Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ^{17}O) of atmospheric nitrate

B. Alexander^1, M. G. Hastings^2, D. J. Allman^1, J. Dachs^3, J. A. Thornton^1, and S. A. Kunasek^4

^1Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
^2Department of Geological Sciences and Environmental Change Initiative, Brown University, Providence, RI, USA
^3Department of Environmental Chemistry, Instituto de Investigaciones Químicas y Ambientales de Barcelona/Consejo Superior de Investigaciones Científicas, Barcelona, Spain
^4Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA

Received: 15 April 2009 – Accepted: 24 April 2009 – Published: 5 May 2009
Correspondence to: B. Alexander (beckya@u.washington.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The oxygen isotopic composition ($\Delta^{17}\text{O}$) of atmospheric nitrate is a function of the relative abundance of atmospheric oxidants (O_3, HO_x=OH+HO$_2$+RO$_2$) and the formation pathway of nitrate from its precursor NO$_x$ (=NO+NO$_2$). Coupled observations and modeling of nitrate $\Delta^{17}\text{O}$ can be used to quantify the relative importance of chemical formation pathways leading to nitrate formation and reduce uncertainties in the budget of reactive nitrogen chemistry in the atmosphere. We present the first global model of atmospheric nitrate $\Delta^{17}\text{O}$ and compare with available observations. The model shows the best agreement with a global compilation of observations when assuming a $\Delta^{17}\text{O}$ value of tropospheric ozone equal to 35‰ and preferential oxidation of NO$_x$ by the terminal oxygen atoms of ozone. Calculated values of annual-mean nitrate $\Delta^{17}\text{O}$ in the lowest model layer (0–200 m above the surface) vary from 6‰ in the tropics to 41‰ in the polar regions. On the global scale, O_3 is the dominant oxidant (81% annual-mean) during NO$_x$ cycling reactions. The global, annual-mean tropospheric inorganic nitrate burden is dominated by nitrate formation via NO$_2$+OH (76%), followed by N$_2$O$_5$ hydrolysis (18%) and NO$_3$+DMS/HC (4%). Model discrepancies are largest in the polar spring and summer, most likely due to the lack of reactive halogen chemistry in the model. The influence of organic nitrates on observations of nitrate $\Delta^{17}\text{O}$ needs to be determined, especially for observations in summertime and tropical forested regions where organic nitrates can contribute up to 80% of the total NO$_y$ (organic plus inorganic nitrate) budget.

1 Introduction

The formation and cycling of reactive nitrogen in the atmosphere has important implications for air quality, the oxidation capacity of the atmosphere, and atmospheric nitrate (nutrient) deposition. Combustion of fossil fuels, biofuels, and biomass and lightning converts or “fixes” inert nitrogen gas (N$_2$) into a highly reactive form (NO$_x$=NO+NO$_2$).
Other sources of NO$_x$ to the atmosphere include microbial processes in soils and transport from the stratosphere (Logan, 1983). Anthropogenic activities currently dominate NO$_x$ sources to the troposphere (Jaegle et al., 2005). The influence of human activities on the atmospheric nitrogen budget is evident in the record of increasing nitrate concentrations over the past \sim100 years in Greenland ice cores (Mayewski et al., 1990).

The photochemical cycling of NO$_x$ leads to the formation of tropospheric ozone (O$_3$), a major air pollutant. Tropospheric ozone and its byproduct, the hydroxyl radical (OH), largely determine the oxidizing capacity of the atmosphere and the lifetime of most reduced trace gases (Thompson, 1992). The formation of nitrate, defined herein as gas-phase HNO$_3$ plus particulate NO$_3^-$, is the main sink of NO$_x$ in the atmosphere. Nitrate is soluble and is lost from the atmosphere through wet and dry deposition to the Earth’s surface, providing a nutrient source to many ecosystems (Galloway et al., 2008).

The oxygen isotopic composition of nitrate reflects the relative importance of different oxidants in NO$_x$ cycling and nitrate formation (Michalski et al., 2003; Hastings et al., 2003). Understanding the importance of different oxidants for NO$_x$ cycling and the pathways of nitrate formation is critical for understanding the budget of reactive nitrogen in the atmosphere. Here we present the first global chemical transport model of the oxygen isotopic composition of atmospheric nitrate. Comparison with available observations sheds light on previous assumptions used in box model studies regarding the isotopic composition of ozone and the isotopic transfer function during NO$_x$ oxidation reactions, and provides a means to test and validate the model’s representation of reactive nitrogen chemistry.

2 Controls on oxygen isotopic composition (Δ^{17}O) of atmospheric nitrate

Atmospheric nitrate exhibits an anomalous (“mass-independent”) oxygen isotopic composition. The isotopic composition of atmospheric nitrate is considered anomalous due to enrichment in 17O relative to 18O over the expected relationship (δ^{17}O\approx0.5$\times\delta^{18}$O)
that results from purely mass-dependent fractionation processes (Matsuhisa et al., 1978). Isotope ratios are expressed in “delta notation”,

\[
\delta^x\text{O}(\text{‰}) = \left(\frac{(O^x/O^{16})_{\text{sample}}}{(O^x/O^{16})_{\text{standard}}} - 1 \right) \times 10^3 ,
\]

where \(x=17\) or 18 and the standard used for oxygen isotopic analysis is Standard Mean Ocean Water (SMOW). The mass-independent oxygen isotopic anomaly in nitrate, quantified here as \(\Delta^{17}\text{O}=\delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}\), results mainly from the transfer of an isotopic anomaly in atmospheric ozone during oxidation of NO and NO\(_2\) (R1 and R6 in Fig. 1).

Observations of the mean \(\Delta^{17}\text{O}\) value of tropospheric ozone (\(\Delta^{17}\text{O}(\text{O}_3)\)) at different locations range from 25–35‰ (Johnston and Thiemens, 1997; Krankowsky et al., 1995). This large range in observed \(\Delta^{17}\text{O}(\text{O}_3)\) is unexpected based on the pressure and temperature dependence of the isotopic enrichment measured in laboratory studies (Morton et al., 1990). This discrepancy may be due to a bias (most likely low) in the observational data from this difficult measurement and/or uncertainties in the laboratory data. A photochemical equilibrium model constrained with laboratory data (Janssen et al., 1999; Mauersberger et al., 1999) calculates \(\Delta^{17}\text{O}=35\text{‰}\) for surface ozone, increasing to 38‰ at the tropopause (Lyons, 2001). (Michalski and Bhat-tacharya, 2009) calculated \(\Delta^{17}\text{O}(\text{O}_3)=33–37\text{‰}\) using a quadratic fit of data from (Morton et al., 1990) assuming temperatures and pressures typical of mid-latitudes. Other oxidants (OH, RO\(_2\), HO\(_2\)) involved in NO\(_x\) cycling and nitrate formation have \(\Delta^{17}\text{O}\) values at or near zero (Dubey et al., 1997; Savarino and Thiemens, 1999a; Lyons, 2001; Savarino and Thiemens, 1999b). Observations of the \(\Delta^{17}\text{O}\) value of atmospheric nitrate (\(\Delta^{17}\text{O}(\text{nitrate})\)) range from \(\sim 10–40\text{‰}\) (Kaiser et al., 2007; McCabe et al., 2007; Michalski et al., 2003; Morin et al., 2007, 2008; Savarino et al., 2007; Brothers et al., 2008) highlighting the importance of ozone for reactive nitrogen chemistry in the atmosphere.
Reactive bromine (BrO) can also play a role in both NO\textsubscript{x} cycling and nitrate formation in polar regions (Evans et al., 2003; Saiz-Lopez et al., 2008). BrO participates in NO\textsubscript{x} cycling and nitrate formation through the following reactions:

