Anonymous Referee #1

Received and published: 20 April 2017

This manuscript describes a detailed sensitivity simulation of CH₄/CO₂ in Asia with respect to horizontal resolution employing two different versions of the LMDzINCA model. This kind of study can be expected to contribute significantly to improving performance of data assimilation and accuracy of inverse modeling as the authors emphasize. The overall text is well written, and the authors very carefully discuss the results. However, most of the descriptions in this paper appear to be too detailed and sometime tedious although they may be needed to convey useful information to the data assimilation procedure. The subject of this paper seems to be appropriate to the ACP. However, I would like the authors to consider my questions and revise the manuscript before I recommend the publication of this paper. Details of my comments will be found in the following.

[Response] Thank you very much for your careful review and comments. Following the reviewers’ suggestions, we launched new simulations with 39 vertical layers (L39) for both standard and zoom models, as compared to the previous simulations with only 19 vertical layers (L19). We updated the biomass burning emissions to the latest GFEDv4.1 for both CH₄ and CO₂ simulations. For CH₄, we also ran sensitivity test simulations, in which anthropogenic and wetland emissions are prescribed with the latest EDGARv4.3.2 and model outputs from ORCHIDEE. For CO₂, sensitivity test simulations are also performed with daily and 3-hourly biomass burning emissions from GFEDv4.1 (Table R1). We have rewritten most part of the results, discussions and conclusions accordingly. We also replied to your major and minor comments in the following, and hopefully our responses and revision adequately address all your comments and questions.

Major Comments:

M1: For “abstract” and “conclusions” section, I’m not convinced about conclusions of this manuscript. The authors state that the finer horizontal resolution version improves Asian CH₄/CO₂ simulation only moderately. Are you saying that enhancing horizontal resolution is not that useful (not beneficial)? I think you could more clearly express the message/implication of this study at least in abstract and conclusions parts.

[Response] Not really. The model’s capability to represent the CH₄ or CO₂ variability at stations does not only depend on model resolution. In this paper we would like to more emphasize that, with finer model resolution, the model performance is more sensitive to accuracy of the prescribed surface fluxes, particularly distribution of sources/sinks at fine scales and their short-term variabilities. The sensitivity test simulations we launched for the revised paper also show importance of the flux data quality in model performance and thus benefits of improved model resolution. Following your suggestion, we revised the manuscript and clarify it in Abstract and Conclusion.
M2: This study just showed that a finer horizontal resolution more or less contributes to improvement of CH₄/CO₂ simulation for Asia. But it is very unclear whether this improvement is really significant or meaningful in terms of regional budget and flux estimate. I think the authors should check the impacts of other factors (at least vertical resolution or NEE) on the simulation as well as horizontal resolution for more clearly appealing the advantages of your zoomed method in the LMDzINCA modeling framework.

[Response] As we stated in Introduction, the number of regional ground stations in South and East Asia has increased during the recent decades. Observations from these stations will provide useful constraints on regional flux estimates, if gradients between stations and their variabilities can be well represented in transport models. Compared to the global transport model with rather coarse model resolution, the zoomed transport model used in our study has the potential to better capture the observed spatial and temporal variations at regional stations due to the reduced representation errors. The impact of model resolution on regional budget and flux estimate should be addressed by inverse modeling, which is beyond the scope of this study. Following your suggestion, we launched new simulations with 39 vertical layers (L39) for both standard and zoom models, as compared to the previous simulations with only 19 vertical layers (L19). For CH₄, we also ran sensitivity test simulations, in which anthropogenic and wetland emissions are prescribed with the latest EDGARv4.3.2 and model outputs from ORCHIDEE (Table R1). Detailed results and discussions are presented in Section 3 in the revised manuscript.

M3: For the moderate improvement with ZASIA, I do not yet understand the reason for it. The authors give several potential candidates like matching between the model’s grid and observation site, different transport, etc. But how much do they contribute? Or what is the most possible reason for the improvement?

[Response] With the zoomed model, the explanation for the improved model performance on CH₄ mean annual gradients really depends on different stations. As mentioned in Section 3.1.1, the better performance at SDZ (117.12°E, 40.65°N, 293m a.s.l.) is more related to the detailed description of source distribution around the station; for the two coastal stations PON (79.86°E, 12.01°N, 30m a.s.l.) and CRI (73.83°E, 15.08°N, 66m a.s.l.), the improved model performance is related to the better characterization of the complex terrain (coastal topography) as well as the fluxes.

M4: The authors stated that the ZASIA version does not deteriorate the performance of CH₄/CO₂ outside the zoomed area (L383). But they seem to be looking only at the sites displayed in Figure 1 (mostly in Japan). How about the impacts on performance for other sites like in EU, US, Africa, and the southern hemisphere? This point should be clarified in the main text with an additional figure as supplementary material.

[Response] Following your suggestions, we further included several global/regional stations in Europe (the stations JFJ and MHD), North America (the stations ALT, BRW, NWR and
MLO), and the southern hemisphere (the stations AMS, CGO, and SPO) in this study (Table 2). Analyses show that the zoom versions do not deteriorate model performance outside the zoomed region compared to the standard versions. For example, the CH$_4$ and CO$_2$ annual gradients between HLE and these added stations can be well captured by both standard and zoom model versions (see open circles in Figure 2). Detailed results and discussions are presented in Section 3 and the supplementary material.

Minor Comments:

L158 to L173: How do you represent diurnal variation in OH?

[Response] As described in Section 2.1.1, we used climatological monthly OH concentration fields in this study and didn’t consider the diurnal variation in OH fields. According to Patra et al. (2009), the CH$_4$ chemical lifetime in the troposphere is much longer than the dynamical residence time due to atmospheric transport, and accounting for OH diurnal cycle is not crucial for simulating seasonal, synoptic, and diurnal variations in CH$_4$ concentration fields.

L177 “The spin-up time of 6 years”: Don’t you have any trend or drift of global mean CH$_4$ concentration during these 6 years?

[Response] Take the global background station Mauna Loa as an example, Figure R1 presents time series of the simulated and observed CH$_4$ concentrations over the period 2000–2013, as well as the corresponding long term trends extracted from the data using the CCGVU curve fitting routine (Thoning et al., 1989). During the 6-year spin-up period (2000–2005), the simulated CH$_4$ concentrations decreased for the first three years and then levelled off. Drift of the global mean is found for both standard and zoom models, equivalent to around -12 ppb over this period. The model-observation disagreement in trend and global mean CH$_4$ concentrations results from the imperfect surface emissions and OH fields prescribed in the simulations. As we reply to the Reviewer #2 (Specific comments, Line 163), in this paper we are more focusing on the improvement gained from refinement of model grids rather than accurately reproducing the observed CH$_4$ concentrations and their interannual variations. Furthermore, all the traits and metrics we have considered to evaluate the model performance (i.e., annual mean gradient, seasonal cycle, synoptic variability, diurnal cycle and vertical gradient) give “relative” values that are not affected by the absolute CH$_4$ concentrations. Therefore the trend and drift of global mean CH$_4$ during the spin-up period will not have significant impact on comparison of performance between the standard and zoom models.

L179 “already realistic”: What do you mean by “realistic”? You should explain more about the initial conditions for CH$_4$.

[Response] In the revised paper, the initial CH$_4$ concentration field we used for the updated simulations is defined based on the optimized initial state from a CH$_4$ inversion that assimilates observations from 50+ global background stations over the period 2006–2012.
The optimized initial CH$_4$ concentration field for the year 2006 was rescaled to the levels of the year 2000 and used as the initial state in our simulations. As the initial condition for CH$_4$ is optimized with observations, we assume it to be “realistic”. Following your suggestion, we revised Section 2.1.1 accordingly to clarify the setup of initial condition for CH$_4$.

L395 “better description of the surface fluxes and/or transport”: Given the fact that CO$_2$ simulation is not improved by ZASIA, the improvement seen in CH$_4$ seems to be resulting from non-transport process (surface fluxes?).

[Response] Here we mean that, with ZASIA, the model improvement on the CH$_4$ annual gradient at the stations SDZ, PON and CRI may “result from a reduction in representation error with a higher model horizontal resolution in the zoomed region, through a better description of the surface fluxes and/or transport around these stations”. In fact, we also found improved model performance on the CO$_2$ annual gradients at the three stations, although not as significant as it is for CH$_4$ (Table R2). Therefore the model improvement may result from better characterization of either surface fluxes or transport processes or both.

L435: There appears no explanation for the abbreviation of “NEE”.

[Response] Following your suggestions, we provide the full name (net ecosystem exchange) when the abbreviation is used for the first time.

L500 “rather coarse (19 layers)”: How do you get the model concentrations at the elevation of the observational site? The model layers are linearly interpolated?

[Response] As described in Section 2.3, the modelled concentrations are sampled at the nearest gridpoint and vertical level to each station.
Tables

Table R1 Model setups for different simulations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST19_ED42</td>
<td>144×142 Standard, 19 layers</td>
<td>EDGAR4.2FT2010</td>
<td>KAPLAN climatology</td>
</tr>
<tr>
<td>ZA19_ED42</td>
<td>144×142 Asian Zoom, 19 layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST39_ED42</td>
<td>144×142 Standard, 39 layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZA39_ED42</td>
<td>144×142 Asian Zoom, 39 layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST39_ED432</td>
<td>144×142 Standard, 19 layers</td>
<td>EDGAR4.3.2</td>
<td></td>
</tr>
<tr>
<td>ZA39_ED432</td>
<td>144×142 Asian Zoom, 19 layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST39_ED432ORC</td>
<td>144×142 Standard, 39 layers</td>
<td>ORCHIDEE climatology</td>
<td></td>
</tr>
<tr>
<td>ZA39_ED432ORC</td>
<td>144×142 Asian Zoom, 39 layers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table R2 The observed and simulated mean annual gradient of CH$_4$ (a) and CO$_2$ (b) between HLE and two stations (CRI, PON and SDZ) within the zoomed region. The bias reduction rates (in percentage) by using ZA compared to ST are also given for both 19- and 39-layer simulations.

a)

<table>
<thead>
<tr>
<th>CH$_4$</th>
<th>OBS (ppb)</th>
<th>ST19 (ppb)</th>
<th>ZA19 (ppb)</th>
<th>Bias reduction</th>
<th>ST39 (ppb)</th>
<th>ZA39 (ppb)</th>
<th>Bias reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRI</td>
<td>17.5±12.7</td>
<td>9.3±4.1</td>
<td>20.2±7.1</td>
<td>66.6%</td>
<td>8.6±3.0</td>
<td>23.0±6.7</td>
<td>38.8%</td>
</tr>
<tr>
<td>PON</td>
<td>32.4±12.4</td>
<td>2.5±11.6</td>
<td>31.1±7.7</td>
<td>95.6%</td>
<td>0.4±11.9</td>
<td>34.1±7.8</td>
<td>94.7%</td>
</tr>
<tr>
<td>SDZ</td>
<td>90.0±15.4</td>
<td>125.1±18.8</td>
<td>86.8±16.0</td>
<td>91.0%</td>
<td>128.5±19.3</td>
<td>100.4±22.4</td>
<td>73.0%</td>
</tr>
</tbody>
</table>

b)

<table>
<thead>
<tr>
<th>CO$_2$</th>
<th>OBS (ppm)</th>
<th>ST19 (ppm)</th>
<th>ZA19 (ppm)</th>
<th>Bias reduction</th>
<th>ST39 (ppm)</th>
<th>ZA39 (ppm)</th>
<th>Bias reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRI</td>
<td>4.6±0.9</td>
<td>1.2±0.1</td>
<td>2.0±0.3</td>
<td>25.5%</td>
<td>1.4±0.1</td>
<td>2.2±0.2</td>
<td>25.2%</td>
</tr>
<tr>
<td>PON</td>
<td>2.7±1.6</td>
<td>1.3±0.3</td>
<td>1.8±0.5</td>
<td>35.2%</td>
<td>1.5±0.3</td>
<td>1.9±0.5</td>
<td>37.0%</td>
</tr>
<tr>
<td>SDZ</td>
<td>6.8±0.5</td>
<td>8.8±1.3</td>
<td>7.7±1.9</td>
<td>57.9%</td>
<td>9.3±1.5</td>
<td>8.1±2.3</td>
<td>48.1%</td>
</tr>
</tbody>
</table>
Figures

Figure R1 Time series of observed and simulated CH$_4$ concentrations at Mauna Loa (MLO, 19.54°N, 155.58°W, 3397) during the period 2000–2013. The simulated CH$_4$ concentrations are based on outputs from both standard (ST39ED42, blue circles) and zoom models (ZA39ED42, red circles). The solid lines indicate the corresponding long-term trends extracted from the data using the CCGVU curve-fitting routine (Thoning et al., 1989).
References

This study presents a detailed comparison between CO$_2$ and CH$_4$ simulations from the LMDzINCA model and the available measurements over South East Asia. It is meant as a first step in preparation for flux inversions, to identify observed signals pointing to shortcomings in the a priori fluxes or transport model uncertainty, in support of the inversion set-up. To this end a comparison is made between different model versions, and the added value of increased model resolution is assessed. The manuscript is well written, and the difference between model and measurements is carefully assessed. However, there should be a more efficient way to arrive at the main conclusions, e.g. by summarizing the performance in only a few key figures. This would also help to make the final conclusions more quantitative. In its current form, the scientific message is not so clear. In my opinion, publication in ACP would require more than just model performance documentation. Therefore, additional effort is needed to strengthen the scientific significance of this work.

