SO$_2$ oxidation products other than H$_2$SO$_4$ as a trigger of new particle formation – Part 1: Laboratory investigations

T. Berndt1, F. Stratmann1, S. Bräsel1, J. Heintzenberg1, A. Laaksonen2, and M. Kulmala3

1Leibniz-Institut für Troposphärenforschung e.V., Leipzig, Germany
2University of Kuopio, Kuopio, Finland
3University of Helsinki, Helsinki, Finland

Received: 14 April 2008 – Accepted: 21 April 2008 – Published: 28 May 2008

Correspondence to: T. Berndt (berndt@tropos.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Mechanistic investigations of atmospheric H$_2$SO$_4$ particle formation have been performed in a laboratory study taking either H$_2$SO$_4$ from a liquid reservoir or using the gas-phase reaction of OH radicals with SO$_2$. Applying both approaches for H$_2$SO$_4$ generation simultaneously we found that H$_2$SO$_4$ evaporated from the liquid reservoir acts considerably less effective for the process of particle formation and growth than the products originating from the reaction of OH radicals with SO$_2$. Furthermore, for NO$_x$ concentrations >5×1011 molecule cm$^{-3}$ the formation of new particles from the reaction of OH radicals with SO$_2$ is inhibited. This suggests that substances other than H$_2$SO$_4$ (likely products from sulphur-containing peroxy radicals) trigger lower tropospheric new particle formation and growth. The currently accepted mechanism for SO$_2$ gas-phase oxidation does not consider the formation of such substances making a revision necessary.

1 Introduction

For more than a decade the formation of new aerosol particles in the atmosphere has been the subject of intense studies in the field and in the laboratory. The formation mechanisms and the participating substances, however, have not been resolved yet (Kulmala, 2003). Large discrepancies between model-predicted nucleation rates for the favoured binary system H$_2$SO$_4$/H$_2$O and much higher atmospheric nucleation data were explained by various supportive additional participants such as ammonia (Kulmala et al., 2000), organic molecules (Yu et al., 1999; Hoffmann et al., 1998) or ions (Lee et al., 2003; Lovejoy et al., 2004).

In a previous investigation of our laboratory under near-atmospheric conditions, experimental evidence for the formation of new particles in the system H$_2$SO$_4$/H$_2$O was found for H$_2$SO$_4$ concentrations of \sim107 molecule cm$^{-3}$ if “H$_2$SO$_4$” was produced in-situ via the reaction of OH radicals with SO$_2$ (“H$_2$SO$_4$” here stands for all products of
converted SO₂). As the OH radical source served UV-photolysis of O₃ or ozonolysis of alkenes in a dark reaction. The experiments have been performed in the presence and absence of organics. No clear difference concerning new particle formation was observed using the different experimental conditions (presence or absence of UV light, presence and absence of organics) pointing clearly at the SO₂ oxidation products ("H₂SO₄") being the exclusive precursors for the newly formed particles observed (Berndt et al., 2004, 2005, 2006). A significant increase of the nucleation rate for increasing r.h. was measurable (Berndt et al., 2005, 2006). Similar observations are reported from another flow-tube experiment (Friend et al., 1980) as well as from investigations in a chamber (Burkholder et al., 2007). In contrast, taking H₂SO₄ from a liquid reservoir concentrations of 10⁹–10¹⁰ molecule cm⁻³ are needed for new particle formation (Ball et al., 1999, Zhang et al., 2004). This observation is roughly in line with the prediction from the binary nucleation theory H₂SO₄/H₂O (Kulmala et al., 1998).

In this study mechanistic investigations on H₂SO₄/H₂O particle formation are reported explaining the different threshold H₂SO₄ concentrations needed for nucleation, i.e., ∼10⁷ molecule cm⁻³ ("H₂SO₄" produced via gas-phase reaction of OH radicals with SO₂) vs. 10⁹–10¹⁰ molecule cm⁻³ (H₂SO₄ via evaporation from a liquid reservoir).

2 Experimental

The experiments have been performed in the atmospheric pressure flow-tube IfT-LFT (i.d. 8 cm; length 505 cm) at 293±0.5 K. The first tube section (56 cm) includes an inlet system for gas entrance (humidified air premixed with SO₂, O₃, NO or hydrocarbons or H₂SO₄ vapour from a liquid reservoir premixed in dry air). The middle section (344 cm) is equipped with 8 UV lamps (Hg-lamps made of quartz-glass PN235 with a cut-off wavelength of 210 nm) for a homogeneous irradiation of the tube if needed. A non-irradiated end section (105 cm), which also holds the sampling outlet, is attached.