\begin{align*}
\text{NO} + \text{BrO} &\rightarrow \text{NO}_2 + \text{Br} \quad \text{(R9)} \\
\text{NO}_2 + \text{BrO} + \text{M} &\rightarrow \text{BrONO}_2 + \text{M} \quad \text{(R10)} \\
\text{BrONO}_2 + \text{H}_2\text{O}_{(aq)} &\rightarrow \text{HOBr} + \text{HNO}_3 \quad \text{(R11)}
\end{align*}

BrO is expected to have Δ^{17}O values greater than Δ^{17}O(O\textsubscript{3}) due to the involvement of O\textsubscript{3} in BrO formation and expected preferential oxidation of Br by the terminal oxygen atom of ozone (Morin et al., 2007). The formation of nitrate through BrO oxidation and BrONO\textsubscript{2} hydrolysis is expected to lead to similarly large Δ^{17}O(nitrate) values (>40‰) (Morin et al., 2007). The global importance of reactive bromine in NO\textsubscript{x} cycling and nitrate formation remains to be quantified.

3 Model description

We utilize the GEOS-Chem global 3-D model of coupled aerosol-oxidant chemistry (Park et al., 2004) to simulate nitrate Δ^{17}O observations. The model (version 8.01; see http://www-as.harvard.edu/chemistry/trop/geos/geos_versions.html) uses assimilated meteorological data from the NASA Goddard Earth Observing System (GEOS-4) including winds, convective mass fluxes, mixed layer depths, temperature, precipitation, and surface properties. Meteorological data have 6 h temporal resolution (3 h for surface variables and mixing depths). Meteorological fields have $1^\circ \times 1^\circ$ horizontal resolution with 48 sigma vertical levels (including seven below 1 km for a column based at sea-level). For input into GEOS-Chem, we degrade the horizontal resolution to $4^\circ \times 5^\circ$ and vertical resolution to 30 sigma levels. We conduct simulations for the year 2005 after a 12 month spin-up. The model was also run using May–June 2003 meteorological fields at $2^\circ \times 2.5^\circ$ horizontal resolution for comparison with the COCA cruise samples (see Sect. 4).
The tropospheric O$_3$-NO$_x$-hydrocarbon simulation was first described by (Bey et al., 2001) with updates by (Fiore et al., 2002; Martin et al., 2002). Emissions of NO$_x$ total 39.3 Tg N yr$^{-1}$ including sources from fossil fuel burning (including aircraft) (25.2 Tg N yr$^{-1}$), biofuel (2.2 Tg N yr$^{-1}$), biomass burning (5.3 Tg N yr$^{-1}$), lightning (0.1 Tg N yr$^{-1}$) and soil (including fertilizer) (6.6 Tg N yr$^{-1}$). Anthropogenic NO$_x$ emissions were taken from the Global Emission Inventory Activity (GEIA) (Benkovitz et al., 1996), scaled by country on the basis of energy statistics to the year 1995 as described by (Bey et al., 2001). The monthly inventory of emissions from biomass burning are from the Global Fire Emissions Database (GFEDv2.1) for the year 2005 (Randerson et al., 2007; van der Werf et al., 2006). Soil NO$_x$ emissions are computed using a modified version of the algorithm proposed by (Yienger and Levy, 1995) with the canopy reduction factors described by (Wang et al., 1998). Emissions of NO$_x$ from lightning are linked to deep convection following the parameterization of (Price and Rind, 1992) with vertical profiles taken from (Pickering et al., 1998). Stratospheric NO$_y$ (=NO$_x$+HNO$_3$) concentrations are calculated using NO$_y$ production rates and its partitioning into NO$_x$ and HNO$_3$ provided by a global 2-D stratospheric chemistry model (Schneider et al., 2000). The model transports stratospheric HNO$_3$ and NO$_x$ into the troposphere; however, there no explicit representation of polar stratospheric cloud (PSC) sedimentation and resulting stratospheric denitrification.

Figure 1 summarizes the chemistry of NO$_x$ cycling and nitrate formation in the atmosphere as simulated in the model. Upon emission, NO$_x$ cycles rapidly during the daytime between NO and NO$_2$ via oxidation reactions (R1–R3) and photolysis (R4). NO is oxidized to NO$_2$ by ozone (O$_3$) (R1) and peroxy radicals (HO$_2$ and RO$_2$) (R2–R3). NO$_2$ is also produced through decomposition or oxidation of peroxyacyl nitrates (PANs), reactions of peroxy radicals (RO$_2$) with peroxynitrates (RO$_2$NO$_2$) and alkyl nitrates (RONO$_2$), and oxidation or decomposition of nitrous acid (HONO), pernitric acid (HNO$_4$), nitrate radicals (NO$_3$) and dinitrogen pentoxide (N$_2$O$_5$). NO$_2$ is lost from the atmosphere through oxidation and dry deposition to the surface. NO$_2$ is oxidized by OH (daytime) to form HNO$_3$ (R5) or by O$_3$ to form NO$_3$ (R6). NO$_3$ is rapidly photolyzed
during the daytime, so that NO$_3$ concentrations are only significant at night. At night, NO$_3$ reacts with dimethylsulfide (DMS) or hydrocarbons (HC) (R7) or with NO$_2$ to form N$_2$O$_5$ followed by hydrolysis on the surface of aerosols (R8) to form HNO$_3$. The lifetime of NO$_x$ against conversion to HNO$_3$ in the boundary layer varies from ~1 day (tropics and in summer in the mid-to-high latitudes) to ~3 days (high latitudes in winter), similar to (Levy et al., 1999). Nitrate is lost from the atmosphere mainly through wet and dry deposition.