[Response] Thank you very much for your careful review and comments. Following the reviewers’ suggestions, we launched new simulations with 39 vertical layers (L39) for both STs and ZAs, as compared to the previous simulations with only 19 vertical layers (L19). We updated the biomass burning emissions to the latest GFEDv4.1 for both CH$_4$ and CO$_2$ simulations. For CH$_4$, we also ran sensitivity test simulations, in which anthropogenic and wetland emissions are prescribed with the latest EDGARv4.3.2 and model outputs from ORCHIDEE. For CO$_2$, sensitivity test simulations are also performed with daily and 3-hourly biomass burning emissions from GFEDv4.1 (Table R1). Following your suggestions, we have rewritten most part of results, discussions and conclusions in the manuscript accordingly. We also replied to your major and minor comments in the following, and hopefully our responses and revision adequately address all your comments and questions.

GENERAL COMMENTS

The conclusions describe the performance of the two model versions in qualitative, and sometimes rather vague, terms such as ‘generally capable’, ‘moderately improves’, ‘fairly well’, etc. Some key numbers are needed quantifying the performance, and the significance of performance differences. For example, one would expect improved resolution to pay out more on performance metrics addressing short-term variability, or at sites that are more influenced by small scale variability in the sources and sinks. Different temporal scales are addressed separately, but, to improve the scientific significance, the relation between them could be addressed in further detail.

[Response] Following your suggestion, we have rewritten the conclusions and implications. Key numbers are given with respect to the model improvement with finer horizontal resolution. We also claim that the performance of high resolution transport model is more
sensitive to errors in meteorological forcings and surface fluxes, especially when short-term variabilities or stations close to source regions are examined. This emphasizes importance of accurate a priori CH$_4$ surface fluxes in high resolution transport modelling and inverse studies, particularly regarding locations and magnitudes of emission hotspots. Please refer to Section 4 for more details.

The idea to compare CO$_2$ and CH$_4$ is interesting, however, it is difficult to compare the model performance between the two. It is like comparing apples and oranges, since the spatio-temporal scales that are influenced by the emissions of these tracers in relation to variations due to transport are so different. It is suggested that the emission uncertainty is more important for CO$_2$ than for CH$_4$, but because of the correlation between flux and transport uncertainties (e.g. the rectifier in case of CO$_2$) it is not possible to really separate these influences. If without this problem, the question remains what it means for the potential of the inversion to contribute to our understanding of the fluxes. The results suggest that this potential is better for CO$_2$, whereas I don’t think this can really be objectively quantified just from forward simulations.

[Response] We agree with Reviewer #2 that it’s difficult to compare the model performance between CO$_2$ and CH$_4$, and that the correlation between flux and transport uncertainty is not possible to be really separated. In the revised paper we no longer suggest the emission uncertainty is more important for CO$_2$ than for CH$_4$. In fact, the emission uncertainty is important for both gases, yet in different ways. For CH$_4$, we highlight importance of uncertainty regarding the magnitudes and distribution of emission hotspots; while with respect to CO$_2$, we more focus on uncertainties related to the spatio-temporally varying NEE fluxes. We rephrased the conclusions and implications in Section 4 and removed statements about the potential of inversions to contribute to our understanding of CO$_2$ or CH$_4$ fluxes. However, in a few places we kept comparisons between CO$_2$ and CH$_4$ at specific stations. For example, in Section 3.2, the strong contrast in model performance between CO$_2$ and CH$_4$ seasonal cycles at BKT does suggest inaccurate seasonal variations in the prescribed CO$_2$ surface fluxes such as NEE.

I see the value of assessing the benefits of improving model resolution. The trouble here, however, is the limiting vertical resolution. The conclusion that this resolution needs to be improved seems quite obvious to me, to the extent that I even wonder why this was not done from the start. It seems a necessary prerequisite for assessing the benefits of improved model resolution.

[Response] Following your suggestion, we launched new simulations with 39 vertical layers (L39) for both STs and ZAs, as compared to the previous simulations with only 19 vertical layers (L19). The detailed model setups for control simulations and sensitivity tests prescribed with different surface fluxes are shown in Table R1. In brief, increasing model vertical resolution does not have as much impact on model performance as increasing the horizontal resolution at any temporal scale, although in several cases the combination of finer
horizontal and vertical resolution tends to further increase the simulated amplitudes of variations (not necessarily improve the model performance). More detailed results and discussions are presented in Section 3.

Why has the vertical profile comparison to CONTRAIL been limited to CO$_2$? It is true that CH$_4$ was measured only on a small subset of samples, but to include this could nevertheless be important to separate the influence of diurnal variations in emissions and PBL mixing. To me it seems that there is also some unexplored potential comparing diurnal cycle mismatches between CH$_4$ (PBL mixing controlled) and CO$_2$ (PBL mixing and flux variation controlled).

[Response] We agree that the model-data comparison of vertical profiles for both CO$_2$ and CH$_4$ would be important to separate the influence of diurnal variations in surface fluxes and PBL mixing. The question here is that the vertical profiles from the CONTRAIL project are only limited to CO$_2$ measurements that are made by on-board continuous measurement equipment (CME). Measurements for CH$_4$ are also available, but they are only flask samples in the high troposphere and stratosphere. Please refer to Machida et al. (2008) for further information about the project and the dataset.

Since the aim was to prepare for inversions, what are the implications of this study for the inversion setup? I mean, the implications that are mention don’t seem to have any practical consequences (except for the need for improved vertical resolution).

[Response] There are three implications for inversion setup, which we have elaborated in Section 4. First, the performance of high resolution transport model is more sensitive to accuracy of the prescribed surface fluxes, especially regarding locations and magnitudes of emission hotspots for CH$_4$. Therefore, one should be cautious when choosing an emission map as a priori for inversions. In particular, the unrealistic emission hotspots close to a station (as shown for UUM in Section 3.3.1) should be corrected, otherwise the inverted surface fluxes are likely to be strongly biased.

Second, as current bottom-up estimates of CH$_4$ sources and sinks still suffer from large uncertainties at fine scales, caution should be taken when one attempts to assimilate observations not realistically simulated by the high resolution transport model. These observations should be either removed from inversions or allocated with large uncertainties.

Third, representation of short-term variabilities is limited by model’s ability to simulate boundary layer mixing and mesoscale transport in complex terrains. The recent implementation of new sub-grid physical parameterizations in LMDz is able to significantly improve simulation of the daily maximum during nighttime and thus diurnal cycles of tracer concentrations (Locatelli et al., 2015). To fully take advantage of high-frequency CH$_4$ or CO$_2$ observations at stations close to source regions, it is highly recommended to implement the new boundary layer physics in the current transport model, in addition to refinement of model horizontal and vertical resolutions. The current transport model with old planetary boundary
physics is not capable to capture diurnal variations at continental or mountain stations, therefore only observations that are well represented should be selected and kept for inversions (e.g. afternoon measurements for continental stations and nighttime measurements for mountain stations).

SPECIFIC COMMENTS

Line 163: How is the OH scaling done? A single scaling factor?

[Response] In the revised paper, we relaunch CH₄ simulations with different model versions, using OH fields regridded from outputs of a full chemistry INCA with model grids of 96×95×39. We don’t scale the OH fields as did before to match the simulated global CH₄ growth rate with the observed one, as we are more focusing on the improvement gained from finer model resolutions rather than accurately reproducing the observed CH₄ concentrations and their interannual variations. Furthermore, all the traits and metrics we have considered to evaluate the model performance (i.e., annual mean gradient, seasonal cycle, synoptic variability, diurnal cycle and vertical gradient) give “relative” values that are not affected by the absolute CH₄ concentrations. Therefore the influences of the OH fields on the model improvement are assumed to be very small, and we don’t scale them in the current CH₄ simulations. We revised the description of the OH fields accordingly in Section 2.1.1.

Line 194: Given the inter-annual variability of biomass burning, wouldn’t it be better to use a climatological mean emission distribution for the extrapolated years?

[Response] In the updated simulations, we used GFEDv4.1 for emissions from biomass burning that are available over the whole running period (2000–2013). We revised the description of the prescribed surface fluxes accordingly in Section 2.1.2.

Section 2.2: Differences between calibration scales are mentioned but except for AMY CH₄ it is not clear how these differences have been accounted for.

[Response] As we described in Section 2.2, the CH₄ measurements at AMY are reported on the KRISS scale and they are not traceable to the WMO scale. For analyses of the CH₄ annual gradients between stations, we discard AMY because calibrations scales for different stations (i.e. AMY and HLE in this case) should be consistent for the calculation of gradients between them. For the analyses of seasonal cycle, synoptic variability and diurnal cycle, since the calibration scale doesn’t significantly impact the results, we keep this station in these analyses.

Line 364: Is this after subtracting longer term components?

[Response] Yes. When we evaluated the model performance on CH₄ and CO₂ diurnal cycle, for each station daily means are subtracted from the raw data to remove any influence of
interannual, seasonal or even synoptic variations. We revised Section 2.4.4 in the manuscript to clarify it.

Line 408: Given the short regional transport times it is unclear how errors in OH could play a role.

[Response] The main sink of CH$_4$ is oxidation by OH in the troposphere. Although we agree that the regional transport time is much shorter compared to the CH$_4$ lifetime, the spatial (both horizontally and vertically) and seasonal distribution of OH can influence the model performance on CH$_4$ annual gradients between stations and seasonal cycles. Here in the paper, the CH$_4$ annual gradient between TAP and HLE is significantly overestimated by both STs and ZAs. The overall poor performance at this station suggests the prescribed surface emissions are probably overestimated over the station’s footprint area (also shown by overestimation of seasonal amplitude at TAP), yet errors in OH distribution may also play a role – although we are not clear about the magnitude. To address the question we need an inverse system that can optimized the OH fields by assimilating observations of a tracer with well-known fluxes (e.g., methylchloroform), which is beyond the scope of this study.

Line 627: Would the improvements in PBL dynamics that are mentioned work in the right direction?

[Response] Yes. In Locatelli et al. (2015) the authors evaluated the impact of new physical parameterizations recently implemented in LMDz on representation of trace gas transport and chemistry. These development and modification on physical parameterization are to improve simulation of vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. Regarding the PBL dynamics, the thermal plume model is developed and combined with Yamada (1983) diffusion scheme to improve representation of the diurnal cycles of thermodynamical and dynamical variables of the boundary layer and of shallow cumulus clouds (Hourdin et al., 2002; Rio et al., 2008). Locatelli et al. (2015) showed that implementing this new PBL physics in LMDz significantly improves representation of the daily peak values of 222Rn concentrations at continental stations compared to the old model version (see Figure 3 in their paper), and the simulated diurnal cycles can agree very well with the observed one at a few tested stations (e.g. Heidelberg, as shown in Figure 4 in their paper). So far we haven’t implemented the new PBL physics in our current model simulations, we will explore its potential in representation diurnal cycle of CO$_2$ and CH$_4$ in future studies.

Table 1: How about the seasonal variation in anthropogenic CH$_4$ emissions? (why are they taken into account for CO$_2$ but not for CH$_4$?). How about the temporal variability of biomass burning? It seems relevant to make use of available information regarding its sub-monthly variability, in particular when assessing the impact of improved resolution is an important goal.
For the first question, we have considered the seasonal variation in anthropogenic CH$_4$ emissions from rice cultivation based on Matthews et al. (1991), as described in Section 2.1.2 and Table 1. The seasonal variations for other emission sectors are much smaller compared to those from rice paddies, and monthly sector-specific dataset is currently not available for the whole study period. Therefore we didn’t considered seasonal variations in CH$_4$ emissions from those sectors. We revised Section 2.1.2 to further clarify it.

