Supplementary Material

NOx emissions, isoprene oxidation pathways, vertical mixing, and implications for surface ozone in the Southeast United States

Katherine R. Travis1, Daniel J. Jacob1,2, Jenny A. Fisher3, Patrick S. Kim7, Eloise A. Marais1, Lei Zhu1, Karen Yu1, Christopher C. Miller1, Robert M. Yantosca1, Melissa P. Sulprizio1, Anne M. Thompson4, Paul O. Wennberg5,6, John D. Crounse5, Jason M. St. Clair5, Ronald C. Cohen7, Josh L. Laugher7, Jack E. Dibb8, Samuel R. Hall9, Kirk Ullmann9, Glenn M. Wolfe10,11, Jonathan A. Neuman12,13, and Xianliang Zhou14,15

1Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
2Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
3School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
4NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
6Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
7Department of Chemistry, University of California, Berkeley, CA, USA
8Earth System Research Center, University of New Hampshire, Durham, NH, USA
9Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO, USA
10Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
11Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
12University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, CO 80309 USA
13NOAA, Division of Chemical Science, Earth Systems Research Lab, Boulder, CO USA
14Department of Environmental Health and Toxicology, School of Public Health, State University of New York at Albany, Albany, New York, USA
15Wadsworth Center, New York State Department of Health, Albany, New York, USA

Correspondence to: Katherine R. Travis (ktravis@fas.harvard.edu)

Table S1 – Species Added to GEOS-Chem

<table>
<thead>
<tr>
<th>Species</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPALD</td>
<td>Hydroperoxyaldehydes (C₅H₈O₃)</td>
</tr>
<tr>
<td>HC187</td>
<td>Epoxide oxidation product m/z 187-189</td>
</tr>
<tr>
<td>DHDN</td>
<td>C₅ dihydroxydinitrate</td>
</tr>
</tbody>
</table>

Table S2 – Reaction Rates and Productions Updated in GEOS-Chem

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reference</th>
<th>Rate Constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIO₂ + HO₂ → 0.937RIP + 0.063OH + 0.025MACR + 0.038MVK + 0.063HO₂ + 0.063CH₂O</td>
<td>(Liu et al., 2013)</td>
<td>2.06E-13*exp(1300/T)</td>
<td>(Saunders et al., 2003)</td>
</tr>
<tr>
<td>RIO₂ + NO → 0.91NO₂ + 0.82HO₂ + 0.82CH₂O + 0.476MVK + 0.344MACR + 0.058HC₅ + 0.03DIBOO + 0.009ISOPND + 0.081ISOPNB</td>
<td>(Liu et al., 2013; Fisher et al., 2016)</td>
<td>2.7E-12*exp(350/T)</td>
<td>(Paulot et al., 2009a)</td>
</tr>
<tr>
<td>RIO₂ → HO₂ + HPALD</td>
<td>(Peeters et al., 2009; Peeters and Muller, 2010; Crounse et al., 2011)</td>
<td>4.07E8*exp(-7694/T)</td>
<td>Rate adjusted by Crounse et al. (2011)</td>
</tr>
<tr>
<td>RIO₂ + RIO₂ → 0.91HO₂ + 0.75CH₂O + 0.455MVK + 0.29MACR + 0.09DIBOO + 1.11HC₅ + 0.29CO</td>
<td>(Xie et al., 2013)</td>
<td>2.3E-12</td>
<td>(Xie et al., 2013)</td>
</tr>
<tr>
<td>HPALD + OH → MGLY + CO + CH₂O + OH</td>
<td>(Squire et al., 2015)</td>
<td>5.1E-11</td>
<td>(Wolfe et al., 2012)</td>
</tr>
<tr>
<td>HPALD + hυ → OH + HO₂ + 0.5GLYC +</td>
<td>(Stavrakou et al., 2010)</td>
<td>Rate is equivalent to</td>
<td>(Peeters and Muller,</td>
</tr>
</tbody>
</table>
The yields are not identical to the Lee et al. (2014) values and there is artificial recycling of ISOPNDO$_2$ to account for non-unity reactants (i.e. in Lee et al. (2014) one ISOPNDO$_2$ reacts with 1.06ISOPNDO$_2$).

In Lee et al. (2014), a C5 hydroperoxide is formed (ROOH). In order to close the nitrogen budget this would have to be ISNP – a peroxide species with a nitrate group.

Replace C4NACID in Lee et al. (2014) with PROPNN.

HNO$_3$ added to this reaction to close the nitrogen budget, as we replace ethyl nitrate with its oxidation product, peroxyacetyl nitrate.

Update pre-exponential factor of this reaction in globchem.dat from Bates et al. (2014).

Other organic products were identified by Bates et al. (2014). These structural isomers are replaced with CO for the epoxide product (m/z 201) and a new species (also added as a tracer) is added to GEOS-Chem to account for the m/z 187 and 189 isomers.
References

Stavrou, T., Peeters, J., and Müller, J. F.: Improved global modelling of HO_x recycling in isoprene oxidation: evaluation against the GABRIEL and INTEX-A aircraft campaign measurements, Atmospheric Chemistry and Physics, 10, 9863-9878, 10.5194/acp-10-9863-2010, 2010.