The aerosol and oxidant chemistry are coupled through the formation of sulfate and nitrate, heterogeneous chemistry, and aerosol effects on photolysis rates. Optical properties are calculated for each aerosol component as a function of local relative humidity as described by (Martin et al., 2003). Reactions involving aerosols are described by (Jacob, 2000) with updates for N$_2$O$_5$ hydrolysis as described in (Evans and Jacob, 2005). Photolysis frequencies are computed using the Fast-J radiative transfer algorithm (Wild et al., 2000) which allows for Raleigh scattering as well as for Mie scattering by clouds and aerosols. Total inorganic nitrate is partitioned between the gas and particulate (≤1 µm diameter) phases for the K$^+$-Ca$^{2+}$-Mg$^{2+}$-NH$_4^+$-Na$^+$-SO$_4^{2−}$-NO$_3^−$-Cl$^−$-H$_2$O aerosol system using the ISORROPIA II thermodynamic equilibrium model (Fountoukis et al., 2007). We also consider kinetic uptake of HNO$_3$ by coarse-mode sea-salt aerosol (>1 µm diameter) in competition with SO$_2$ as described in (Alexander et al., 2005). Wet deposition of aerosols is as described in (Liu et al., 2001) and includes contributions from scavenging in convective updrafts, rainout and washout from convective anvils and large-scale precipitation, and return to the atmosphere following re-evaporation. Dry deposition velocities for coarse-mode aerosols (>1 µm diameter) are computed with the size dependent scheme of (Zhang et al., 2001) integrated over each model size bin and accounting for hygroscopic growth as a function of relative humidity (Gerber, 1985). Dry deposition velocities for all other species are computed with a standard resistance-in-series scheme based on (Wesely, 1989) as described in (Wang et al., 1998).

Calculation of Δ^{17}O(nitrate) in the model applies a mass transfer approach similar to
that first employed by (Michalski et al., 2003). During the daytime, reactions involving the photochemical cycling of NO and NO₂ (R1–R4) will achieve photochemical steady-state at least 3 orders of magnitude faster than conversion of NOₓ to HNO₃ (R5–R8) (Sander et al., 2000; DeMore et al., 1997). Ignoring for now the potential influence of reactive bromine chemistry, the Δ¹⁷O value of NOₓ (Δ¹⁷O(NOₓ)) is determined by the relative production rates of NO₂ via reaction of NO with O₃ (R1), HO₂ (R2) and RO₂ (R3) and the Δ¹⁷O value of O₃,

\[\Delta^{17}O(NO_x) = A \times \Delta^{17}O(O_3) \quad (2a) \]

\[A = \frac{k_{R1}[NO][O_3]}{k_{R1}[NO][O_3] + k_{R2}[NO][HO_2] + k_{R3}[NO][RO_2]} \quad (2b) \]

where \(k_{R1}, k_{R2}, \) and \(k_{R3} \) represent rate constants for reactions R1, R2 and R3 respectively. The above calculation assumes that \(\Delta^{17}O(HO_2) = 0\‰, \) in contrast to observations of \(\Delta^{17}O(H_2O_2) \) between 1–2‰ (\(H_2O_2 \) forms mainly through the self reaction of HO₂) (Savarino and Thiemens, 1999b). However, the assumption that \(\Delta^{17}O(HO_2) = 0\‰ \) versus \(\Delta^{17}O(HO_2) = 2\‰ \) changes our calculated \(\Delta^{17}O(\text{nitrate}) \) by less than 1‰ over the global range of calculated \(A \) values (Fig. 3 and Sect. 5.2) and simplifies the calculations. The assumption that \(\Delta^{17}O(HO_2) = 0\‰ \) is also consistent with other studies (Michalski et al., 2003; Morin et al., 2008; Kunasek et al., 2008). The ~1–3 day lifetime of NOₓ against oxidation to HNO₃ suggests that NOₓ will achieve isotopic equilibrium locally with O₃, HO₂, and RO₂ during the daytime prior to conversion to nitrate. The local \(\Delta^{17}O(NO_x) \) is thus calculated in the model based on the relative NO₂ production rates (R1–R3) between 10:00–14:00 hours local time. Comparing calculated \(A \) values using NO₂ production rates averaged between 10:00–14:00 local time and 24 h has little impact on calculated \(\Delta^{17}O(\text{nitrate}) \) (generally <2‰) because of the strong diurnal cycling in NO₂ production rates.

Nitrate in the model is transported as four separate tracers depending on its production pathway (R5–R8 in Fig. 1 plus stratospheric nitrate). Each nitrate tracer is
assigned a $\Delta^{17}O$ value according to its involvement with O_3 during formation, similar to that proposed by (Michalski et al., 2003):

$$\Delta^{17}O(\text{nitrate})_{R5} = 2/3 A \Delta^{17}O(O_3)$$ \hspace{1cm} (3a)

$$\Delta^{17}O(\text{nitrate})_{R6,R7} = 2/3 A \Delta^{17}O(O_3) + 1/3 \Delta^{17}O(O_3)$$ \hspace{1cm} (3b)

$$\Delta^{17}O(\text{nitrate})_{R6,R8} = 1/3 A \Delta^{17}O(O_3) + 1/2 (2/3 A \Delta^{17}O(O_3) + 1/3 \Delta^{17}O(O_3))$$ \hspace{1cm} (3c)

$$\Delta^{17}O(\text{nitrate})_{\text{strat}} = 5/6 \Delta^{17}(O_3)_{\text{strat}}$$ \hspace{1cm} (3d)

We assume O_3 will dominate NO$_x$ cycling in the stratosphere leading to $A=1$. We use a factor of 5/6 to calculate the $\Delta^{17}O$ value of stratospheric nitrate ($\Delta^{17}O(\text{nitrate})_{\text{strat}}$) to be consistent with other studies (McCabe et al., 2007; Savarino et al., 2007) that assume stratospheric nitrate forms via N$_2$O$_5$ hydrolysis. This neglects nitrate formation via ClONO$_2$ decomposition and possible non-zero values of $\Delta^{17}O(H_2O)_{\text{strat}}$ (Franz et al., 2005; Zahn et al., 2006), leading to a possible underestimate of $\Delta^{17}O(\text{nitrate})_{\text{strat}}$. However, our results are insensitive to this assumption as stratospheric nitrate is a negligible source of nitrate in the model (Sect. 5.2).