Gas-phase analysis was carried out using a GC-FID (HP 5890) with a cryo-enrichment unit for hydrocarbons, a humidity sensor (Vaisala), analyzers for O₃, SO₂,
and NOx (Thermo Environmental Instruments: 49C, 43C, and 42S), a butanol-based UCPC (TSI 3025) as well as a H2O-based UCPC (TSI 3786) for integral particle measurements, and a differential mobility particle sizer (Vienna-type DMA with UCPC, TSI 3025) for monitoring of size distributions.

The carrier gas consisted of synthetic air (99.9999999%, Linde and further purification with Gate Keeper, AERONEX). A small part of the total gas flow was flushed through an ozone generator (UVP OG-2) for O3 generation outside the flow tube. SO2 was taken from a 1ppmv or 10ppmv calibration mixture in N2 (Messer) and NO from 0.5 vol% mixture in N2 (Messer). In the case of experiments with H2SO4 vapour from a liquid reservoir a part of the total gas stream of dry air was flushed through a saturator (maintained at 288 K) filled with concentrated sulphuric acid (95–98%, Aldrich). The outlet tube of the saturator served directly as the inlet for the H2SO4 vapour containing gas stream. In the first tube section this H2SO4 gas stream was brought together with humidified air.

The total gas flow inside the IfT-LFT was set at 3.33, 10, 20, or 30 standard litre min⁻¹ resulting in a bulk residence time (middle and end section) of 378, 126, 63, or 42 sec., respectively. It is to be noted that the given bulk residence time stands for the upper limit of the nucleation time in the flow tube. All gas flows were set by means of calibrated gas flow controllers (MKS 1259/1179) and the pressure in the tube was measured using a capacitive manometer (Baratron).

2.1 Determination of H2SO4 taken from a liquid reservoir

For experiments using H2SO4 vapour from a liquid reservoir, H2SO4 concentrations were measured at the outlet of the saturator by means of a denuder system (Amanda, ECN). The working fluid was a 10⁻⁴ M NaOH solution of de-ionised water and sampling times were in the range of 2–10 h. The subsequent analysis of SO4²⁻ ions has been done by means of ion chromatography (761 compact IC, Metrohm).
2.2 Determination of “H$_2$SO$_4$”(products of converted SO$_2$) and OH concentrations

Starting from the reaction of OH radicals with SO$_2$ “H$_2$SO$_4$” concentrations were calculated using a model according to the following reaction scheme used in the case of photolysis experiments (Berndt et al., 2005, 2006):

\[
\begin{align*}
O_3 & \rightarrow 2 \text{OH} \quad (1) \\
\text{OH} + \text{furan/CO} & \rightarrow \text{products} \quad (2) \\
\text{OH} + \text{SO}_2 & \rightarrow \ldots \rightarrow \text{“H}_2\text{SO}_4” \quad (3) \\
\text{“H}_2\text{SO}_4” & \rightarrow \text{wall} \quad (4)
\end{align*}
\]