For the second question, in this study we used monthly biomass burning dataset from the GFEDv4.1 product. We agree that including its sub-monthly variability would be relevant when assessing the impact of increased resolution on model performance, especially for those stations that are potentially influenced by episodic large biomass burning events. Following your suggestion, we launched sensitivity test simulations for CO$_2$ using daily and 3-hourly biomass burning emissions for the year 2013, and evaluate the model performance on synoptic variation and diurnal cycle at a tropical station located in western Indonesia BKT (100.32°E, 0.20°S, 869m a.s.l.). Results show that simulations prescribed with daily or 3-hourly variability of biomass burning do not always improve representation of CO$_2$ diurnal cycle at BKT – sometimes could be worse, which again emphasizes uncertainties in prescribed surface fluxes (including uncertainties in temporal variability) as one of major factors that influence the model performance.

TECHNICAL CORRECTIONS

Line 132: ‘representthe’

[Response] We corrected it.

Line 612: ‘Here’, where?

[Response] We rewrote the whole section. Please refer to Section 3.4.1.

S4: Why does the legend show blue colors? It would be better to leave this part out given that positive hotspots are in blue also.

[Response] Following your suggestion, we corrected the legend in Figure S4.
References

Tables

Table R1 Model setups for different simulations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST19_ED42</td>
<td>144×142 Standard, 19 layers</td>
<td>EDGAR4.2FT2010</td>
<td>KAPLAN climatology</td>
</tr>
<tr>
<td>ZA19_ED42</td>
<td>144×142 Asian Zoom, 19 layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST39_ED42</td>
<td>144×142 Standard, 39 layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZA39_ED42</td>
<td>144×142 Asian Zoom, 39 layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST39_ED432</td>
<td>144×142 Standard, 19 layers</td>
<td>EDGAR4.3.2</td>
<td></td>
</tr>
<tr>
<td>ZA39_ED432</td>
<td>144×142 Asian Zoom, 19 layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST39_ED432ORC</td>
<td>144×142 Standard, 39 layers</td>
<td></td>
<td>ORCHIDEE climatology</td>
</tr>
<tr>
<td>ZA39_ED432ORC</td>
<td>144×142 Asian Zoom, 39 layers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulating CH$_4$ and CO$_2$ over South and East Asia using the zoomed chemistry transport model LMDzINCA

Xin Lin1, Philippe Ciais1, Philippe Bousquet1, Michel Ramonet1, Yi Yin1, Yves Balkanski1, Anne Cozic1, Marc Delmotte1, Nikolaos Evangelou2, Nuggehalli K. Indira3, Robin Locatelli1a, Shushi Peng4, Shilong Piao4, Marielle Saunois1, Panangady S. Swathi3, Rong Wang1, Camille Yver-Kwok1, Yogesh K. Tiwari5, Lingxi Zhou6

Affiliations:

1Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
2Norwegian Institute for Air Research (NILU), Department of Atmospheric and Climate Research (ATMOS), Kjeller, Norway
3CSIR Fourth Paradigm Institute (formerly CSIR Centre for Mathematical Modelling and Computer Simulation), NAL Belur Campus, Bengaluru 560 037, India
4Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
5Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India
6Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration (CMA), Beijing, China

Correspondence to: X. Lin (xin.lin@lsce.ipsl.fr)

a Now at: AXA Global P&C, Paris, France
Abstract

The increasing availability of atmospheric measurements of greenhouse gases (GHGs) from surface stations can improve the retrieval of their fluxes at higher spatial and temporal resolutions by inversions, provided that transport models are able to properly represent the variability of concentrations observed at different stations. South and East Asia (SEA) is a region with large and very uncertain emissions of carbon dioxide (CO$_2$) and methane (CH$_4$), the most potent anthropogenic GHGs. Monitoring networks have expanded greatly during the past decade in this region, which should contribute to reducing uncertainties in estimates of regional GHG budgets. In this study, we simulate concentrations of CH$_4$ and CO$_2$ using a zoomed version (abbreviated as ‘ZAs’) of the global chemistry transport model LMDzINCA, which has fine horizontal resolutions of ~0.66° in longitude and ~0.51° in latitude over SEA and coarser resolutions elsewhere. The concentrations of CH$_4$ and CO$_2$ simulated from ZAs are compared to those from the same model but with standard model grids of 2.50° in longitude and 1.27° in latitude (abbreviated as ‘STs’), both prescribed with the same natural and anthropogenic fluxes. Model performance is evaluated for each model version at multi-annual, seasonal, synoptic and diurnal scales, against a unique observation dataset including 39 global and regional stations over SEA and around the world. Results show that ZAs improve the overall representation of CH$_4$ annual gradients between stations in SEA, with reduction of RMSE by 16–20% compared to STs. The model improvement mainly results from reduction in representation error at finer horizontal resolutions and thus better characterization of the CH$_4$ concentration gradients related to scatterly distributed emission sources. However, the performance of ZAs at a specific station as compared to STs is more sensitive to errors in meteorological forcings and surface fluxes, especially when short-term variabilities or stations close to source regions are examined. This emphasizes importance of accurate a priori CH$_4$ surface fluxes in high resolution transport modelling and inverse studies, particularly regarding locations and magnitudes of emission hotspots. Model performance for CO$_2$ suggests that the CO$_2$ surface fluxes have not been prescribed with sufficient accuracy and resolution, especially the spatio-temporally varying carbon exchange between land surface and atmosphere. Besides, representation of the CH$_4$ and CO$_2$ short-term variabilities is also limited by model’s ability to simulate boundary layer mixing and mesoscale transport in complex terrains, emphasizing the need to improve sub-grid physical parameterizations in addition to refinement of model resolutions.
1 Introduction

Despite attrition in the global network of greenhouse gas (GHG) monitoring stations (Houweling et al., 2012), new surface stations have been installed since the late 2000s in the northern industrialized continents such as Europe (e.g., Aalto et al., 2007; Biraud et al., 2000; Haszpra, 1995; Levin et al., 1995; Lopez et al., 2015; Popa et al., 2010), North America (e.g., Bakwin et al., 1998; Dlugokencky et al., 1995; Miles et al., 2012), and Northeast Asia (e.g., Fang et al., 2014; Sasakawa et al., 2010; Wada et al., 2011; Winderlich et al., 2010). In particular, the number of continuous monitoring stations over land has increased (e.g., Aalto et al., 2007; Bakwin et al., 1998; Lopez et al., 2015; Winderlich et al., 2010) given that more stable and precise instruments are available (e.g., Yver Kwok et al., 2015). These observations can be assimilated in inversion frameworks that combine them with a chemistry transport model and prior knowledge of fluxes to optimize GHG sources and sinks (Berchet et al., 2015; Bergamaschi et al., 2010, 2015, Bousquet et al., 2000, 2006; Bruhwiler et al., 2014; Gurney et al., 2002; Peters et al., 2010; Rödenbeck et al., 2003). Given the increasing observation availability, GHG budgets are expected to be retrieved at finer spatial and temporal resolutions by atmospheric inversions if the atmospheric GHG variability can be properly modeled at these scales. A first step of any source optimization is to evaluate the ability of chemistry transport models to represent the variabilities of GHG concentrations, as transport errors are recognized as one of the main uncertainties in atmospheric inversions (Locatelli et al., 2013).

Many studies have investigated regional and local variations of atmospheric GHG concentrations using atmospheric chemistry transport models, with spatial resolutions ranging 100–300 km for global models (e.g., Chen and Prinn, 2005; Feng et al., 2011; Law et al., 1996; Patra et al., 2009a, 2009b) and 10–100 km for regional models (e.g., Aalto et al., 2006; Chevillard et al., 2002; Geels et al., 2004; Wang et al., 2007). Model intercomparison experiments showed that the atmospheric transport models with higher horizontal resolutions are more capable of capturing the observed short-term variability at continental sites (Geels et al., 2007; Law et al., 2008; Maksyutov et al., 2008; Patra et al., 2008; Saeki et al., 2013), due to reduction of representation errors (point measured versus gridbox-averaged modeled concentrations), improved model transport, and more detailed description of surface fluxes and topography (Patra et al., 2008). However, a higher horizontal model resolution also
demands high-quality meteorological forcings and prescribed surface fluxes as boundary conditions (Locatelli et al., 2015a).

Two main approaches have been deployed, in an Eulerian modeling context, to address the need for high-resolution transport modeling of long-lived GHGs. The first approach is to define a high-resolution grid mesh in a limited spatial domain of interest, and to nest it within a global model with varying degrees of sophistication to get boundary conditions for the GHGs advected inside/outside the regional domain (Bergamaschi et al., 2005, 2010; Krol et al., 2005; Peters et al., 2004). The second approach is to stretch the grid of a global model over a specific region (the so-called ‘zooming’) while maintaining all parameterizations consistent (Hourdin et al., 2006). For the former approach, several nested high-resolution zooms can be embedded into the same model (Krol et al., 2005) to focus on different regions. The ‘zooming’ approach has the advantage to avoid the nesting problems (e.g., tracers discontinuity, transport parameterization inconsistency) at the boundaries between a global and a regional model. In this study, we use the zooming capability of the LMDz model (Hourdin et al., 2006).

South and East Asia (hereafter ‘SEA’) has been the largest anthropogenic GHG emitting region since the mid 2000s due to its rapid socioeconomic development (Boden et al., 2015; Olivier et al., 2015; Le Quéré et al., 2015; Tian et al., 2016). Compared to Europe and North America where sources and sinks of GHGs are partly constrained by atmospheric observational networks, the quantification of regional GHG fluxes over SEA from atmospheric inversions remains uncertain because of the low density of surface observations (e.g., Patra et al., 2013; Swathi et al., 2013; Thompson et al., 2014, 2016). During the past decade, a number of new surface stations have been deployed (e.g., Fang et al., 2016, 2014; Ganesan et al., 2013; Lin et al., 2015; Tiwari and Kumar, 2012), which have the potential to provide new and useful constraints on estimates of GHG fluxes in this region. However, modeling GHG concentrations at these stations is challenging since they are often located in complex terrains (e.g. coasts or mountains) or close to large local sources of multiple origins. To fully take advantage of the new surface observations in SEA, forward modeling studies based on high-resolution transport models are needed to evaluate the ability of the inversion framework to assimilate such new observations.
In this study, we apply the chemistry transport model LMDzINCA (Folberth et al., 2006; Hauglustaine et al., 2004; Hourdin et al., 2006; Szopa et al., 2013) zoomed down to a horizontal resolution of ~50km over SEA to simulate the variations of CH$_4$ and CO$_2$ during the period 2006–2013. The model performance is evaluated against observations from global and regional stations inside and outside the zoomed region. The variability of the observed or simulated concentrations at each station is decomposed for evaluation at different temporal scales, namely: the annual mean gradients between stations, the seasonal cycle, the synoptic variability and the diurnal cycle. For comparison, a non-zoomed standard version of the same transport model is also run with the same set of surface fluxes and the same vertical pressure levels, in order to estimate the improvement brought by the zoomed configuration. The detailed description of the observations and the chemistry transport model is presented in Section 2, together with the prescribed CH$_4$ and CO$_2$ surface fluxes that force the simulations, as well as the metrics used to quantify the model performance. An evaluation of the simulations performed is presented and discussed in Section 3, showing capabilities of the transport model to represent the annual gradients between stations, and the seasonal, synoptic, and diurnal variations. Conclusions and implications drawn from this study are given in Section 4.

2 Data and Methods

2.1 Model description

2.1.1 LMDzINCA

The LMDzINCA model couples a general circulation model developed at the Laboratoire de Météorologie Dynamique (LMD; Hourdin et al., 2006), and a global chemistry and aerosol model INteractions between Chemistry and Aerosols (INCA; Folberth et al., 2006; Hauglustaine et al., 2004). A more recent description of LMDzINCA is presented in Szopa et al. (2013). To simulate CH$_4$ and CO$_2$ concentrations, we run a standard version of the model with a horizontal resolution of 2.5° (i.e., 144 model grids) in longitude and 1.27° (i.e., 142 model grids) in latitude (hereafter this version is abbreviated as ‘STs’) and a zoomed version with the same number of grid boxes, but a resolution of ~0.66° in longitude and ~0.51° in latitude in a region of 50–130°E and 0–55°N centered over India and China (hereafter this version is abbreviated as ‘ZAs’) (Figure 1; see also Wang et al., 2014, 2016). It means that, in
terms of the surface area, a gridcell from STs roughly contains 9 grid-cells from ZAs within the zoomed region. Both model versions are run with 19 and 39 sigma-pressure layers, thus rendering four combinations of horizontal and vertical resolutions (i.e., ST19, ZA19, ST39, ZA39). Vertical diffusion and deep convection are parameterized following the schemes of Louis (1979) and Tiedtke (1989), respectively. The simulated horizontal wind vectors \((u, v)\) are nudged towards the 6-hourly European Center for Medium Range Weather Forecast (ECMWF) reanalysis dataset (ERA-I) in order to simulate the observed large scale advection (Hourdin and Issartel, 2000).