$\Delta^{17}O(\text{nitrate})$ is calculated according to the local importance of O_3 in NO$_x$ cycling (A) and the relative abundance of each nitrate tracer according to the following,

$$\Delta^{17}O(\text{nitrate}) = f_{R5} \Delta^{17}O(\text{nitrate})_{R5} + f_{R6,R7} \Delta^{17}O(\text{nitrate})_{R6,R7} + f_{R6,R8} \Delta^{17}O(\text{nitrate})_{R6,R8} + f_{\text{strat}} \Delta^{17}O(\text{nitrate})_{\text{strat}}$$ \hspace{1cm} (4a)

$$f_{R5} = \frac{[\text{nitrate}]_{R5}}{[\text{nitrate}]_{\text{total}}}, f_{R6,R7} = \frac{[\text{nitrate}]_{R6,R7}}{[\text{nitrate}]_{\text{total}}}, f_{R6,R8} = \frac{[\text{nitrate}]_{R6,R8}}{[\text{nitrate}]_{\text{total}}}, f_{\text{strat}} = \frac{[\text{nitrate}]_{\text{strat}}}{[\text{nitrate}]_{\text{total}}}$$ \hspace{1cm} (4b)

$$f_{R5} + f_{R6,R7} + f_{R6,R8} + f_{\text{strat}} = 1$$ \hspace{1cm} (4c)

where, for example, $[\text{nitrate}]_{R5}$ is the concentration of nitrate formed through NO$_2$+OH (R5), and $[\text{nitrate}]_{\text{total}}$ is the total concentration of inorganic nitrate. This formulation captures the effect of transport on $\Delta^{17}O(\text{nitrate})$ with respect to oxidation.
of NO₂ to HNO₃. It does not capture the effect of transport on Δ¹⁷O(NOₓ) due to the use of local A values in calculating Δ¹⁷O(nitrate). This greatly simplifies the calculations but introduces some error in calculated values of Δ¹⁷O(nitrate). This error will be most significant in remote regions with no local sources of NOₓ (e.g. polar winter) – the magnitude of this error (maximum of 5‰) is explored in more detail in Sect. 5.3.

We perform sensitivity studies to cover the range of observed tropospheric Δ¹⁷O(O₃) values (25–35‰) and differing assumptions for the transfer mechanism of the isotopic anomaly from O₃ to NO₂ and NO₃ upon oxidation (R1 and R6). We assume stratospheric Δ¹⁷O(O₃)=40‰ in all simulations, a value towards the upper end of observations (10.4–45.7‰) (Mauersberger et al., 2001) and consistent with model studies (Liang et al., 2006). Previous box-model studies have assumed either an equal likelihood of all three O-atoms of O₃ (Michalski et al., 2003; Kunasek et al., 2008) or favored oxidation by the terminal O-atom of O₃ (Morin et al., 2008) during oxidation of NO and NO₂. Whether or not the terminal O-atom of ozone is favored as the reacting atom influences the resulting isotopic composition of nitrate because the asymmetric isotopologues of ozone are enriched in heavy oxygen isotopes with respect to bulk ozone (e.g. ¹⁸O¹⁶O¹⁶O vs. ¹⁶O¹⁸O¹⁶O) (Janssen, 2005; Bhattacharya et al., 2008; Michalski and Bhattacharya, 2009). Recent laboratory experiments suggest that the isotopic transfer of the terminal O-atom of ozone is favored during oxidation of NO to NO₂ according to Δ¹⁷O(NOₓ)R₁=1.18±0.07×Δ¹⁷O(O₃)+6.6±1.5 (Savarino et al., 2008).

4 Observations

The observations include monthly average Δ¹⁷O(nitrate) of aerosol samples collected from Alert, Canada (82° N, 85° W) (Morin et al., 2008), La Jolla, California (33° N, 117° W) (Michalski et al., 2003), Dumont D’Urville, Antarctica (66° S, 140° E) (Savarino et al., 2007), and the South Pole (McCabe et al., 2007). Event-based rainwater samples are averaged over each month of collection from Princeton, New Jersey (40° N,
75° W) (Kaiser et al., 2007) and Bermuda (32° N, 65° W) (Hastings et al., 2003) to compare with monthly-resolved model output. Fog-water samples collected in the Podocarpus National Forest, Ecuador (4° S, 79° W) are averaged over the course of three years (2004–2006) (Brothers et al., 2008). The observations also include seasonally-resolved snowpit samples from Summit, Greenland (73° N, 39° W) (Kunasek et al., 2008), and annual-average nitrate collected from passive deposition collectors in the Atacama desert (Yungay), Chile (24° S, 70° W) (Ewing et al., 2007).

Daily-averaged aerosol samples collected during the COCA cruise in the subtropical north Atlantic in May–June 2003 (21–28° N, 14–26° W) aboard the RV Hespérides (Dachs et al., 2005; Duarte et al., 2006) are presented here for the first time (see supplementary material for details http://www.atmos-chem-phys-discuss.net/9/11185/2009/acpd-9-11185-2009-supplement.pdf). Aerosol samples were collected on quartz fiber filters (QFF, Whatmann, pre-combusted at 450°C for 8 h) with a high-volume aerosol sampler for ~24 h per sample and shipped to the University of Washington for concentration (NO$_3^-$) and isotopic (Δ^{17}O(nitrate)) analysis. Filters were sonnicated in 18 MΩ water, filtered, and measured for NO$_3^-$ concentration via ion chromatography. Measured concentrations of NO$_3^-$ (0.2–8.3 µg m$^{-3}$) were used to determine if there was enough sample for isotopic analysis (~6 µmol of nitrate), and samples were combined as necessary for a total of 16 isotopic measurements. For each sample, organics were removed (oxidized) by adding an excess of a 30% (by volume) H$_2$O$_2$ solution and then analysis of Δ^{17}O(nitrate) was performed according to methods outlined in (Kunasek et al., 2008). Briefly, the NO$_3^-$ was isolated from each sample by anion separation using an ion chromatograph and converted to AgNO$_3$ using a cation exchange membrane. Each AgNO$_3$ sample was then dried in a silver capsule, and pyrolyzed at 550°C to form O$_2$+NO$_2$ (+NO, N$_2$ in trace amounts) in continuous-flow mode using a Finnigan Thermocouple Elemental Analyzer (TC/EA) interfaced with a Finnigan MAT 253 Isotope Ratio Mass Spectrometer (IRMS) with He as the carrier gas. NO$_2$ and other byproducts of AgNO$_3$ pyrolysis are removed at liquid nitrogen temperature, and O$_2$ is measured for 16O16O, 16O17O and 16O18O from which Δ^{17}O is calculated. Our measurements...
of the USGS-35 reference material (NaNO₃) produce Δ¹⁷O(nitrate)=21.6±0.3(1σ) for sample sizes ranging from 5–7 µmol NO₃⁻, which agrees with the accepted value of 21.6‰ (Bohlke et al., 2003).