The effective photolysis rate coefficient \(k_1 \) was determined in each experiment measuring the \(O_3 \) decay. Rate coefficients \(k_{2,\text{furan}}=4.0\times10^{-11} \text{ cm}^3\text{ molecule}^{-1}\text{ s}^{-1} \), \(k_{2,\text{CO}}=2.4\times10^{-13} \text{ cm}^3\text{ molecule}^{-1}\text{ s}^{-1} \), and \(k_3=1.2\times10^{-12} \text{ cm}^3\text{ molecule}^{-1}\text{ s}^{-1} \), were taken from literature (Finlayson-Pitts and Pitts, 2000, and references therein). For description of the assumed, diffusion controlled wall loss of “H$_2$SO$_4$”, \(k_4=0.017 \text{ s}^{-1} \), the same data as for H$_2$SO$_4$ were taken (Hanson and Eisele, 2000). The concentration of furan (or CO) was chosen such that \(k_{2,\text{furan}}\times[\text{furan}] > 20 \text{ s}^{-1} \), \(k_{2,\text{furan}}\times[\text{furan}] \sim k_{2,\text{CO}}\times[\text{CO}] \) was fulfilled. Modelling studies showed that under these conditions the reactions of OH radicals with O$_3$, HO$_2$ or any impurities (impurity concentration \(\leq 10^{10} \text{ molecule cm}^{-3} \), \(k_{\text{OH+impurity}}=10^{-10} \text{ cm}^3\text{ molecule}^{-1}\text{ s}^{-1} \)) as well as the wall loss of OH radicals were negligible allowing also the determination of OH radicals from the measured amount of reacted furan. The ratio “reacted O$_3$”/“reacted furan” was experimentally found to be 0.5±0.2 as expected from the simple reaction scheme given above. This finding confirms that OH radical concentration, and consequently the “H$_2$SO$_4$” concentrations, are well described by the model applied. For normally used initial reaction conditions (O$_3$: \(\sim 1.5\times10^{11} \) with a conversion <25%, furan: \(6.2\times10^{11} \)
with a conversion \(\leq 6\% \) or CO: \(1.0 \times 10^{14} \) with a conversion \(< 1\% \) and \(\text{SO}_2: \ (6.7-350) \times 10^{10} \) with a conversion \(< 2.5\% \); concentration unit: molecule cm\(^{-3}\) and measured effective photolysis rate coefficient \(k_1 \) in the order of \(10^{-3} \) s\(^{-1}\), modelling of the reaction system yielded OH radical concentrations of about \(10^7 \) molecule cm\(^{-3}\) being close to atmospheric levels. Given “\(\text{H}_2\text{SO}_4 \)” concentrations in figures and explanations represent averaged values for the irradiated middle section.

In the case of added NO\(_x\) in the carrier gas, NO and NO\(_2\) can undergo reactions with \(\text{O}_3 \) and OH radicals. An additional pathway for OH radical generation represents the reaction of NO with HO\(_2\) forming OH and NO\(_2\). Therefore, OH radical concentrations were determined experimentally using the titration procedure with furan. The OH profile in the tube was calculated from the measured furan decay assuming an exponential function for the overall decay of \(\text{O}_3 \) and for the decay of furan. With the knowledge of the axial OH radical profile “\(\text{H}_2\text{SO}_4 \)” concentration according to pathways (3) and (4) were calculated. Given “\(\text{H}_2\text{SO}_4 \)” concentrations represent also averaged values for the irradiated middle section.

3 Results and Discussion

3.1 Measurement of consumed \(\text{SO}_2 \)

It was attempted to measure the amount of consumed \(\text{SO}_2 \) to evaluate the reliability of calculated “\(\text{H}_2\text{SO}_4 \)” concentrations via pathways (1)–(4). In Fig. 1 the temporal behaviour of \(\text{SO}_2 \) concentration and particle number for an experiment with CO for OH radical titration is given. \(\text{SO}_2 \) measurement using Thermo Environmental Instruments 43C in the absence of OH radicals (UV off) yielded: \((6.78 \pm 0.24) \times 10^{10} \) molecule cm\(^{-3}\) (full line) and in the presence of OH radicals (UV on): \((6.63 \pm 0.24) \times 10^{10} \) molecule cm\(^{-3}\) (dashed line) resulting in a \(\text{SO}_2 \) consumption of \(1.5 \times 10^9 \) molecule cm\(^{-3}\) with an uncertainty by a factor of \(\sim 2.3 \). Modelling of this example (including wall loss for “\(\text{H}_2\text{SO}_4 \)”)

9766
shows an average “H$_2$SO$_4$” concentration in the tube of 2.46×108 molecule cm$^{-3}$ and a SO$_2$ consumption of 1.46×109 molecule cm$^{-3}$. Simulated and measured SO$_2$ consumption are in good agreement. The particle number exceeded the counting range of the TSI 3025 (particle number >105 cm$^{-3}$). Integration of simultaneously performed size distribution measurement yielded a particle number of 3.6×105 cm$^{-3}$.

The determination of reacted SO$_2$ stands for a complementary measure of “H$_2$SO$_4$” and the good agreement between measured and calculated SO$_2$ conversion shows explicitly that the “true” concentration of “H$_2$SO$_4$” in the experiment cannot exceed the modelling data considerably.