The atmospheric concentrations of hydroxyl radicals (OH), the main sink of atmospheric CH\(_4\), are produced from a simulation at a horizontal resolution of 3.75° in longitude (i.e., 96 model grids) and 1.9° in latitude (i.e., 95 model grids) with the full INCA tropospheric photochemistry scheme (Folberth et al., 2006; Hauglustaine et al., 2004, 2014). The OH fields are climatological monthly data, and are regridded to the standard and zoomed model grids, respectively. It should be noted that the spatiotemporal distributions of the OH concentrations have large uncertainties and vary greatly among different chemical transport models, therefore the choice of the OH fields may affect the evaluation for CH\(_4\) (especially in terms of the annual gradients between stations and the seasonal cycles). In this study, as we focus more on the improvement of performance gained from refinement of the model resolution rather than model-observation misfits and model bias in CH\(_4\) growth rates, the influences of OH variations on model improvement are assumed to be very small given that the OH fields for both ZAs and STs are regridded from a lower model resolution and thus don’t show much difference between the two model versions.

The CH\(_4\) and CO\(_2\) concentrations are simulated over the period 2000–2013 with both STs and ZAs. The first six years (2000–2005) of the simulations are considered as model spin-up, thus we only compared the simulated CH\(_4\) and CO\(_2\) concentrations with observations during 2006–2013. The initial CH\(_4\) concentration field is defined based on the optimized initial state from a CH\(_4\) inversion that assimilates observations from 50+ global background stations over the period 2006–2012 (Locatelli, 2014; Locatelli et al., 2015c). The optimized initial CH\(_4\) concentration field for the year 2006 is rescaled to the levels of the year 2000 and used as the initial state in our simulations. The time step of model outputs is hourly.
2.1.2 Prescribed CH4 and CO2 surface fluxes

The prescribed CH4 and CO2 surface fluxes used as model inputs are presented in Table 1. We simulate the CH4 concentration fields using a combination of the following datasets: (1) the interannually varying anthropogenic emissions obtained from the Emission Database for Global Atmospheric Research (EDGAR) v4.2 FT2010 product (http://edgar.jrc.ec.europa.eu), including emissions from rice cultivation with the seasonal variations based on Matthews et al. (1991) imposed to the original yearly data; (2) climatological wetland emissions based on the scheme developed by Kaplan et al. (2006); (3) interannually and seasonally varying biomass burning emissions from Global Fire Emissions Database (GFED) v4.1 product (Randerson et al., 2012; Van Der Werf et al., 2017; http://www.globalfiredata.org/), (4) climatological termite emissions (Sanderson, 1996), (5) climatological ocean emissions (Lambert and Schmidt, 1993), and (6) climatological soil uptake (Ridgwell et al., 1999). Note that for anthropogenic emissions from sectors other than rice cultivation, the seasonal variations are much smaller, and monthly sector-specific dataset is currently not available for the whole study period. Therefore we do not consider seasonal variations in CH4 emissions from those sectors. Based on these emission fields, the global CH4 emissions in 2010 are 550 TgCH4/yr, and 194 TgCH4/yr over the zoomed region. For the years over which CH4 anthropogenic emissions (namely, the years 2011–2013) were not available from the data sources when the simulations were performed, we use emissions for the year 2010.

The prescribed CO2 fluxes used to simulate the concentration fields are based on the following datasets: (1) three variants (hourly, daily, and monthly means) of interannually varying fossil fuel emissions produced by the Institut für Energiewirtschaft und Rationelle Energieanwendung (IER), Universität Stuttgart on the basis of EDGARv4.2 product (hereafter IER-EDGAR, http://carbones.ier.uni-stuttgart.de/wms/index.html) (Pregger et al., 2007); (2) interannually and seasonally varying biomass burning emission from GFEDv4.1 (Randerson et al., 2012; Van Der Werf et al., 2017; http://www.globalfiredata.org/); (3) interannually and hourly varying terrestrial biospheric fluxes produced from outputs of the Organizing Carbon and Hydorlogy in Dynamic EcosystEm (ORCHIDEE) model; and (4) interannually and seasonally varying air-sea CO2 gas exchange maps developed by NOAA’s Pacific Marine Environmental Laboratory (PMEL) and Atlantic Oceanographic and Meteorological Laboratory (AOML) groups (Park et al., 2010). Here ORCHIDEE runs with the trunk version r1882 (source code available at...
(Huntzinger et al., 2013). The climate forcing data are obtained from CRUNCEP v5.3.2, while the yearly land use maps, soil map and other forcing data (e.g., monthly CO₂ concentrations) are as described in Wei et al. (2014). The sum of global net CO₂ surface fluxes in 2010 are 6.9 PgC/yr, and 3.9 PgC/yr over the zoomed region. For the CO₂ fossil fuel emissions, the IER-EDGAR product is only available until 2009. To generate the emission maps for the years 2010–2013, we scaled the emission spatial distribution in 2009 using the global totals for these years based on the EDGARv4.2FT2010 datasets. The detailed information for each surface flux is listed in Table 1.

2.2 Atmospheric CH₄ and CO₂ observations

The simulated CH₄ and CO₂ concentrations are evaluated against observations from 20 flask and 13 continuous surface stations within and around the zoomed region (Figure 1), operated by different programs and organizations (Table 2). The stations where flask observations are published (12 stations) mainly belong to the cooperative program organized by the NOAA Earth System Research Laboratory (NOAA/ESRL, available at ftp://aftp.cmdl.noaa.gov/data/trace_gases/). We also use flask observations from stations operated by China Meteorological Administration (CMA, China) (the JIN, LIN and LON stations, see also Fang et al., 2014), Commonwealth Scientific and Research Organization (CSIRO, Australia) (the CRI station, Bhattacharya et al., 2009, available at http://ds.data.jma.go.jp/gmd/wdcgg/), Indian Institute of Tropical Meteorology (IITM, India) (the SNG station, see also Tiwari et al., 2014), and stations from the Indo-French cooperative research program (the HLE, PON and PBL stations, Lin et al., 2015; Swathi et al., 2013). All the CH₄ (CO₂) flask measurements are reported on or linked to the NOAA2004 (WMOX2007) calibration scale, which guarantees comparability between stations in terms of annual means.

The continuous CH₄ and CO₂ measurements are obtained from 13 stations operated by Korea Meteorological Administration (KMA, Korea) (the AMY and GSN stations), Aichi Air Environment Division (AAED, Japan) (the MKW station), Japan Meteorological Agency (JMA) (the MNM, RYO and YON stations), National Institute for Environmental Studies (NIES, Japan) (the COI and HAT stations), Agency for Meteorology, Climatology and
Geophysics (BMKG, Indonesia) and Swiss Federal Laboratoires for Materials Testing and Research (Empa, Switzerland) (the BKT station). These datasets are available from the World Data Center for Greenhouse Gases (WDCGG, http://ds.data.jma.go.jp/gmd/wdcgg/). Besides, continuous CH$_4$ and CO$_2$ measurements are also available from HLE and PON that have been maintained by the Indo-French cooperative research program between LSCE in France and IIA and CSIR4PI in India (Table 2). All the continuous CH$_4$ (CO$_2$) measurements used in this study are reported on or traceable to the NOAA2004 (WMOX2007) scale except AMY, COI and HAT. The CO$_2$ continuous measurements at COI are reported on the NIES95 scale, which is 0.10 to 0.14 ppm lower than WMO in a range between 355 and 385 ppm (Machida et al., 2009). The CH$_4$ continuous measurements at COI and HAT are reported on the NIES scale, with a conversion factor to WMO scale of 0.9973 (JMA and WMO, 2014). For AMY, the CH$_4$ measurements over most of the study period are reported on the KRISS scale but they are not traceable to the WMO scale (JMA and WMO, 2014); therefore, we discarded this station from the subsequent analyses of the CH$_4$ annual gradients between stations. Note that most of the stations where continuous observations are available are located on the east part of the zoomed region, with the exception of HLE, PON and BKT. The stations used in this study span a large range of geographic locations (marine, coastal, mountain or continental) with polluted and non-polluted environments. Both flask and continuous measurements are used to evaluate the model’s ability in representing the annual gradient between stations, the seasonal cycle and the synoptic variability for CH$_4$ and CO$_2$. The continuous measurements are also used to analyze the diurnal cycle for these two gases.

To evaluate the model performance with regards to vertical transport, we also use observations of the CO$_2$ vertical profiles from passenger aircraft from the Comprehensive Observation Network for TRace gases by AlIrLiner (CONTRAIL) project (Machida et al., 2008, http://www.cger.nies.go.jp/contrail/index.html). This dataset provides high-frequency CO$_2$ measurements made by on-board continuous CO$_2$ measuring equipments (CMEs) during commercial airflights between Japan and other Asian countries. The CONTRAIL data are reported on the NIES95 scale, which is 0.10 to 0.14 ppm lower than WMO in a range between 355 and 385 ppm (Machida et al., 2009). In this study, we select from the CONTRAIL dataset all the CO$_2$ vertical profiles over SEA during the ascending and descending flights for the period 2006–2011, which provided 1808 vertical profiles over a total of 32 airports (Figure S1 and S2).
2.3 Sampling methods and data processing

The model outputs are sampled at the nearest gridpoint and vertical level to each station for both STs and ZAs. For flask stations, the model outputs are extracted at the exact hour when each flask sample was taken. For continuous stations below 1000 m.a.s.l., since both STs and ZAs cannot reproduce accurately the nighttime CH$_4$ and CO$_2$ accumulation near the ground as in most transport models (Geels et al., 2007), only afternoon (12:00–15:00 LST) data are retained for further analyses of the annual gradients, the seasonal cycle and the synoptic variability. For continuous stations above 1000 m.a.s.l. (only HLE in this study), nighttime (00:00–3:00 LST) data are retained, to avoid sampling local air masses advected by upslope winds from nearby valleys. During daytime, the local valley ascendants and the complex terrain mesoscale circulations cannot be captured by a global transport model.

The curve-fitting routine (CCGvu) developed by NOAA Climate Monitoring and Diagnostic Laboratory (NOAA/CMDL) is applied to the modelled and observed CH$_4$ and CO$_2$ time series to extract the annual means, monthly smoothed seasonal cycles and synoptic variations (Thoning et al., 1989). For each station, a smoothed function is fitted to the observed or modelled time series, which consists of a first-order polynomial for the growth rate, two harmonics for the annual cycle (Levin et al., 2002; Ramonet et al., 2002), and a low-pass filter with 80 and 667 days as short-term and long-term cutoff values, respectively (Bakwin et al., 1998). The annual means and the mean seasonal cycle are calculated from the smoothed curve and harmonics, while the synoptic variations are defined as the residuals between the original data and the smoothed fitting curve. Note that we have excluded the observations lying beyond three standard deviations of the residuals around the fitting curve, which are likely to be outliers that are influenced by local fluxes. More detailed descriptions about the curve-fitting procedures and the set-up of parameters can be found in Section 2.3 of Lin et al. (2015).

For the CO$_2$ vertical profiles from the CONTRAIL passenger aircraft programme, since CO$_2$ data have been continuously taken every 10 seconds by the onboard CMEs, we average the observed and corresponding simulated CO$_2$ time series into altitude bins of 1km from the surface to the upper troposphere. We also divide the whole study area into four major subregions for which we group all available CONTRAIL CO$_2$ profiles (Figure S1), namely East Asia (EAS), the Indian sub-continent (IND), Northern Southeast Asia (NSA) and
Southern Southeast Asia (SSA). Given that there are model-observation discrepancies in CO\textsubscript{2} growth rates as well as misfits of absolute CO\textsubscript{2} concentrations, the observed and simulated CONTRAIL time series have been detrended before comparisons of the vertical gradients. To this end, over each subregion, we detrend for each altitude bin the observed and simulated CO\textsubscript{2} time series, by applying the respective linear trend fit to the observed and simulated CO\textsubscript{2} time series of the altitude bin 3–4 km. This altitude bin is thus chosen as reference due to greater data availability compared to other altitudes, and because this level is outside the boundary layer where aircraft CO\textsubscript{2} data are more variable and influenced by local sources (e.g. airports and nearby cities). The detrended CO\textsubscript{2} (denoted as ΔCO\textsubscript{2}) referenced to the 3-4 km altitude are seasonally averaged for each altitude bin and each subregion, and the resulting vertical profiles of ΔCO\textsubscript{2} are compared between simulations and observations.

2.4 Metrics

In order to evaluate the model performance to represent observations at different time scales (annual, seasonal, synoptic, diurnal), following Cadule et al. (2010), we define a series of metrics and corresponding statistics for each time scale. All the metrics, defined below, are calculated for both observed and simulated CH\textsubscript{4} (CO\textsubscript{2}) time series between 2006 and 2013.