Observations of Δ¹⁷O(nitrate) were made using two types of analysis: the “silver salt pyrolysis” method (Michalski et al., 2002) described above (observations from La Jolla, South Pole, Summit, Chile, Ecuador and COCA) and the “denitrifier” method (Kaiser et al., 2007) (observations from Alert, Dumont D’Urville, Princeton, Bermuda). The silver salt pyrolysis method relies on isolation of dissolved, inorganic nitrate (NO₃⁻) prior to analysis. Nitrate anion separation ensures that only inorganic nitrate is measured, assuming that soluble organic nitrate does not dissociate in water. Observations of C₁–C₅ alkyl nitrates in wet deposition (rain, snow, frost) (Hauff et al., 1998) suggest that they do not readily dissociate. The denitrifier method does not require isolation of NO₃⁻ and uses denitrifying bacteria (Pseudomonas aureofaciens) to convert nitrate (and nitrite) into N₂O₃, which is then quantitatively thermally decomposed into O₂ and N₂. The O₂ isotopes are then measured on-line using an IRMS. It is generally assumed that the denitrifier method selectively measures inorganic nitrate; however, this has yet to be specifically demonstrated. As will be shown, whether or not we include organic nitrates in our isotope calculations is significant for calculated Δ¹⁷O(nitrate) in regions where organic nitrates are abundant.

5 Results and discussion

5.1 Model comparison with observations

Figure 2 compares Δ¹⁷O(nitrate) model results with observations. The model is sampled at the same time resolution as the observations (daily, monthly and annual mean). Each panel represents a different assumption in the model regarding the isotopic composition of ozone and the isotopic transfer mechanism. Assuming Δ¹⁷O(O₃)=35‰ with a statistical transfer during O₃ oxidation of NO and NO₂ (Fig. 2a), or assuming
\(\Delta^{17}\text{O}(\text{O}_3)=25\% \) with the empirical \(\Delta^{17}\text{O} \) isotopic transfer function of (Savarino et al., 2008) during the \(\text{NO}+\text{O}_3 \) reaction (Fig. 2c), results in an underestimate of \(\Delta^{17}\text{O}(\text{nitrate}) \) observations at all locations by as much as 45% (equivalent to a 15\% underestimate of \(\Delta^{17}\text{O}(\text{nitrate}) \)). Using \(\Delta^{17}\text{O}(\text{O}_3)=35\% \) with the (Savarino et al., 2008) transfer during \(\text{NO}+\text{O}_3 \) only (Fig. 2b) and during both the \(\text{NO}+\text{O}_3 \) and \(\text{NO}_2+\text{O}_3 \) reactions (Fig. 2d) reduces the low bias, and in general agrees with observations within 25\% (equivalent to agreement of \(\Delta^{17}\text{O}(\text{nitrate}) \) within 10\%).

Based on Fig. 2, we focus our analysis using the latter model simulation that assumes \(\Delta^{17}\text{O}(\text{O}_3)=35\% \) with the (Savarino et al., 2008) \(\Delta^{17}\text{O} \) transfer applied to both the \(\text{NO}+\text{O}_3 \) and \(\text{NO}_2+\text{O}_3 \) reactions. Although the comparison in Fig. 2 suggests that \(\Delta^{17}\text{O}(\text{O}_3)=35\% \) is the appropriate value to use in calculations of \(\Delta^{17}\text{O}(\text{nitrate}) \), it is no substitute for direct observations of \(\Delta^{17}\text{O}(\text{O}_3) \), as model biases will impact our results. For example, if the true \(\Delta^{17}\text{O}(\text{O}_3)=25\% \), then our finding that \(\Delta^{17}\text{O}(\text{O}_3)=35\% \) provides the best agreement between observed and modeled \(\Delta^{17}\text{O}(\text{nitrate}) \) indicates that the model globally and systemically underestimates (overestimates) \(\text{O}_3 \) and/or \(\text{NO}_3 \) (OH and/or peroxy radical) concentrations. The resulting magnitude of the bias in \(\Delta^{17}\text{O}(\text{nitrate}) \) will be dependent upon the magnitude of bias in \(\text{O}_3 \), \(\text{NO}_3 \), OH, or peroxy radical concentrations. Our calculated global mean \(\text{OH} \) concentration \((10.7 \times 10^5 \text{molecules cm}^{-3}) \) compares well with (Wang et al., 2008) \((10.6 \times 10^5 \text{molecules cm}^{-3}) \) who optimized the global abundance of \(\text{OH} \) by interpreting observations of methyl chloroform using an inverse technique and the GEOS-Chem model. This suggests no global, systematic bias in \(\text{OH} \). Calculated \(\text{O}_3 \) concentrations in the GEOS-Chem model has been extensively evaluated against observations (Wang et al., 2009; Hudman et al., 2009; Zhang et al., 2008; Terao et al., 2008; Wu et al., 2007), suggesting no systematic global bias. Peroxy radical concentrations would have to be overestimated globally by a factor of \(\sim 3 \) to account for a 10\% difference in \(\Delta^{17}\text{O}(\text{NO}_x) \). Although we may expect significant regional biases in these radical concentrations, a systematic global bias seems unlikely for species with a high degree of
5.2 Global variability of tropospheric nitrate formation pathways and $\Delta^{17}O$(nitrate)

Figure 3 shows global plots of modeled summer (JJA) and winter (DJF) mean $\Delta^{17}O$(nitrate) and the local fraction of NO oxidized to NO$_2$ via O$_3$ (A) at the in the lowest model layer (0–200 m above the surface). $\Delta^{17}O$(nitrate) ranges from 6–41‰ with A ranging from 0.16–1.00. The spatial variability of $\Delta^{17}O$(nitrate) is largely determined by the importance of O$_3$ in NO$_x$ cycling (A) due to the fact that the isotopic composition of two-thirds of the oxygen atoms of nitrate is determined during NO$_x$ cycling. The oxidation of NO$_x$ to nitrate plays a secondary but significant role in determining the final $\Delta^{17}O$(nitrate) value.

Figure 4 shows the fractional importance of each nitrate production pathway to annual mean nitrate concentrations in the lowest model layer (0–200 m above the surface). Nitrate production via NO$_2$+OH (R5) dominates (up to 87%) in the tropics where OH concentrations are highest. Nitrate production via N$_2$O$_5$ hydrolysis (R8) dominates (up to 74%) at high northern latitudes over the continents and the Arctic, consistent with observations and modeling by (Tie et al., 2003) and (Stroud et al., 2003). Nitrate production via reaction of NO$_3$ with (primarily) DMS (R7) is most important (up to 46%) in the high latitudes in the marine boundary layer. The stratospheric source of nitrate is negligible (annual average maximum of 2% in Antarctica). The annual-mean fractional contribution to the tropospheric inorganic nitrate burden for nitrate formed via NO$_2$+OH (R5), N$_2$O$_5$ hydrolysis (R6, R8), and NO$_3$+DMS/HC (R6, R7) is 76%, 18%, and 4%, respectively. The remaining inorganic nitrate burden (2%) is from the stratosphere.

