Interactive comment on “Measurements and modelling of molecular iodine emissions, transport and photodestruction in the coastal region around Roscoff” by R. J. Leigh et al.

R. J. Leigh et al.
RL40@le.ac.uk
Received and published: 15 September 2010


Authors: R. J. Leigh and S. M. Ball. Date: 15th September 2010.

The authors would like to thank the referees for their constructive and helpful comments which have helped to significantly improve this paper through the review process.

All minor technical corrections requested by the referees have been made. Many figures have been re-plotted to improve their legibility, and we have taken care to place the figures at the right places in the manuscript (referee 2).

Both referees considered this work to be “scientifically highly interesting and timely” and to present “novel concepts, tools, ideas and data”. However the referees raised concerns about the modelling of I2, specifically: Referee 1 commented that [not being from a modelling background] “it is hard to assess whether the results are indeed sufficient to support the interpretations and conclusions”. Referee 2 commented that while the correlations [between model and measurement] indicate “at least a general understanding of the emission rates & sources”, she/he would like to see “a stronger emphasis on the discrepancies and their potential explanations”. In hindsight we accept the modelling and the modelling/measurement comparison could have been executed better, so we have made the following improvements:

1. Emission footprints have been re-calculated for each individual model time step (5-minute), rather than using a linear interpolation between a few set footprints. This allows changes in the footprints with tide height and day/night conditions to be more accurately captured.

2. Footprints are now averaged over 5 degrees in each direction around the wind vectors (as measured at the RHaMBLe site) to allow for some directional variability in wind vectors over each time step.

3. The mixing layer depth above the seaweed beds has been reduced to 15 cm. This now produces peak I2 concentrations immediately after the seaweed is first exposed to air that broadly agree with peak I2 concentrations measured in the lab studies of Ball et al (RHaMBLe special issue, ACP, 2010). For example, the peak concentrations of I2 modelled above newly exposed Laminaria digitata and hyperborea is 15 ppbv, in good agreement with studies by Ball et al.

4. Seaweed plants have been assigned species-specific heights (Table 1), allowing the taller species to be exposed (and to start emitting into the atmosphere) before the sea
bed is completely uncovered.

5. Comparisons between the modelled & measure I$_2$ amounts are now first discussed for night-time conditions. This serves to establish a baseline test of the model’s performance (i.e. the I$_2$ photolysis is decoupled from modelling of emission footprints/transport), prior to the introduction of photolytic destruction and any recycling mechanism with their attendant extra uncertainty.

6. Additional modelling of iodine and NO$_x$ chemistry has been undertaken using the model of Mahajan et al. Geophys Res Lett 2009 (who also first proposed I$_2$ recycling in the semi-polluted marine atmosphere via the formation of the IONO$_2$ reservoir). Specifically, the Mahajan model has been used to examine how I$_2$ concentrations decay away downwind of an emission source in the presence of NO$_x$ (for an assumed [NO$_2$] of 2ppbv, representative of the RHaMBLe conditions) and in the absence of NO$_x$ but for reduced I$_2$ photolysis rates. Good qualitative and reasonable quantitative agreement was found for these two scenarios when the I$_2$ photolysis rate is decreased to 10% of its typical daytime value, providing a validation for our simplistic (but we believe effective) approach of reducing the effective I$_2$ photolysis rate to mimic the effect of I$_2$ recycling (section 5). The result of this extra chemical modelling show that sequestering I$_2$ as IONO$_2$ and the subsequent “re-release” of I$_2$ provides a mechanism for transporting I$_2$ much greater distances from its source compared to the case where I$_2$ is rapidly photolysed. Indeed without recycling, the model in this paper predicts that no day-time I$_2$ would be observed at the BBCRDS measurement site (which is clearly not the case).

7. In figures showing measured & modelled I$_2$, we now also show NO$_2$ measurements from a chemiluminescence monitor (shoreline site) and co-retrieved NO$_2$ measurements made with the BBCRDS system. These NO$_2$ data have two purposes: (i) the extent of the I$_2$ recycling via IONO$_2$ depends on NO$_x$ concentrations, and this is discussed qualitatively in the text, and (ii) the generally good correspondence between the chemiluminescence NO$_2$ and BBCRDS NO$_2$ serves as an extra quality control check on the BBCRDS I$_2$ measurements.

The above improvements in the execution of our modelling have also significantly improved the model’s agreement with the LP-DOAS and BBCRDS measurements. Some discrepancies remain, and the various potential reasons for the discrepancies are now discussed in greater detail in the text including: uncertainties in the wind fields; uncertainty in I$_2$ emission rates from the seaweed species, particularly for L. Ochroleuca which was not tested in the Ball et al seaweed lab study; uncertainties/mapping errors in the distribution of seaweed species particularly close to the measurement site.

The wider implications of applying our methodology to model atmospheric chemistry in inhomogeneous emission fields have also been discussed to improve the potential audience of this paper.

Interactive comment on Atmos. Chem. Phys. Discuss., 9, 21165, 2009.