2.4.1 Annual gradients between stations

As inversions use gradients to optimize surface fluxes, it is important to have a metric based upon cross-site gradients. We take Hanle in India (HLE – 78.96°N, 32.78°E, 4517 m a.s.l., Figure 1, Table 2) as a reference and calculate the mean annual gradients by subtracting CH\textsubscript{4} (CO\textsubscript{2}) at HLE from those of other stations. HLE is a remote station in the free troposphere within SEA and is located far from any important source/sink areas for both CH\textsubscript{4} and CO\textsubscript{2}. These characteristics make HLE an appropriate reference to calculate the gradients between stations. Concentration gradients to HLE are calculated for both observations and model simulations using the corresponding smoothed curves fitted with the CCGvu routine (see Section 2.3). The ability of Z\textsubscript{As} and STs to represent the observed CH\textsubscript{4} (CO\textsubscript{2}) annual gradients across all the available stations is quantified by the mean bias (MB, Eq. 1) and the root-mean-square deviation (RMSE, Eq. 2). In Eq. 1 and Eq. 2, \(m_i\) and \(o_i\) indicate respectively the modelled and observed CH\textsubscript{4} (CO\textsubscript{2}) mean annual gradient relative to HLE for a station \(i\).
\[MB = \frac{\sum_{i=1}^{N}(m_i - o_i)}{N} \]

(1)

\[RMSE = \sqrt{\frac{\sum_{i=1}^{N}(m_i - o_i)^2}{N}} \]

(2)

2.4.2 Seasonal cycle

Two metrics of the model ability to reproduce the observed CH$_4$ (CO$_2$) seasonal cycle are considered, the phase and the amplitude. For each station, the seasonal phase is evaluated by the Pearson correlation between the observed and simulated harmonics extracted from the original time series, whereas the seasonal cycle amplitude is evaluated by the ratio of the modelled to the observed seasonal peak-to-peak amplitudes based on the harmonics (A_m/A_o).

2.4.3 Synoptic variability

For each station, the performance of ZAs and STs to represent the phase (timing) of the synoptic variability is evaluated by the Pearson correlation coefficient between the modelled and observed synoptic deviations (residuals) around the corresponding smoothed fitting curve (see Section 2.3), whereas the performance for the amplitude of the synoptic variability is quantified by the ratio of standard deviations of the residual concentration variability between the model and observations (i.e., Normalized Standard Deviation, NSD, Eq. 3). Further, the overall ability of a model to represent the synoptic variability of CH$_4$ (CO$_2$) at a station is quantified by the RMSE (Eq. 4), a metric that can be represented with the Pearson correlation and the NSD in a Taylor diagram (Taylor, 2001). In Eq. 3 and Eq. 4, m_j (o_j) indicates the modelled (observed) synoptic event j, whereas \bar{m} (\bar{o}) indicates the arithmetic mean of all the modelled (observed) synoptic events over the study period. Note that for the flask measurements, j corresponds to the time when a flask sample was taken, whereas for the continuous measurements, j corresponds to the early morning (00:00–03:00LST, for mountain stations) or afternoon (12:00–15:00LST, for coastal or island stations) period of each sampling day.
\[NSD = \frac{\sqrt{\sum_{j=1}^{N} (m_j - \bar{m})^2}}{\sqrt{\sum_{j=1}^{N} (o_j - \bar{o})^2}} \]

\[RMSE = \frac{\sqrt{\sum_{j=1}^{N} (m_j - o_j)^2}}{N} \]

2.4.4 Diurnal cycle

For each station, the model’s ability to reproduce the mean CH$_4$ (CO$_2$) diurnal cycle phase in a month is evaluated by the correlation of the hourly mean composite modelled and observed values, whereas model performance on the diurnal cycle amplitude is evaluated by the ratio of the modelled to the observed peak-to-peak amplitudes (A_m/A_o). For each station, daily means are subtracted from the raw data to remove any influence of interannual, seasonal or even synoptic variations.

3 Results and discussions

3.1 Annual gradients

3.1.1 CH$_4$ annual gradients

The annual mean gradient between a station and the HLE reference station relates to the time integral of transport of sources/sinks within the regional footprint area of the station on top of the background gradient caused by remote sources. For CH$_4$, Figure 2a,b shows the scatterplot of the simulated and observed mean annual gradients to HLE for all stations. In general, all the four model versions capture the observed CH$_4$ gradients with reference to HLE, and the simulated gradients roughly distribute around the identity line (Figure 2a,b).

Compared to standard versions (STs), the zoom versions (ZAs) better represent the CH$_4$ gradients for stations within the zoomed region (closed circles in Figure 2a,b), with RMSE decreasing by 20% and 16% for 19- and 39-layer models (Figure 2a,b and Table S1a). Note that increasing vertical resolution does not much impact the overall model performance, but the combination with the zoomed grid (i.e. ZA39) may inflate the model-observation misfits at a few stations with strong sources nearby (e.g. TAP and UUM in Table S2a). The
performance of ZAs within the zoomed region is also found for different seasons (Figure S3).

Outside the zoomed region (open circles in Figure 2a,b), the performance of ZAs does not significantly deteriorate despite the coarser resolution.

When looking into the model performance for different station types, ZAs generally better capture the gradients at coastal and continental stations within the zoomed region, given the substantial reduction of RMSE compared to STs (Table S1). For example, significant model improvement is found at Shangdianzi (SDZ – 117.12°E, 40.65°N, 293m a.s.l.) and Pondicherry (PON – 79.86°E, 12.01°N, 30m a.s.l.) (Figure 2a,b), each having an average bias reduction of 28.1 (73.0%) and 30.3 (94.7%) ppb respectively compared to STs for the 39-layer model (Table S2). This improvement mainly results from reduction in representation error with higher model horizontal resolutions in the zoomed region, through better description of surface fluxes and/or transport around the stations. Particularly, given the presence of large CH₄ emission hotspots within the zoomed region (Figure S4), ZAs makes the simulated CH₄ fields more heterogeneous around emission hotspots (e.g., North China in Figure S5), having the potential to better represent stations nearby on an annual basis if the surface fluxes are prescribed with sufficient accuracy (see Figure S6 for SDZ).

However, finer resolutions may enhance model-data misfits due to inaccurate meteorological forcings and/or surface flux maps. For example, for the coastal station Tae-ahn Peninsula (TAP – 126.13°E, 36.73°N, 21m a.s.l.) with significant emission sources nearby (Figure S6), both ZAs and STs overestimate the observed CH₄ gradients by > +15 ppb, and ZA39 perform even worse than other versions (Table S2). The poor model performance at TAP suggests that the prescribed emission sources are probably overestimated within the station’s footprint area (also see the marine station GSN, Figure S6), and higher model resolutions (whether in horizontal or in vertical) tend to inflate the model-observation misfits in this case. Besides, as stated in several previous studies (Geels et al., 2007; Law et al., 2008; Patra et al., 2008), for a station located in a complex terrain (e.g. coastal or mountain sites), the selection of an appropriate gridpoint and/or model level to represent an observation is challenging. In this study we sample the gridpoint and model level nearest to the location of the station, which may not be the best representation of data sampling selection strategy (e.g. marine sector at coastal stations or strong winds) and could contribute to the model-observation misfits.
3.1.2 CO₂ annual gradients

Both ZAs and STs can generally capture the CO₂ annual gradients between stations, although not as well as for CH₄ (Figure 2c,d). In contrast with CH₄, ZAs does not significantly improve representation of CO₂ gradients for stations within the zoomed region, with the mean bias and RMSE close to those of STs (Table S1b). At a few stations (e.g. TAP), ZAs even degrade model performance (Figure S8, Table S2b), possibly related to misrepresentation of CO₂ sources in the prescribed surface fluxes and transport effects. Again increasing model vertical resolution does not much impact the overall model performance.

With finer horizontal resolution, the model improvement to represent the annual gradients is more apparent for CH₄ than for CO₂. One of the reasons may point towards the quality of CO₂ surface fluxes, especially natural ones. They are spatially more diffuse than those of CH₄, and temporally more variable in response to weather changes (Parazoo et al., 2008; Wang et al., 2007). Therefore, the regional variations of net ecosystem exchange (NEE) not captured by the terrestrial ecosystem model (e.g. ORCHIDEE in this paper) may explain the worse model performance on the CO₂ annual gradients compared to CH₄, and less apparent model improvement. Further, the spatial resolution of the prescribed surface flux may also account for the difference in model improvement between CO₂ and CH₄ (e.g. the spatial resolution of anthropogenic emissions is 1° for CO₂ and 0.1° for CH₄). Therefore, with current setup of surface fluxes (Table 1), ZAs is more likely to resolve the spatial heterogeneity of CH₄ fields, and its improvement over STs is more apparent than that for CO₂.

3.2 Seasonal cycles

3.2.1 CH₄ seasonal cycles

The model performance for the seasonal cycle depends on quality of seasonal surface fluxes, atmospheric transport, and chemistry (for CH₄ only). For CH₄, both ZAs and STs very well capture the seasonal phases at most stations within the zoomed region (Figure 3a), and model resolutions (in both horizontal and vertical) do not significantly impact the simulated timing of seasonal maximum and minimum. The seasonal phases at Plateau Assy (KZM – 77.87°E, 43.25°N, 2524m a.s.l.), Waliguan (WLG – 100.90°E, 36.28°N, 3890m a.s.l.) and Ulaan Uul (UUM – 111.10°E, 44.45°N, 1012m a.s.l.) are not well represented, probably related to unresolved seasonally varying sources around these stations. The sensitivity test simulations...
prescribed with wetland emissions from ORCHIDEE outputs show much better model-observation agreement in seasonal phases (Figure S9). For stations outside the zoomed region, the performance of ZAs is not degraded despite the coarser horizontal resolutions (Figure S10).

With respect to the seasonal amplitude, the performance of STs and ZAs shows significant difference at stations influenced by large emission sources. For example, the seasonal amplitudes of AMY and TAP are strongly overestimated by STs \(\frac{A_m}{A_o} = 2.99 \) and \(\frac{A_m}{A_o} = 5.11 \) for the 39-layer model; Figure 3a), while ZAs substantially decrease the simulated amplitudes at these two stations with improved model-observation agreement \(\frac{A_m}{A_o} = 2.24 \) and \(\frac{A_m}{A_o} = 2.80 \) for the 39-layer model; Figure 3a). However, at SDZ the seasonal amplitude is even more exaggerated by ZAs, especially when higher vertical resolution is applied \(\frac{A_m}{A_o} = 1.70 \) and \(\frac{A_m}{A_o} = 2.03 \) for ST39 and ZA39; Figure 3a). The two contrasting cases suggest that increasing horizontal resolution does not necessarily better represent CH\(_4\) seasonal cycle, and model improvement/degradation depends on other factors such as accuracy of the temporal and spatial variations of prescribed fluxes, OH fields and meteorological forcings. Besides, as it is found for annual CH\(_4\) gradients, we note that the simulated seasonal amplitudes at stations in East Asia (AMY, TAP, GSN and SDZ) are consistently higher than the observed ones (Figure 3a), implying that the prescribed CH\(_4\) emissions are probably overestimated in this region.

3.2.2 CO\(_2\) seasonal cycles

The CO\(_2\) seasonal cycle mainly represents the seasonal cycle of NEE from ORCHIDEE convoluted with atmospheric transport. Figure 3b illustrates that both ZAs and STs well capture the CO\(_2\) seasonal phases at most stations, and a high correlation (Pearson correlation \(R > 0.8 \)) between the simulated and observed CO\(_2\) harmonics is found for 14 out of 20 stations within the zoomed region. However, the simulated onset of CO\(_2\) uptake in spring or timing of the seasonal minima tend to be earlier than observations. This shift in phase can be as large as >1 month for several stations (e.g. HLE, JIN and PON in Figure 3b), yet cannot be reduced by solely refining model resolutions. At BKT in western Indonesia, the shape of the CO\(_2\)
seasonality is not well captured (R=0.27 and R=0.30 for ST39 and ZA39; Figure 3b). Given that representation of the CH$_4$ seasonal phase at BKT is very good (R=0.97 for ST39 and ZA39; Figure 3a), the unsatisfactory model performance for CO$_2$ suggests inaccurate seasonal variations in the prescribed surface fluxes such as NEE and/or fire emissions. As for CH$_4$, the performance of ZAs is not degraded outside the zoomed region despite the coarser horizontal resolutions (Figure S11).

With respect to the CO$_2$ seasonal amplitude, 10 out of 20 stations within the zoomed region are underestimated by more than 20%, most of which are mountain and continental stations (Figure 3b). The underestimation of CO$_2$ seasonal amplitudes at these stations is probably due to the underestimated carbon uptake in northern mid-latitudes by ORCHIDEE, which is the case for most land surface models currently available (Peng et al., 2015). Another reason may be related to the misrepresentation of CO$_2$ seasonal rectifier effect (Denning et al., 1995), which means that the covariance between carbon exchange (through photosynthesis and respiration) and vertical mixing may not be well captured in our simulations even with finer model resolutions.