The largest values of $\Delta^{17}O$(nitrate) occur in the winter hemisphere high latitudes (Fig. 3) due to the increased importance of O$_3$ in NO$_x$ cycling (R1) and nitrate formation (R6). (McCabe et al., 2007) estimated an annual average contribution of 25% stratospheric nitrate at the South Pole to explain their high (38.1‰) late-winter val-
ues of $\Delta^{17}O$ (nitrate). In their analysis, (McCabe et al., 2007) assumed tropospheric $\Delta^{17}O(O_3)=27.1\pm4.8‰$ and an isotopic transfer mechanism that results in a depletion of $\Delta^{17}O$ (nitrate) relative to $\Delta^{17}O(O_3)$. In contrast, our calculated winter (July) $\Delta^{17}O$ (nitrate) at the South Pole (39.6‰) is similar in magnitude to the observations (McCabe et al., 2007), with stratospheric nitrate contributing <5% in winter. It is important to note here that we are likely underestimating the stratospheric source in polar-regions due to the lack of an explicit stratospheric denitrification mechanism from the sedimentation of PSCs in the model. Indeed, stratospheric nitrate is thought to be an important (but unquantified) source of nitrate to Antarctica (Legrand and Kirchner, 1990; McMorrow et al., 2004; Mulvaney and Wolff, 1993; Wagenbach et al., 1998; Weller et al., 2002; Savarino et al., 2007). However our results suggest that $\Delta^{17}O$ (nitrate) values on the order of 40‰ can be explained by a dominant source of tropospheric nitrate.

The smallest values of $\Delta^{17}O$ (nitrate) occur in the summer hemisphere and in the tropics due to the increased importance of peroxy radicals (R2 and R3) in NO$_x$ cycling and nitrate production via NO$_2$+OH (R5), with annual mean values as low as 6‰ in tropical forested regions. Observations (using the silver salt pyrolysis method) of $\Delta^{17}O$ (nitrate) in fog-water collected in the Podocarpus National Forest, Ecuador ($4°$ S, 79° W) show a range of annual average values over three years (2004–2006) of 13–22‰ (Brothers et al., 2008). Our monthly-mean model results vary between 14–20‰ with an annual-average of 17‰ at this location.

5.3 Model discrepancies

Figure 5 compares monthly-mean $\Delta^{17}O$ (nitrate) model calculations with observations available over the course of a full year (Alert, Summit, Princeton, La Jolla, DDU, and the South Pole). The model reproduces the seasonality of the $\Delta^{17}O$ (nitrate) observations. The model shows good agreement (generally within 3‰) with the observations in low- to mid-latitudes (La Jolla, Bermuda, COCA, Chile and Ecuador; Fig. 2), though additional observations in low-latitude forested regions are necessary to validate model
predictions of $\Delta^{17}O$(nitrate) less than 20‰. In general, the largest discrepancies occur during spring and summer in polar-regions (1–10‰ underestimate) and in the northern hemisphere mid- to high-latitudes (2–7‰ overestimate, maximum in winter).

The model underestimate (1–10‰) of $\Delta^{17}O$(nitrate) maximizes in polar regions in spring when nitrate formation from BrONO$_2$ hydrolysis is expected to be significant (Morin et al., 2007; Evans et al., 2003; Saiz-Lopez et al., 2008). Bromine radical concentrations can be as high as \sim30 ppt during spring in both the Arctic and Antarctic close to sea-ice (Chance, 1998; Richter et al., 1997; Wagner and Platt, 1998; Kreher et al., 1997). Several indirect lines of evidence suggest a non-negligible contribution of bromine radical chemistry in the inland Arctic (Summit, Greenland) during summer months (Grannas et al., 2007; Peterson and Honrath, 2001; Sjostedt et al., 2007), and are supported by BrO observations of 1–3 ppt during early summer at Summit, Greenland (Huey et al., 2007). The model underestimate of $\Delta^{17}O$(nitrate) in the polar-regions during spring is likely due to the lack of BrO chemistry in the model, which may also contribute to the underestimate in summer. (Kunasek et al., 2008) estimated a 4‰ increase in summertime $\Delta^{17}O$(nitrate) at Summit, Greenland after adding reactive bromine chemistry to their box model assuming BrO concentrations of 3 ppt. This suggests that BrO chemistry can fully account for the 4‰ underestimate in calculated $\Delta^{17}O$(nitrate) at Summit in July (Fig. 5). In addition, photochemical processing of snow-pack nitrate during spring and summer leads to a significant local source of NO$_x$ in the polar-regions (Jones et al., 2000; Honrath et al., 2002) that is not accounted for in the model. Local reprocessing of previously deposited nitrate during periods of active bromine radical chemistry will enhance the importance of bromine in NO$_x$ cycling and nitrate formation in the polar-regions.

Non-zero $\Delta^{17}O$(OH) values due to incomplete exchange of OH with water vapor in the cold, dry polar atmosphere (Morin et al., 2007) may also contribute to the underestimate of $\Delta^{17}O$(nitrate) in winter and spring. (Kunasek et al., 2008) estimated that \sim10% of the original $\Delta^{17}O$(OH) could be retained at Summit, Greenland in spring and summer. This would lead to a maximum underestimate of 1–2‰ in calculated $\Delta^{17}O$(nitrate).
and may partially explain the spring/summer discrepancy in polar regions.

The model tends to overestimate Δ^{17}O(nitrate) (2–7‰) in the northern mid-to high
latitudes in winter when N_2O_5 hydrolysis dominates nitrate production (Fig. 4), suggest-
ing that the model may be overestimating this nitrate production pathway. The reaction
probability of N_2O_5 ($\gamma_{N_2O_5}$) on the surface of aerosols is influenced by temperature,
humidity, and aerosol composition (Kane et al., 2001; Hallquist et al., 2003; Thornton et al., 2003). (Davis et al., 2008) suggested that $\gamma_{N_2O_5}$ may be overestimated by
(Evans and Jacob, 2005) (used in GEOS-Chem), especially in regions of relatively low
temperatures and high relative humidity. In addition, the presence of aerosol surface
coating by organics has been shown to decrease $\gamma_{N_2O_5}$ (McNeill et al., 2006) and is not
accounted for in the model. We examine the sensitivity of Δ^{17}O(nitrate) to N_2O_5
hydrolysis by setting the reaction probability of N_2O_5 equal to zero ($\gamma_{N_2O_5}=0$), effectively
shutting off this nitrate formation pathway. This increases Δ^{17}O(nitrate), particularly at
high latitudes during winter (Fig. 5), due to relative increases in both NO_2+OH (R5)
and NO_3+DMS/HC (R7) nitrate formation pathways, with the latter reaction (R7) be-
coming more important. Removing N_2O_5 hydrolysis results in a 30% increase in the
global, annual-mean tropospheric NOX ($=NO_2+NO_3+HNO_2+2N_2O_5+HNO_4$) burden.
This effect of N_2O_5 hydrolysis on reactive nitrogen partitioning and loss is consistent
with, but somewhat smaller than that found by an earlier analysis (50%) (Dentener and
Crutzen, 1993), likely due to the different $\gamma_{N_2O_5}$ values used.