3.1.1 New particle formation in the presence of in-situ produced “H$_2$SO$_4$” and H$_2$SO$_4$ from a liquid reservoir

In a first set of experiments in-situ formation of “H$_2$SO$_4$” via OH+SO$_2$ was coupled with evaporation of H$_2$SO$_4$ from the liquid reservoir as background in order to investigate the role of H$_2$SO$_4$ for the new particle formation and growth process. Initial H$_2$SO$_4$ concentration from the liquid reservoir was (1–2)×109 molecule cm$^{-3}$, i.e., close to the threshold concentration needed for binary H$_2$SO$_4$/H_2O nucleation in our experiment. The bulk residence time in the reaction zone (irradiated section) was 97 s and the end-H$_2$SO$_4$ concentration (from liquid reservoir) was estimated to be (2–4)×108 molecule cm$^{-3}$ considering diffusion controlled wall loss only (Hanson and Eisele, 2000). In Fig. 2 results from a typical measurement are depicted. After turning on the flow through the H$_2$SO$_4$-saturator, a small increase of particle number above the noise level was visible with a subsequent slight rise up to 2–3 particles cm$^{-3}$ after more than 5 h on stream. These particles are due to binary nucleation of H$_2$SO$_4$/H_2O (Kulmala et al., 1998). The particle number was not affected by the presence of O$_3$ and the photolysis products (OH radicals, HO$_2$, and H$_2$O$_2$) after switching on UV irradiation. With addition of SO$_2$ (time=235 min), in-situ particle precursor formation in the gas phase started and a constant particle number of 5×104 cm$^{-3}$ was observed for in-situ “H$_2$SO$_4$” concentration.
of 2.3×10^8 molecule cm$^{-3}$. Immediately after switching off UV (time = 330 min), particle number went down to the level being attributed to binary H$_2$SO$_4$/H$_2$O nucleation. At 360 min the supply of H$_2$SO$_4$ from the liquid reservoir was stopped resulting in a decrease of particle number down to background noise level. Switching on UV, i.e., restarting the in-situ “H$_2$SO$_4$” production without background H$_2$SO$_4$, led to a particle number of 5×10^4 cm$^{-3}$ again. This behaviour is a strong indication that H$_2$SO$_4$ from the liquid reservoir (now absent) did not participate in the nucleation process. To illustrate the influence of background H$_2$SO$_4$ on particle growth, Fig. 3 shows measured size distributions in the diameter range $d = 2$–4 nm recorded in the time period 275 to 325 min (presence of background H$_2$SO$_4$) and between 410 and 460 min (absence of background H$_2$SO$_4$). To make sure that the measurements were not affected by memory effects, after a 3 day flushing of the flow tube with clean air, the experiment without background H$_2$SO$_4$ from the liquid reservoir was repeated. Figure 3 shows that the three measured size distributions are nearly identical. This indicates that H$_2$SO$_4$ from the liquid reservoir, its concentration being at least in the same order or one order of magnitude higher compared to that of in-situ produced “H$_2$SO$_4$” (cf. Fig. 4), does not significantly contribute to particle growth. Obviously, condensational growth by H$_2$SO$_4$ evaporated from the liquid reservoir is of less importance under the chosen conditions and cannot be resolved. A kinetically limited collision model assuming H$_2$SO$_4$-like substances as the particle precursor (probably products of HOSO$_2$O$_2$, see later) can roughly describe particle growth into the size range measured.

It is to be noted that integration of the size distributions ($d \geq 2$ nm) given in Fig. 3 yielded a particle number of $\sim 5 \times 10^3$ cm$^{-3}$, i.e., 1/10 of the total number found in the integral measurement using the UCPC. Therefore, the majority of produced particles in this example were smaller than 2 nm in diameter.

To get an rough estimate concerning the H$_2$SO$_4$/“H$_2$SO$_4$” mass balance it is assumed i) that H$_2$SO$_4$ is the exclusive product from the reaction of OH radicals with SO$_2$ and ii) that the particles consist of H$_2$SO$_4$ (density of 1.85 g cm$^{-3}$) only, i.e., contributions of water to particle mass are neglected. For the example described above
(assuming 5×10^3 particle with $d=2$ nm and 4.5×10^4 particle cm$^{-3}$ with $d=1.5$ nm) it follows that about 0.5% of gas phase H$_2$SO$_4$/“H$_2$SO$_4$” can attributed to the newly formed particles.

Experiments, during which OH radicals were produced via ozonolysis of trans-butene (dark reaction) yielded similar results.