3.3 Synoptic variability

3.3.1 CH$_4$ synoptic variability

The day-to-day variability of CH$_4$ and CO$_2$ residuals are influenced by the regional distribution of fluxes and atmospheric transport at the synoptic scale. For CH$_4$, as shown in Figure 4a, both STs and ZAs fairly well capture the phases of synoptic variability at most stations within the zoomed region, with 15 out of 18 stations showing model-observation correlation r>0.3. Increasing horizontal resolution can more or less impact model performance, yet the direction of change is station-dependent. In general, ZAs improve correlation in phases for most marine and coastal stations compared to STs (e.g., CRI and HAT; Figure 4a), while degradation in model performance is mostly found for mountain and continental stations (e.g. KZM and SDZ; Figure 4a). With increased horizontal resolution, better characterization of the phases would require accurate representation of short-term variability in both meteorological forcings and emission sources at fine scales. This presents great challenges on data quality of boundary conditions, especially for mountain stations located in complex terrains or continental stations surrounded by highly heterogeneous yet uncertain emission sources.
Regarding the amplitudes of CH$_4$ synoptic variability, 12 out of 18 stations have NSDs within the range of 0.6–1.5, and ZAs generally give higher NSD values than STs for most of these stations (Figure 4b). For stations with NSDs>1.5, ZAs tend to simulate smaller amplitudes and slightly improve model performance (e.g., GSN, HLE and SDZ; Figure 4b). One exception is UUM. Given the presence of a wrong emission hotspot near the station in the EDGARv4.2FT2010 dataset, ZAs greatly inflate the model-observation misfits (Figure S13). The sensitivity test simulations prescribed with an improved data version EDGARv4.3.2 show much better agreement with observations, although the simulated amplitudes are still too high. Besides, it is interesting to note that stations in East Asia generally have NSDs>1.5 (e.g., GSN, TAP, SDZ, and UUM; Figure 4b), again suggesting overestimation of the prescribed CH$_4$ emissions in this region.

3.3.2 CO$_2$ synoptic variability

For CO$_2$, as shown in Figure 4c and 4d, 12 out of 20 stations within the zoomed region have model-observation correlation r>0.3, whereas 14 out of 20 stations have NSDs within the range of 0.5–1.5. With finer model resolution, significant model improvement (whether regarding phases or amplitudes of CO$_2$ synoptic variability) is mostly found at marine, coastal and continental stations (e.g., AMY, DSI, and SDZ; Figure 4c,d); for mountain stations, on the contrary, phase correlation is not improved and representation of amplitudes is even degraded (e.g. HLE, LLN and WLG; Figure 4c,d). As mentioned above for CH$_4$ synoptic variability, the model degradation at mountain stations may arise from errors in mesoscale meteorology and regional distribution of sources/sinks over complex terrains, probably as well as unresolved vertical processes.

When we examine model performance for CO$_2$ versus CH$_4$ by stations, there are stations at which phases of synoptic variability are satisfactorily captured for CH$_4$ but not for CO$_2$ (e.g., BKT, PBL, PON; Figure 4a,c). At PON, a tropical station on the southeast coast of India, the simulated CO$_2$ synoptic variability is even out of phase with observations all year around and during different seasons (Figure S15; Table S3). The poor model performance should be largely attributed to the imperfect prescribed CO$_2$ surface fluxes. As noted by several previous studies (e.g., Patra et al., 2008), CO$_2$ fluxes with sufficient accuracy and resolution are indispensable for realistic simulation of CO$_2$ synoptic variability. In this study, the daily to hourly NEE variability does not seem to be well represented in ORCHIDEE, especially in
the tropics. Further, for stations influenced by large fire emissions (e.g., BKT), monthly averaged biomass burning emissions may not be able to realistically simulate CO₂ synoptic variability due to episodic biomass burning events. Besides, the prescribed CO₂ ocean fluxes have a rather coarse spatial resolution (4°×5°), which may additionally account for the poor model performance, especially for marine and coastal stations.

3.4 Diurnal cycle

3.4.1 CH₄ diurnal cycle

The diurnal cycles of trace gases are mainly controlled by the co-variations between local surface fluxes and atmospheric transport. To illustrate model performance on diurnal cycles, we take a few stations with continuous measurements as examples. For CH₄, as shown in Figure 5a, the mean diurnal cycles can be reasonably well represented at the marine/coastal stations GSN and PON for the specific study periods (also see Table S4), although monthly fluxes are used to prescribe the models. Compared to STs, the diurnal cycles simulated by ZAs agree much better with observations (Figure 5a), possibly due to more realistic representation of coastal topography, land-sea breeze, and/or source distribution at finer grids.

However, there are also periods during which the CH₄ diurnal cycles are not satisfactorily represented by both model versions, or model performance is degraded with higher horizontal/vertical resolutions (Table S4). The model-observation mismatch may be explained by the following reasons. First, the prescribed monthly surface fluxes are probably not adequate to resolve the short-term variability at stations strongly influenced by local and regional sources, especially during the seasons when emissions from wetlands and rice paddies are active and temporally variable with temperature and moisture. Second, the sub-grid scale parameterizations in the current model we used are not able to realistically simulate the diurnal cycles of boundary layer mixing. Recently new physical parameterizations have been implemented in LMDz to better simulate vertical diffusion and mesoscale mixing by thermal plumes in the boundary layer (Hourdin et al., 2002; Rio et al., 2008), which can significantly improve simulation of the daily peak values during nighttime and thus diurnal cycles of tracer concentrations (Locatelli et al., 2015b).

Representation of the CH₄ diurnal cycle at mountain stations can be even more complicated, given that the mesoscale atmospheric transports such as mountain-valley circulations and terrain-induced up-down slope circulations cannot be resolved in global transport models.
(Griffiths et al., 2014; Pérez-Landa et al., 2007; Pillai et al., 2011). At BKT, a mountain station located on an altitude of 869 m a.s.l., the CH$_4$ diurnal cycle is not reasonably represented when model outputs are sampled at the levels corresponding to this altitude (Level 3 and Level 4 for 19-layer and 39-layer models). The simulated CH$_4$ diurnal cycles sampled at a lower model level (Level 2 for both 19-layer and 39-layer models) agree much better with the observed ones (Figure 5a). This suggests that the current model in use is not able to resolve mesoscale circulations in complex terrains, even with the zoomed grids (~50 km over the focal area) and 39 model layers.

3.4.2 CO$_2$ diurnal cycle

For CO$_2$, as shown in Figure 5b, the simulated diurnal cycles at GSN and PON correlate fairly well with the observed ones for their specific study periods (also see Table S5). The amplitudes of diurnal cycles are greatly underestimated, although this can be more or less improved with finer horizontal resolutions (Figure 5b). As for CH$_4$, the model-observation discrepancies mainly result from underestimated NEE diurnal cycles from ORCHIDEE and/or unresolved processes in the planetary boundary layer. Particularly, neither ZAs nor STs are able to adequately capture the CO$_2$ diurnal rectifier effect (Denning et al., 1996). For stations strongly influenced by local fossil fuel emissions, underestimation of the amplitudes may be additionally attributed to fine-scale sources not resolved at current horizontal resolutions. This is the case for PON, a coastal station 8 km north of the city of Pondicherry in India with a population of around 750,000 (Lin et al., 2015), where the amplitudes of diurnal cycles are underestimated for both CO$_2$ and CH$_4$ (Figure 5a,b). Again at BKT, as noted for CH$_4$, a better model-observation agreement is found for the CO$_2$ diurnal cycle when model outputs are sampled at the surface layer rather than the one corresponding to the station altitude (Figure 5b). Note that even the simulated diurnal cycles at the surface level are smaller compared to the observed ones by ~50%, suggesting that the diurnal variations of both NEE fluxes and terrain-induced circulations are probably not satisfactorily represented in the current simulations.

3.5 Evaluation against the CONTRAIL CO$_2$ vertical profiles

Figure 6 shows the simulated and observed CO$_2$ vertical profiles averaged for different seasons and over different regions. Over East Asia (EAS; Figure 6a and Figure S1), both ZAs and STs reasonably reproduce the shape of the observed CO$_2$ vertical profiles above 2 km.
while below 2 km the magnitude of ΔCO$_2$ is significantly underestimated by up to 5 ppm. The simulated CO$_2$ vertical gradients between planetary boundary layer (BL) and free troposphere (FT) are lower than the observations by 2–3 ppm during winter (Figure 7a). The model-observation discrepancies are possibly due to stronger vertical mixing in LMDz (Locatelli et al., 2015a; Patra et al., 2011) as well as flux uncertainty. Note that as most samples (79%) are taken over the Narita International Airport (NRT) and Chubu Centrair International Airport (NGO) in Japan located outside the zoomed region (Figure S1), STs slightly better capture the BL-FT gradients than ZAs.

Over the Indian sub-continent (IND, Figure 6b), there is large underestimation of the magnitude of ΔCO$_2$ near the surface by up to 8 ppm during April–June (AMJ), July–September (JAS) and October–December (OND). Accordingly, the BL-FT gradients are also underestimated by up to 3–4 ppm for these periods (Figure 7b). The model-observation discrepancies are probably due to vertical mixing processes not realistically simulated in the current model (including deep convection), as well as the imperfect representation of CO$_2$ surface fluxes strongly influenced by the Indian monsoon system.

The CO$_2$ vertical profiles over Southeast Asia (including Northern Southeast Asia (NSA) and Southern Southeast Asia (SSA)) are generally well reproduced (Figure 6c,d). However, both ZAs and STs fail to reproduce the BL-FT gradient of ~3 ppm in April for NSA (Figure 7c). Apart from errors due to vertical transport and/or prescribed NEE, inaccurate estimates of biomass burning emissions could also contribute to this model-observation mismatch.

Overall, the CO$_2$ vertical profiles in free troposphere are well simulated by both STs and ZAs over SEA, while significant underestimation of the BL-FT gradients is found for East Asia and the Indian sub-continent. The model-observation mismatch is due to misrepresentation of both vertical transport and prescribed surface fluxes, and can not be significantly reduced by solely refining the horizontal/vertical resolution, as shown by the very similar CO$_2$ vertical profiles simulated from ZAs and STs. New physical parameterization as shown in Locatelli et al., (2015a) should be implemented in the model to assess its potential to improve simulation of the vertical profiles of trace gases (especially the BL-FT gradients).
In this study, we assess the capability of a global transport model (LMDzINCA) to simulate CH₄ and CO₂ variabilities over South and East Asia (SEA). Simulations have been performed with configurations of different horizontal (standard (STs) versus Asian zoom (ZAs)) and vertical (19 versus 39) resolutions. Model performance to represent trace gas variabilities is evaluated for each model version at multi-annual, seasonal, synoptic and diurnal scales, against flask and continuous measurements from a unique dataset of 39 global and regional stations inside and outside the zoomed region. The evaluation at multiple temporal scales and comparisons between different model resolutions and trace gases have informed us of both advantages and challenges relating to high resolution transport modelling. Main conclusions and implications for possible model improvement and inverse modeling are summarized as follows.

First, ZAs improve the overall representation of CH₄ annual gradients between stations in SEA, with reduction of RMSE by 16–20% compared to STs. The model improvement mainly results from reduction in representation error with finer horizontal resolutions over SEA, through better characterization of CH₄ surface fluxes, transport, and/or topography around stations. Particularly, the scatterly distributed CH₄ emission sources (especially emission hotspots) can be more precisely defined with the Asian zoom grids, which makes the simulated concentration fields more heterogeneous, having the potential to improve representation of stations nearby on an annual basis.

However, as the model resolution increases, the simulated CH₄ concentration fields are more sensitive to possible errors in boundary conditions. Thus the performance of ZAs at a specific station as compared to STs depends on the accuracy and data quality of meteorological forcings and/or surface fluxes, especially when we examine short-term variabilities (synoptic and diurnal variations) or stations influenced by significant emission sources around. One example is UUM, at which ZAs even greatly degrade representation of synoptic variability due to presence of a wrong emission hotspot near the station in the EDGARv4.2FT2010 dataset. A sensitivity test prescribed with the improved emission dataset EDGARv4.3.2 show much better agreement with observations. This emphasizes importance of accurate a priori CH₄ surface fluxes in high resolution transport modelling and inversions, particularly regarding locations and magnitudes of emission hotspots. Any unrealistic emission hotspot
close to a station (as shown for UUM) should be corrected before inversions, otherwise the inverted surface fluxes are likely to be strongly biased. Moreover, as current bottom-up estimates of CH$_4$ sources and sinks still suffer from large uncertainties at fine scales, caution should be taken when one attempts to assimilate observations not realistically simulated by the high resolution transport model. These observations should be either removed from inversions or allocated with large uncertainties.

