractions of different chemical species; (d) concentrations of black carbon and \(f_{60} \). The gray background denotes three biomass burning events (identified in Sect. 4.1).
Figure 3. (a) average chemical composition of the whole campaign; (b) the mass fractions of PM$_1$ species as a function of PM$_1$ mass loading (left axis), with the white line representing the probability density of PM$_1$ mass loadings (right axis); (c) the diel cycle of different species, with the left axis for organics, and the right axis for the rest components.

Figure 4. The mass spectra of each factor resolved by PMF, together with atomic ratios of each factor.
Figure 5. The time series of three OA factors resolved by PMF, together with acetonitrile. The grey background areas denote the biomass burning events (identified in Sect. 4.1).

Figure 6. (a) contribution of each factor to the total OA mass; (b) fractions of OA factor (left axis) and probability density of OA concentration (white line, right axis) as a function of OA mass loading.
Figure 7. Occurrence of wildfire derived from MODIS images and back trajectories (blue lines) from WRF model (a) first biomass burning event: March 22nd–30th; (b) second biomass burning event: April 5th–6th; (c) third biomass burning event: April 11th–12th; (d) background: April 1st–4th.

Figure 8. Comparison of chemical compositions between three biomass burning events (BB1, BB2, BB3) and background conditions.
Boxes denote median, 25th and 75th percentiles; whiskers represent 5th and 95th percentiles; crosses represent mean values. Organic aerosols are represented by the left axis while other species are represented by the right axis.

Figure 9. The relative contribution of different types of OA during three biomass burning events and background condition.

Figure 10. f_{44} as a function of f_{60} (f_{44} vs. f_{60} triangle plot) of the three biomass burning events, sized by OA concentration.