Interactive comment on “Summertime contributions of isoprene, monoterpenes, and sesquiterpene oxidation to the formation of secondary organic aerosol in the troposphere over Mt. Tai, Central East China during MTX2006” by P. Q. Fu et al.

Anonymous Referee #2
Received and published: 30 September 2009

General comments:
This manuscript deals with a detailed organic aerosol characterization/speciation study at a high mountain site in Central East China, and contains a valuable aerosol data set. The data are interpreted in the light of available current knowledge on secondary organic aerosol (SOA) formation processes and tracers, and the recent literature on this topic is fairly well cited. An interesting finding is that SOA formation from the photooxidation of isoprene is an important aerosol process at this high mountain site and is enhanced relative to ground level, and that it is more important than SOA formation from monoterpenes and sesquiterpenes. An issue of concern is the method used for the quantitative determination of the various tracers, as outlined in the specific comments. In the opinion of this reviewer a major revision is needed. The English usage also needs to be improved.

Specific comments:
Page 16943 – line 8: It is more correct to write: “All the biogenic SOA tracers did not show clear diurnal variations, suggesting that they are formed during long-range transport or over relatively long time scales.”

Page 16944 – line 9: I suggest to update this sentence and provide some information on recent global estimates of biogenic SOA: “In addition to monoterpenes and sesquiterpenes, isoprene is currently also believed to be a large biogenic source of SOA mass. Global model bottom-up estimates for biogenic SOA are in the range of 9 – 50 Tg C yr⁻¹ (Kanakidou et al., 2005), while recent top-down estimates, including isoprene SOA, are as high as 185 Tg C yr⁻¹ (Hallquist et al., 2009).” Ref.: Hallquist et al., ACP, 9, 5155-5236, 2009.

Page 16944 – line 3: I suggest to delete the sentence “They estimated its SOA production to be 2 Tg yr⁻¹”, but to add some references containing more recent estimates in the last sentence of the paragraph: “.... predicted SOA formation seriously (Henze and Seinfeld, 2006; Tsagaridis and Kanakidou, 2007).”

Page 16946 – line 17: It is not clear how the calibrations were done for the quantitative determinations. The authors state on line 27 that the data were not corrected for the recoveries, but how did they account for losses during sample workup? This issue should be clarified.

Page 16947 – lines 15-16: the concentrations for the 2-methyltetrols given here differ
from those given in Table 1. Please, check whether this is also the case for other tracer concentrations.

Page 16947 – line 24: The report on the C5-alkene triols is not so recent anymore and dates already from 2005. I suggest to update this sentence and add a more recent relevant reference: “C5-alkene triols, which are also photooxidation products of isoprene (Wang et al., 2005) and unique isoprene SOA tracers under low-NOx conditions (Suratt et al., 2006), were detected”.

Page 16950 – line 22: I suggest to rephrase two sentences: “As expected, MBTCA and 3-HG, which are higher-generation photooxidation products of a-/b-pinene, did not show a peak during this episode. The enhanced concentrations of pinic and pinonic acids, which are lower-generation photooxidation products compared to MBTCA and 3-HG (Szmigielski et al., 2007; Kourtchev et al., 2009), suggest that the photooxidation of a-/b-pinene was not complete.”

Page 16952 – line 9: I suggest to weaken the statement relating to the presence of norpinic acid and MBTCA in cluster 3: “. . . . are also in cluster 3, suggesting that these compounds may have the same source regions as the isoprene oxidation products.” The atmospheric behaviors of the isoprene and a-/b-pinene SOA tracers are quite different, with the isoprene SOA tracers being much more polar/hydrophilic than a-/b-pinene SOA tracers.

Page 16954 – line 24: I feel the sentence “The relatively” is redundant and suggest to delete it. It is fairly well established that isoprene SOA formation involves OH-initiated reactions (see line 20 just above).

Page 16955 – line 26: I suggest to rephrase this sentence: “Thus, we propose here that the Riso/mono value can be used to estimate”; it is hard to consider this ratio as a tracer.

Page 16956 – line 20: Comparisons with data available for European sites should also be included, i.e., Finland (Kourtchev et al., 2008a), Hungary (Ion et al., 2005) and Germany (Kourtchev et al., 2008b).

Page 16957 – lines 11-12: Also here, I noted that the values differ from the ones given in Table 1.

Page 16957 – line 18: I suggest to delete the first part of this sentence (Due to the tracer-based calculation); I feel it is redundant.

Table 1: the authors should carefully check whether the values correspond with those reported in the main text.

Technical corrections:
The English usage needs to be improved. I suggest that the revised version is copy-edited. Below is a list of suggested corrections, but this list is certainly not complete.

Page 16943 – line 8: . . . tracers did not show clear . . .
Page 16943 – line 24: . . . at high altitudes
Page 16944 – line 4: . . . can have an impact on . . .
Page 16944 – line 18: . . . at high altitudes . . .
Page 16945 – line 24: . . . the observatory . . .
Page 16945 – line 26: . . . a high-volume air sampler.
Page 16946 – line 8: The GC instrument (GC is the abbreviation for gas chromatography)
Page 16946 – line 12: . . . in the electron ionization (EI) mode . . . (the term “electron ionization” is recommended by IUPAC; the term “electron impact” is deprecated)
scanned in the m/z range 50 to 650.

onto pre-combusted ...

Two novel alpha-pinene SOA tracers were ...

with UV-radiation ...

did not show clear ...

showed very similar temporal trends.

2 times higher than pinic acid.

Two novel alpha-pinene SOA tracers were ...

with UV-radiation ...

did not show clear ...

showed very similar temporal trends.

mainly originated from ...

due to adsorption onto preexisting aerosol.

likely originate from forest fires in South China, since they enhance emissions of BVOCs.

is mainly associated ...

the same pattern as that at daytime.

at high altitudes ...

in the aerosol phase.

Ozonolysis is a minor ...

model study indicating that ...

at lower latitudes ...

at mid-latitudes, ...

at higher latitudes ...

BVOC oxidation ...

from aircraft observations that reveal very high OC mass loadings over the Northwest Pacific ...

Interactive comment on Atmos. Chem. Phys. Discuss., 9, 16941, 2009.