With respect to CO$_2$, model performance and the limited model improvement with finer grids suggest that the CO$_2$ surface fluxes have not been prescribed with sufficient accuracy and resolution. One major component is NEE simulated from the terrestrial ecosystem model ORCHIDEE. For example, the smaller CO$_2$ seasonal amplitudes simulated at most inland stations in SEA mainly result from underestimated carbon uptake in northern mid-latitudes by ORCHIDEE, while the misrepresentation of synoptic and diurnal variabilities (especially for tropical stations like BKT and PON) is related to the inability of ORCHIDEE to satisfactorily capture sub-monthly to daily profiles of NEE. More efforts should be made to improve simulation of carbon exchange between land surface and atmosphere at various spatial and temporal scales.

Furthermore, apart from data quality of the prescribed surface fluxes, representation of the CH$_4$ and CO$_2$ short-term variabilities is also limited by model’s ability to simulate boundary layer mixing and mesoscale transport in complex terrains. The recent implementation of new sub-grid physical parameterizations in LMDz is able to significantly improve simulation of the daily maximum during nighttime and thus diurnal cycles of tracer concentrations (Locatelli et al., 2015b). To fully take advantage of high-frequency CH$_4$ or CO$_2$ observations at stations close to source regions, it is highly recommended to implement the new boundary layer physics in the current transport model, in addition to refinement of model horizontal and vertical resolutions. The current transport model with old planetary boundary physics is not capable to capture diurnal variations at continental or mountain stations, therefore only observations that are well represented should be selected and kept for inversions (e.g. afternoon measurements for continental stations and nighttime measurements for mountain stations).

Lastly, the model-observation comparisons at multiple temporal scales can give us information about the magnitude of sources and sinks in the studied region. For example, at
GSN, TAP and SDZ, all of which located in East and Northeast Asia, the CH$_4$ annual gradients as well as the amplitudes of seasonal and synoptic variability are consistently overestimated, suggesting overestimation of CH$_4$ emissions in East Asia. Therefore atmospheric inversions that assimilate information from these stations are expected to decrease emissions in East Asia, which agree with several recent global or regional studies from independent inventories (e.g., Peng et al., 2016) or inverse modeling (Bergamaschi et al., 2013; Bruhwiler et al., 2014; Thompson et al., 2015). Further studies are needed in the future to estimate CH$_4$ budgets in SEA by utilizing high resolution transport models that are capable to represent regional networks of atmospheric observations.
Acknowledgement

This study was initiated within the framework of CaFICA-CEFIPRA project (2809-1). X. Lin acknowledges the PhD funding support from AIRBUS Defense & Space. P. Ciais thanks the ERC SyG project IMBALANCE-P ‘Effects of Phosphorus Limitations on Life, Earth System and Society’ Grant agreement (no. 610028). N. Evangeliou acknowledges the Nordic Center of Excellence eSTICC project (eScience Tools for Investigating Climate Change in northern high latitudes) funded by Nordforsk (no. 57001). We acknowledge the WDCGG for providing the archives of surface station observations for CO₂ and CH₄. We thank the following networks or institutes for the efforts on surface GHG measurements and their access: NOAA/ESRL, Aichi, BMKG, CMA, CSIR4PI, CSIRO, Empa, ESSO/NIOT, IIA, IITM, JMA, KMA, LSCE, NIER, NIES, PU and Saitama. We also thank Dr. T. Machida from NIES for providing CO₂ measurements from the CONTRAIL project. Finally, we would like to thank F. Marabelle and his team at LSCE, and the CURIE (TGCC) platform for the computing support.
References

Folberth, G. A., Hauglustaine, D. A., Lathière, J. and Brocheton, F.: Interactive chemistry in
the Laboratoire de Météorologie Dynamique general circulation model: model description
and impact analysis of biogenic hydrocarbons on tropospheric chemistry, Atmos. Chem.
Phys., 6(8), 2273–2319, doi:10.5194/acp-6-2273-2006, 2006.

Ganesan, A. L., Chatterjee, A., Prinn, R. G., Harth, C. M., Salameh, P. K., Manning, A. J.,
Hall, B. D., Mühle, J., Meredith, L. K., Weiss, R. F., O’Doherty, S. and Young, D.: The
variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India, Atmos.

Geels, C., Doney, S. C., Dargaville, R., Brandt, J. and Christensen, J. H.: Investigating the
sources of synoptic variability in atmospheric CO$_2$ measurements over the Northern
Hemisphere continents: a regional model study, Tellus B, 56(1), 35–50, doi:10.1111/j.1600-

Geels, C., Gloor, M., Ciais, P., Bousquet, P., Peylin, P., Vermeulen, A. T., Dargaville, R.,
Aalto, T., Brandt, J., Christensen, J. H., Frohn, L. M., Haszpra, L., Karstens, U., Rödenbeck,
C., Ramonet, M., Carboni, G. and Santaguida, R.: Comparing atmospheric transport models
for future regional inversions over Europe – Part 1: mapping the atmospheric CO$_2$

Geels, C., Gloor, M., Ciais, P., Bousquet, P., Peylin, P., Vermeulen, A. T., Dargaville, R.,
Aalto, T., Brandt, J., Christensen, J. H., Frohn, L. M., Haszpra, L., Karstens, U., Rödenbeck,
C., Ramonet, M., Carboni, G. and Santaguida, R.: Comparing atmospheric transport models
for future regional inversions over Europe – Part 1: mapping the atmospheric CO$_2$

Griffiths, A. D., Conen, F., Weingartner, E., Zimmermann, L., Chambers, S. D., Williams, A.
G. and Steinbacher, M.: Surface-to-mountaintop transport characterised by radon
observations at the Jungfraujoch, Atmos. Chem. Phys., 14(23), 12763–12779,
doi:10.5194/acp-14-12763-2014, 2014.

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler,
L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J.,
Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J.,
Sarmiento, J., Taguchi, S., Takahashi, T. and Yuen, C.-W.: Towards robust regional
estimates of CO$_2$ sources and sinks using atmospheric transport models, Nature, 415(6872),
626–630 [online] Available from: http://dx.doi.org/10.1038/415626a, 2002.

Haszpra, L.: Carbon dioxide concentration measurements at a rural site in Hungary, Tellus B,

Hauglustaine, D. A., Balkanski, Y. and Schulz, M.: A global model simulation of present and
future nitrate aerosols and their direct radiative forcing of climate, Atmos. Chem. Phys.,

and Holland, E. A.: Interactive chemistry in the Laboratoire de Météorologie Dynamique
general circulation model: Description and background tropospheric chemistry evaluation, J.

Representation of Thermals, J. Atmos. Sci., 59(6), 1105–1123, doi:10.1175/1520-

Locatelli, R., Bousquet, P., Saunois, M., Chevallier, F. and Cressot, C.: Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations, Atmos. Chem.

Saeki, T., Saito, R., Belikov, D. and Maksyutov, S.: Global high-resolution simulations of CO₂ and CH₄ using a NIES transport model to produce a priori concentrations for use in
34

Sanzerson, M. G.: Biomass of termites and their emissions of methane and carbon dioxide: A

Sasakawa, M., Shimoyama, K., Machida, T., Tsuda, N., Suto, H., Arshinov, M., Davydov, D.,
Fofonov, A., Krasnov, O., Saeki, T., Koyama, Y. and Maksyutov, S.: Continuous
measurements of methane from a tower network over Siberia, Tellus B, 62(5), 403–416,

Swathi, P. S., Indira, N. K., Rayner, P. J., Ramonet, M., Jagadheesha, D., Bhatt, B. C. and
Gaur, V. K.: Robust inversion of carbon dioxide fluxes over temperate Eurasia in 2006-2008,

Swathi, P. S., Indira, N. K., Rayner, P. J., Ramonet, M., Jagadheesha, D., Bhatt, B. C. and
Gaur, V. K.: Robust inversion of carbon dioxide fluxes over temperate Eurasia in 2006-

Szopa, S., Balkanski, Y., Schulz, M., Bekki, S., Cugnet, D., Formenti-Cheiney, A., Turquety,
S., Cozic, A., Deandres, C., Hauglustaine, D., Delkaki, A., Lathiere, J., Lefevre, F.,
Marchand, M., Vuolo, R., Yan, N. and Dufresne, J.-L.: Aerosol and ozone changes as forcing
for climate evolution between 1850 and 2100, Clim. Dyn., 40(9-10), 2223–2250,

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J.

Thompson, R. L., Ishijima, K., Saikawa, E., Corazza, M., Karstens, U., Patra, P. K.,
Bergamaschi, P., Chevallier, F., Dlugokencky, E., Prinn, R. G., Weiss, R. F., O’Doherty, S.,
Fraser, P. J., Steele, L. P., Krummel, P. B., Vermeulen, A., Tohjima, Y., Jordan, A., Haszpra,
L., Steinbacher, M., Van der Laan, S., Aalto, T., Meinhardt, F., Popa, M. E., Moncrieff, J.
and Bousquet, P.: TransCom N2O model inter-comparison – Part 2: Atmospheric inversion
estimates of N2O emissions, Atmos. Chem. Phys., 14(12), 6177–6194, doi:10.5194/acp-14-

Table 1 The prescribed CH$_4$ and CO$_2$ surface fluxes used as model input. For each trace gas, magnitudes of different types of fluxes are given for the year 2010. Total$_{\text{global}}$ and Total$_{\text{zoom}}$ indicate the total flux summarized over the globe and the zoomed region, respectively.

<table>
<thead>
<tr>
<th>Type of CH$_4$ fluxes</th>
<th>Temporal resolution</th>
<th>Spatial resolution</th>
<th>Total$_{\text{global}}$ (TgCH$_4$/yr)</th>
<th>Total$_{\text{zoom}}$ (TgCH$_4$/yr)</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic – others</td>
<td>Yearly, interannual</td>
<td>0.1°</td>
<td>320</td>
<td>131</td>
<td>EDGARv4.2FT2010</td>
</tr>
<tr>
<td>Wetland</td>
<td>Monthly, climatological</td>
<td>1°</td>
<td>175</td>
<td>29</td>
<td>Kaplan et al. (2006)</td>
</tr>
<tr>
<td>Biomass burning</td>
<td>Monthly, interannual</td>
<td>0.5°</td>
<td>19</td>
<td>3</td>
<td>EDGARv4.2FT2010</td>
</tr>
<tr>
<td>Termite</td>
<td>Monthly, climatological</td>
<td>1°</td>
<td>19</td>
<td>3</td>
<td>Kaplan et al. (2006)</td>
</tr>
<tr>
<td>Soil</td>
<td>Monthly, climatological</td>
<td>1°</td>
<td>-38</td>
<td>-7</td>
<td>Ridgwell et al. (1999)</td>
</tr>
<tr>
<td>Ocean</td>
<td>Monthly, climatological</td>
<td>1°</td>
<td>17</td>
<td>3</td>
<td>Lambert & Schmidt (1993)</td>
</tr>
<tr>
<td>Total, TgCH$_4$/yr</td>
<td></td>
<td></td>
<td>550</td>
<td>194</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of CO$_2$ fluxes</th>
<th>Temporal resolution</th>
<th>Spatial resolution</th>
<th>Total$_{\text{global}}$ (PgC/yr)</th>
<th>Total$_{\text{zoom}}$ (PgC/yr)</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic</td>
<td>Monthly, interannual</td>
<td>1°</td>
<td>8.9</td>
<td>3.6</td>
<td>IER-EDGAR product</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Daily, interannual</td>
<td>1°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>Hourly, interannual</td>
<td>1°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass burning</td>
<td>Monthly, interannual</td>
<td>0.5°</td>
<td>2.0</td>
<td>0.2</td>
<td>GFED v4.1</td>
</tr>
<tr>
<td>Land flux (NEE)</td>
<td>Monthly, interannual</td>
<td>0.5°</td>
<td>-2.7</td>
<td>0.1</td>
<td>OCHIDEE outputs from trunk version r1882</td>
</tr>
<tr>
<td>Land flux (NEE)</td>
<td>Daily, interannual</td>
<td>0.5°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land flux (NEE)</td>
<td>Hourly, interannual</td>
<td>0.5°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean flux</td>
<td>Monthly, interannual</td>
<td>4°×5°</td>
<td>-1.3</td>
<td>0.1</td>
<td>NOAA/PMEL & AOML product; Park et al. (2010)</td>
</tr>
<tr>
<td>Total, PgC/yr</td>
<td></td>
<td></td>
<td>6.9</td>
<td>3.9</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Stations used in this study. For the column ‘Zoom’, ‘Y’ indicates a station within the zoomed region.