The model overestimates Δ^{17}O(nitrate) at Princeton, NJ year round (2–7‰ in sum-
mer and winter, respectively). The Princeton data set represents event-based rainwater
samples averaged over each month of collection and thus may not adequately repre-
sent the monthly-mean state. The Princeton observations may also be influenced by
the presence of soluble organic nitrates, which are not included in the model calcula-
tions.

In light of the fact that the denitrifier method may be measuring a combination of
organic and inorganic nitrates, we examine the potential influence of soluble organic
nitrates by including them in our isotope calculations. Soluble organic nitrates included in our isotope calculations form in the model mainly from reactions of NO+RO₂ to form isoprene nitrates (RONO₂), where RO₂ in this case originates from isoprene oxidation products. Soluble organic nitrates also form to a minor extent from reactions between isoprene nitrates (formed via isoprene+NO₃) and RO₂ (methylperoxy and peroxyacetyl radicals). Isoprene is a biogenic hydrocarbon whose main source is terrestrial vegetation, with emissions largely dependent upon vegetation type and density, light and temperature (Guenther et al., 1995). We use the Model of Emissions from Gases and Aerosols in Nature (MEGAN) to compute process-based biogenic emissions of isoprene and other trace gases (Guenther et al., 2006) as described in (Palmer et al., 2006; Millet et al., 2008). The model does not include soluble organic nitrates formed via oxidation of anthropogenic hydrocarbons in the presence of NOₓ, which would most impact the formation of organic nitrates during winter when emission rates for biogenic hydrocarbons are low. The model treats soluble organic nitrates in a similar manner to inorganic nitrate, partitioning the organic nitrates between the gas and aerosol-phase according to thermodynamic equilibrium of HNO₃. Organic nitrates are then dry or wet deposited. The formation of organic nitrates is most important in regions where isoprene emissions are highest (forested regions in the low- to mid-latitudes, maximum in summer).

The Δ¹⁷O value of organic nitrates is calculated according to the following, for reactions with NO+RO₂ and isoprene nitrates+RO₂, respectively:

\[\Delta^{17}O(\text{RONO}_2)_{\text{NO}+\text{RO}_2} = \frac{1}{3} A \Delta^{17}O(\text{O}_3) \] \hspace{1cm} (5a)

\[\Delta^{17}O(\text{RONO}_2)_{\text{NO}_3+\text{RO}_2} = \frac{2}{3} A \Delta^{17}O(\text{O}_3) \] \hspace{1cm} (5b)

For the latter reaction, we assume that the organic nitrate retains two of the original oxygen atoms of NO₃, which may be an underestimate. However, our results are not particularly sensitive to this assumption since organic nitrates formed via this reaction pathway are a minor source of total (inorganic plus organic) nitrate (<6% annual mean). Organic nitrates formed via the NO+RO₂ pathway dominate (80% annual mean) total
nitrate in tropical forested regions, and are as high as 20% (annual mean) elsewhere. Model results that include organic plus inorganic nitrate in calculations of Δ^{17}O(nitrate) are shown in Fig. 5 for the observations that utilized the denitrifier method. Including organic nitrates derived from isoprene oxidation lowers the calculated Δ^{17}O(nitrate) values by as much as 3‰ at a mid-latitude continental location (Princeton, NJ) during summer, and as much as 10‰ in tropical forested regions.

The overestimate of Δ^{17}O(nitrate) in the polar winter (generally between 2–7‰) can be explained by the use of local Λ values in calculating Δ^{17}O(nitrate) where there is a negligible local source of NO$_x$ and most of the nitrate originates from lower latitudes. The importance of ozone in NO$_x$ cycling shows strong latitudinal dependence resulting in Λ values increasing with latitude (maximum in polar winter) (Fig. 3). The overestimate of Δ^{17}O(nitrate) due to the use of local Λ values is most pronounced in remote polar-regions in winter where nitrate originates from lower latitudes and local NO$_x$ production (e.g. snowpack photodenitrification) is absent. An overestimate of the Λ value by 0.2 (typical difference between Λ values at 90° S and 45° S), leads to an overestimate of Δ^{17}O(nitrate) by 5‰, which is within the range of the overestimate in polar winter.

The difference between polar versus mid-latitude Λ values does not explain the maximum overestimate of Δ^{17}O(nitrate) (up to 13‰ in late autumn/early winter) at DDU, Antarctica (66° S latitude). (Savarino et al., 2007) attribute their measured low Δ^{17}O(nitrate) values (22–33‰) to nitrate originating at mid-latitudes, as the range in measured Δ^{17}O(nitrate) during austral summer and fall is similar to observations in Lolla, CA (33° N, 117° W) (Michalski et al., 2003). DDU contains a significant penguin population which could provide a biogenic source of organic nitrogen. Indeed, (Savarino et al., 2007) occasionally found penguin feathers and feces on their filter samples. If photolytic or thermal decomposition of organic nitrogen to inorganic nitrate occurred on the filters post collection (Zhang and Anastasio, 2003), this biogenic source of nitrogen would lower the measured Δ^{17}O(nitrate). However, penguin populations peak during summer, which is inconsistent with the seasonality of the under-
6 Conclusions

We use the global 3-D chemical transport model, GEOS-Chem, to simulate the oxygen isotopic composition ($\Delta^{17}O$) of atmospheric nitrate and compare with available observations. These comparisons allow for quantitative assessment of the relative importance of different oxidants in NO$_x$ cycling and nitrate formation pathways, and are critical for interpreting ice core observations of $\Delta^{17}O$(nitrate) in terms of changes in past oxidant concentrations (Alexander et al., 2004).

The largest uncertainty for calculations of $\Delta^{17}O$(nitrate) is the unconstrained variability in tropospheric $\Delta^{17}O$(O$_3$). The best agreement with global observations occurs when assuming a $\Delta^{17}O$(O$_3$)=35‰ and using the (Savarino et al., 2008) isotopic transfer function during the reaction of O$_3$ with NO and NO$_2$. The spatial variability of $\Delta^{17}O$(nitrate) is largely determined by the importance of O$_3$ in NO$_x$ cycling due to the fact that the isotopic composition of two-thirds of the oxygen atoms of nitrate is determined during NO$_x$ cycling. The annual mean fractional contribution of O$_3$ in NO$_x$ cycling (A) in the lowest model layer (0–200 m above the surface) ranges from 0.16 in the tropics to 1.00 in polar-regions. The oxidation pathway of NO$_x$ to HNO$_3$ plays a secondary but significant role in determining $\Delta^{17}O$(nitrate) values. The global, annual-mean tropospheric inorganic nitrate burden (0.38 Tg N) is dominated by nitrate formation via NO$_2$+OH (76%), followed by N$_2$O$_5$ hydrolysis (18%) and NO$_3$+DMS/HC (4%).

Calculated values of annual-mean $\Delta^{17}O$(nitrate) in the lowest model layer (0–200 m above the surface) vary from 6‰ in the tropics to 41‰ in polar regions. Modeled annual-mean $\Delta^{17}O$(nitrate) values greater than 40‰ exist in the polar regions with negligible contribution from stratospheric nitrate (<2%). Modeled annual-mean
\[\Delta^{17}O(\text{nitrate}) \] values as low as 6‰ are predicted in tropical forested regions due to the dominance of peroxy radicals and OH in NO\(_x\) cycling and nitrate formation, respectively. Additional measurements of \(\Delta^{17}O(\text{nitrate}) \) in the tropics are needed to validate these results.

The largest model discrepancies are in polar-regions during spring and summer (1–10‰ underestimate), and in mid- to high latitudes in winter (general 2–7‰ overestimate). The former is likely due to the lack of reactive bromine chemistry in the model, which should peak in spring in polar regions and lead to large (>40‰) \(\Delta^{17}O(\text{nitrate}) \) (Morin et al., 2007). The high bias in polar winter is due to the use of the local fractional importance of O\(_3\) (versus HO\(_2\)+RO\(_2\)) in NO\(_x\) cycling (\(A \) value) for calculations of \(\Delta^{17}O(\text{nitrate}) \) in regions where nitrate originates from lower latitudes. This overestimate is particularly pronounced in winter when local NO\(_x\) production (e.g., snowpack photodenitrification) is negligible. The high bias in the mid- to high-northern latitudes is amplified when removing nitrate formation via N\(_2\)O\(_5\) hydrolysis in the model due to a relative increase in nitrate formation via nitrate radical H-abstraction reactions. The role (or lack thereof) of organic nitrates in observations of \(\Delta^{17}O(\text{nitrate}) \) that utilize the denitrifier method (Kaiser et al., 2007; Casciotti et al., 2002) needs to be assessed. Whether or not organic nitrates are included in the calculation of \(\Delta^{17}O(\text{nitrate}) \) has a significant impact in low- to mid-latitude continental regions, and may partially account for the high bias in the mid-latitude \(\Delta^{17}O(\text{nitrate}) \) values.

Acknowledgements. We gratefully acknowledge funding of the COCA cruise by the Spanish Ministry of Science and Innovation, and financial support for this project from the NSF Atmospheric Chemistry Program under grant NSF-ATM 0607846 to B. Alexander. M. G. Hastings acknowledges partial support from the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA cooperative agreement No. NA17RJ1232 (contribution #XXXX). We thank D. Hegg and A. Schauer for assistance with nitrate concentration and isotopic measurements, respectively, for the COCA samples, and Lauren Brothers for sharing her data from Ecuador.
References

Davis, J. M., Bhave, P. V., and Foley, K. M.: Parameterization of N\textsubscript{2}O\textsubscript{5} reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate, Atmos. Chem. Phys., 8,

Savarino, J. and Thiemens, M. H.: Mass-independent oxygen isotope (¹⁶O, ¹⁷O, ¹⁸O) fraction-
Savarino, J. and Thiemens, M. H.: Analytical procedure to determine both δ^{18}O and δ^{17}O of H$_2$O$_2$ in natural water and first measurements, Atmos. Env., 33, 3683–3690, 1999b.

Fig. 1. Simplified chemistry leading to inorganic nitrate formation in the model.
Fig. 2. Scatter plot of monthly-mean model calculations at the surface versus observations. Observations include: Bermuda (black circles), La Jolla (red triangles), South Pole (green triangles), DDU (blue diamonds), Chile (purple diamond), Princeton (purple open circles), Summit (orange squares), Alert (black open squares), Ecuador (purple square) and COCA (blue open triangles). Each panel uses different assumptions regarding the bulk isotopic composition of ozone and the isotopic transfer mechanism during ozone oxidation: (a) $\Delta^{17}O(O_3) = 35\%$ and statistical $\Delta^{17}O$ transfer, (b) $\Delta^{17}O(O_3) = 25\%$ and (Savarino et al., 2008) $\Delta^{17}O$ transfer applied to NO+O$_3$, (c) $\Delta^{17}O(O_3) = 35\%$ and (Savarino et al., 2008) transfer applied to NO+O$_3$, (d) $\Delta^{17}O(O_3) = 35\%$ and (Savarino et al., 2008) transfer applied to NO+O$_3$ and NO$_2$+O$_3$. The linear least-squares regression (thick), $y=x$ (solid), $y=2x$ and $y=0.5x$ (dashed) lines are shown. Inset is the regression equation and R^2 values.
Fig. 3. Summer (JJA) (top) and winter (DJF) (bottom) average nitrate $\Delta^{17}O$ values (left) and A, the fraction of NO oxidized to NO$_2$ by O$_3$ (right) at the surface.
Fig. 4. Annual-mean fractional importance of each nitrate production pathway leading to total inorganic nitrate at the surface in the model: NO$_2$+OH (top left), N$_2$O$_5$ hydrolysis (top right), NO$_3$+DMS/HC (bottom left), and stratospheric nitrate (bottom right).
Fig. 5. Monthly mean nitrate Δ^{17}O (‰) observations (black squares with $\pm 1\sigma$ error bars) and model calculations at the surface (gray diamonds) at Summit, Greenland (Kunasek et al., 2008), Alert, Canada (Morin et al., 2008), Princeton, NJ (Kaiser et al., 2007), La Jolla, CA (Michalski et al., 2003), Dumont d’Urville, Antarctica (Savarino et al., 2007), and the South Pole (McCabe et al., 2007). Sensitivity simulation setting $\gamma_{\text{N}_2\text{O}}$=0 (asterisk) and simulation including organic nitrates in the Δ^{17}O(nitrate) calculation (open diamonds) are also shown. The observations utilize the denitrifier method (Kaiser et al., 2007) (left panels) and the silver salt pyrolysis method (Michalski et al., 2002) (right panels).