<table>
<thead>
<tr>
<th>Code</th>
<th>Station</th>
<th>LON (°)</th>
<th>LAT (°)</th>
<th>ALT (masl)</th>
<th>Contributor</th>
<th>Type</th>
<th>Time periods used in this study</th>
<th>Zoom</th>
<th>CH₄</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALT Alert, Canada</td>
<td>-62.52</td>
<td>82.45</td>
<td>210</td>
<td>NOAA/ESRL</td>
<td>coastal</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AMS Amsterdam Island, France</td>
<td>77.54</td>
<td>-37.80</td>
<td>70</td>
<td>LSCE</td>
<td>marine</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AMY annyong-do, Korea</td>
<td>126.32</td>
<td>36.53</td>
<td>133</td>
<td>KMA</td>
<td>coastal</td>
<td>Continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BKT Bukit Kototobang, Indonesia</td>
<td>100.32</td>
<td>-0.20</td>
<td>869</td>
<td>BMKG, Empa, NOAA/ESRL</td>
<td>mountain</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BRW Barrow, USA</td>
<td>-156.60</td>
<td>71.32</td>
<td>11</td>
<td>NOAA/ESRL</td>
<td>coastal</td>
<td>Continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>COG Cape Grim, Australia</td>
<td>144.68</td>
<td>40.68</td>
<td>94</td>
<td>NOAA/ESRL</td>
<td>marine</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>COI Cape Ochi-ishi, Japan</td>
<td>145.50</td>
<td>43.16</td>
<td>94</td>
<td>NIES</td>
<td>coastal</td>
<td>Continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CRI Cape Rama, India</td>
<td>73.83</td>
<td>15.08</td>
<td>66</td>
<td>CSIRO</td>
<td>coastal</td>
<td>Flask: 2009–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DDR Mt. Dodaiga, Japan</td>
<td>139.18</td>
<td>36.00</td>
<td>840</td>
<td>Saitama</td>
<td>mountain</td>
<td>Continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DSI Dongsha Island, Taiwan, China</td>
<td>116.73</td>
<td>20.70</td>
<td>8</td>
<td>National Central Univ., NOAA/ESRL</td>
<td>marine</td>
<td>Flask: 2010–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>GMI Mariana Island, Guam</td>
<td>144.66</td>
<td>13.39</td>
<td>5</td>
<td>Univ. of Guam, NOAA/ESRL</td>
<td>marine</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>GSN Gosan, Korea</td>
<td>126.12</td>
<td>33.15</td>
<td>144</td>
<td>NIER</td>
<td>marine</td>
<td>Continuous: 2006–2011</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>HAT Hateruma, Japan</td>
<td>123.81</td>
<td>24.06</td>
<td>47</td>
<td>NIES</td>
<td>marine</td>
<td>Continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>HLE Hanle, India</td>
<td>78.96</td>
<td>32.78</td>
<td>4517</td>
<td>LSCE, CSIR4PI, IIA</td>
<td>mountain</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>JFJ Jungfraujoch, Switzerland</td>
<td>7.99</td>
<td>46.55</td>
<td>3580</td>
<td>Empa</td>
<td>mountain</td>
<td>CH₄ continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>JIN Jinsha, China</td>
<td>114.20</td>
<td>29.63</td>
<td>750</td>
<td>CMA</td>
<td>continental</td>
<td>Flask: 2006–2011</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>KIS Kisai - Saitama</td>
<td>139.55</td>
<td>36.08</td>
<td>13</td>
<td>Saitama</td>
<td>continental</td>
<td>Continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>KZD Sary Taukum, Kazakhstan</td>
<td>75.57</td>
<td>44.45</td>
<td>412</td>
<td>KSIEMC, NOAA/ESRL</td>
<td>continental</td>
<td>Flask: 2006–2009</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>KZM Plateau Assy, Kazakhstan</td>
<td>77.87</td>
<td>43.25</td>
<td>2524</td>
<td>KSIEMC, NOAA/ESRL</td>
<td>mountain</td>
<td>Flask: 2006–2009</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>LIN Lin’an, China</td>
<td>119.72</td>
<td>30.30</td>
<td>139</td>
<td>CMA</td>
<td>continental</td>
<td>Flask: 2006–2011</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>LLN Lulin, Taiwan, China</td>
<td>120.87</td>
<td>23.47</td>
<td>2867</td>
<td>LAIBS, NOAA/ESRL</td>
<td>mountain</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>LON Longfengshan, China</td>
<td>127.60</td>
<td>44.73</td>
<td>331</td>
<td>CMA</td>
<td>continental</td>
<td>Flask: 2006–2011</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>MHD Mace Head, Ireland</td>
<td>-9.90</td>
<td>53.33</td>
<td>8</td>
<td>NOAA/ESRL</td>
<td>coastal</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>MKW Mikawa-Ichinomiya, Japan</td>
<td>137.43</td>
<td>34.85</td>
<td>50</td>
<td>Aichi</td>
<td>continental</td>
<td>Continuous: 2006–2011</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Station</td>
<td>Type</td>
<td>Sampling Period</td>
<td>Agency</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLO</td>
<td>Mauna Loa, USA</td>
<td>-155.58</td>
<td>19.54</td>
<td>NOAA/ESRL</td>
<td>mountain</td>
<td>Continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNN</td>
<td>Minamitorishima, Japan</td>
<td>153.98</td>
<td>24.28</td>
<td>JMA</td>
<td>marine</td>
<td>Continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWR</td>
<td>Niwot Ridge, USA</td>
<td>-105.59</td>
<td>40.05</td>
<td>NOAA/ESRL</td>
<td>mountain</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBL</td>
<td>Port Blair, India</td>
<td>92.76</td>
<td>11.65</td>
<td>LSCE, CSIR4PI, ESSO/NIOT</td>
<td>marine</td>
<td>Flask: 2009–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PON</td>
<td>Pondicherry, India</td>
<td>79.86</td>
<td>12.01</td>
<td>LSCE, CSIR4PI, Pondicherry Univ.</td>
<td>coastal</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYO</td>
<td>Ryori, Japan</td>
<td>141.82</td>
<td>39.03</td>
<td>JMA</td>
<td>continental</td>
<td>Continuous: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDZ</td>
<td>Shangdianzi, China</td>
<td>117.12</td>
<td>40.65</td>
<td>CMA, NOAA/ESRL</td>
<td>continental</td>
<td>Flask: 2009–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEY</td>
<td>Mahe Island, Seychelles</td>
<td>55.53</td>
<td>-4.68</td>
<td>SBS, NOAA/ESRL</td>
<td>marine</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNG</td>
<td>Sinhagad, India</td>
<td>73.75</td>
<td>18.35</td>
<td>IITM</td>
<td>mountain</td>
<td>CH<sub>4</sub> flask: 2010–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPO</td>
<td>South Pole, USA</td>
<td>-124.0</td>
<td>-89.98</td>
<td>NOAA/ESRL</td>
<td>mountain</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAP</td>
<td>Tae-aahn Peninsula, Korea</td>
<td>126.13</td>
<td>36.73</td>
<td>KCAER, NOAA/ESRL</td>
<td>coastal</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UUM</td>
<td>Ulaan Uul, Mongolia</td>
<td>111.10</td>
<td>44.45</td>
<td>MHRI, NOAA/ESRL</td>
<td>continental</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIS</td>
<td>Negev Desert, Israel</td>
<td>30.86</td>
<td>34.79</td>
<td>WIS, AIES, NOAA/ESRL</td>
<td>continental</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLG</td>
<td>Mt. Waliguan, China</td>
<td>100.90</td>
<td>36.28</td>
<td>CMA, NOAA/ESRL</td>
<td>mountain</td>
<td>Flask: 2006–2013</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:

- **Aichi** – Aichi Air Environment Division, Japan
- **AIES** – Arava Institute for Environmental Studies, Israel
- **BMKG** – Agency for Meteorology, Climatology and Geophysics, Indonesia
- **CMA** – China Meteorological Administration, China
- **CSIR4PI** – Council of Scientific and Industrial Research Fourth Paradigm Institute, India
- **CSIRO** – Commonwealth Scientific and Industrial Research Organisation, Australia
- **Empa** – Swiss Federal Laboratories for Materials Testing and Research, Switzerland
- **ESSO/NIOT** – Earth System Sciences Organisation/National Institute of Ocean Technology, India
- **IIA** – Indian Institute of Astrophysics, India
- **IITM** – Indian Institute of Tropical Meteorology, India
- **JMA** – Japan Meteorological Agency, Japan
- **KCAER** – Korea Centre for Atmospheric Environment Research, Republic of Korea
- **KMA** – Korea Meteorological Administration, Republic of Korea
- **KSIEMC** – Kazakh Scientific Institute of Environmental Monitoring and Climate, Kazakhstan
<table>
<thead>
<tr>
<th>Code</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAIBS</td>
<td>Lulin Atmospheric Background Station, Taiwan</td>
<td></td>
</tr>
<tr>
<td>LSCE</td>
<td>Laboratoire des Sciences du Climat et de l'Environnement, France</td>
<td></td>
</tr>
<tr>
<td>MHRI</td>
<td>Mongolian Hydrometeorological Research Institute, Mongolia</td>
<td></td>
</tr>
<tr>
<td>NIER</td>
<td>National Institute of Environmental Research, South Korea</td>
<td></td>
</tr>
<tr>
<td>NIES</td>
<td>National Institute for Environmental Studies, Japan</td>
<td></td>
</tr>
<tr>
<td>NIWA</td>
<td>National Institute of Water and Atmospheric Research, New Zealand</td>
<td></td>
</tr>
<tr>
<td>NOAA/ESRL</td>
<td>National Oceanic and Atmospheric Administration/Earth System Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Saitama</td>
<td>Center for Environmental Science in Saitama</td>
<td></td>
</tr>
<tr>
<td>SBS</td>
<td>Seychelles Bureau of Standards, Seychelles</td>
<td></td>
</tr>
<tr>
<td>WIS</td>
<td>Weizmann Institute of Science, Israel</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1 Map of locations of stations within and around the zoomed region. The zoomed grid of the LMDz-INCA model is plotted with the NASA Shuttle Radar Topographic Mission (SRTM) 1km digital elevation data (DEM) as background (http://srtm.csi.cgiar.org). The grey shaded area indicates the region with a horizontal resolution of $\sim 0.66^\circ \times 0.51^\circ$. The red close circle (blue cross) represents the atmospheric station where flask (continuous) measurements are available and used in this study.
Figure 2 Scatterplots of the simulated and observed mean annual gradients of CH$_4$ (a, b) and CO$_2$ (c, d) between HLE and other stations. In each panel, the simulated CH$_4$ or CO$_2$ gradients are based on model outputs from STs (blue circles) and ZAs (red circles), respectively. The black dotted line indicates the identity line, whereas the blue and red dotted lines indicates the corresponding linear fitted lines. The closed and open circles represent stations inside and outside the zoomed region.
Figure 3 The observed and simulated mean seasonal cycles of CH₄ (a) and CO₂ (b) for stations within the zoomed region. In each panel, the simulated mean seasonal cycles are based on model outputs from STs (blue lines) and ZAs (red lines), respectively. The text shows statistics between the simulated and observed seasonal cycles for 39-layer models.
Figure 4 The correlations and normalized standard deviations between the simulated and observed synoptic variability for CH$_4$ (a,b) and CO$_2$ (c,d) at stations within the zoomed region. For each station, the synoptic variability is calculated from residuals from the smoothed fitting curve.
Figure 5 The observed and simulated mean diurnal cycles (in UTC time) of CH$_4$ (a) and CO$_2$ (b) at three stations within the zoomed region. For BKT, the simulated diurnal cycles at lower model levels are also presented.
Figure 6 Seasonal mean observed and simulated CO$_2$ vertical profiles over (a) East Asia (EAS), (b) the Indian sub-continent (IND), (c) Northern Southeast Asia (NSA) and (d) Southern Southeast Asia (SSA). The observed vertical profiles are based on CO$_2$ continuous measurements onboard the commercial air flights from the CONTRAIL project during the period 2006–2011. For each 1-km altitude bin and each subregion, the observed and simulated time series are detrended (denoted as ΔCO$_2$) and seasonally averaged during January–March (JFM), April–June (AMJ), July–September (JAS) and October–December (OND).
Figure 7 Monthly mean observed and simulated CO$_2$ gradient between 1 and 4km over (a) East Asia (EAS), (b) the Indian sub-continent (IND), (c) Northern Southeast Asia (NSA) and (d) Southern Southeast Asia (SSA). For each subregion, the monthly CO$_2$ gradients are calculated by averaging over all the vertical profiles the differences in CO$_2$ concentrations between 1 and 4km.