These findings pose the question, why H$_2$SO$_4$ from the liquid reservoir exhibits a totally different behaviour (no clear contribution to particle formation and growth) compared to in-situ produced “H$_2$SO$_4$”? A possible reason could be that H$_2$SO$_4$ is not the particle precursor produced from the reaction of OH radicals with SO$_2$.

The currently accepted mechanism of atmospheric SO$_2$ gas-phase oxidation initiated by OH radicals is as follows (Finlayson-Pitts and Pitts, 2000, and references therein):

\[
\text{OH} + \text{SO}_2 \rightarrow \text{HOSO}_2 \quad (5)
\]

\[
\text{HOSO}_2 + \text{O}_2 \rightarrow \text{SO}_3 + \text{HO}_2 \quad (6)
\]

\[
\text{SO}_3 + 2 \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4 + \text{H}_2\text{O} \quad (7)
\]

Here, HOSO$_2$ radicals produced from the primary reaction of OH radicals with SO$_2$ via pathway (5) react in the very fast consecutive step (6) with O$_2$ forming SO$_3$. SO$_3$ reacts with two water molecules or a water dimer producing H$_2$SO$_4$. According to this scheme, each attacked SO$_2$ molecule from pathway (5) is transformed to a H$_2$SO$_4$ molecule.

As a result of their pioneering work in the eighties, Stockwell and Calvert (1983) found that pathway (6) has to be important for the atmospheric fate of HOSO$_2$ as via this reaction more than 80% of HOSO$_2$ regenerates HO$_2$. However, an earlier way of thinking was based on a different pathway (6a) which considered the addition of O$_2$ to HOSO$_2$:

\[
\text{HOSO}_2 + \text{O}_2 + \text{M} \rightarrow \text{HOSO}_2\text{O}_2 + \text{M} \quad (6a)
\]
Pathway (6) represents an endothermic reaction whereas pathway (6a) is exothermic (Benson, 1978, Majumdar et al., 2000), i.e., pathway (6a) is the thermodynamically favoured one. From the pressure-dependence of the kinetics of the HOSO$_2$+O$_2$ reaction, it was concluded that pathway (6a) accounts for <10% of the HOSO$_2$ removal (Gleason et al., 1987). Simultaneous measurements of HO$_2$ and HOSO$_2$ concentrations yielded a lower limit of 70% for pathway (6) (Howard, 1985). Taking all experimental findings into consideration, up to 30% of HOSO$_2$ can be converted to HOSO$_2$O$_2$.

It should be noted that a reduction of H$_2$SO$_4$ formation from SO$_2$ oxidation due to pathway (6a) is within the measurement uncertainty of the CIMS instruments (chemical ionization mass spectrometry) applied in laboratory and field measurements (Lovejoy et al., 1996).

HOSO$_2$O$_2$ is a peroxy-type radical and, analogous to organic peroxy radicals, it can react with HO$_2$, other peroxy radicals or with NO and NO$_2$ (Finlayson-Pitts and Pitts, 2000, and references therein). Also the reaction of HOSO$_2$O$_2$ or its hydrated species HOSO$_2$O$_2$(H$_2$O)$_n$ with SO$_2$ is imaginable (Wayne, 1991). If the reaction of HOSO$_2$O$_2$ with HO$_2$

\[
\text{HOSO}_2\text{O}_2 + \text{HO}_2 \rightarrow \text{HOSO}_2\text{O}_2\text{H} + \text{O}_2 \tag{8}
\]

and/or with other peroxy radicals (RO$_2$)

\[
\text{HOSO}_2\text{O}_2 + \text{RO}_2 \rightarrow \text{products} \tag{9}
\]

and/or with SO$_2$

\[
\text{HOSO}_2\text{O}_2 + \text{SO}_2 \rightarrow \text{HOSO}_2\text{OSO}_3 \tag{10}
\]

is responsible for the formation of particle precursors, addition of NO and/or NO$_2$ should reduce or inhibit new particle formation as a part of the available HOSO$_2$O$_2$ will be consumed by NO and/or NO$_2$. (For simplification pathway (10) is written without hydration.)
3.1.2 New particle formation in the presence of NO/NO₂

New particle formation in the presence of NO/NO₂ using in-situ produced “H₂SO₄”

To test the hypothesis that HOSO₂O₂ is a possible precursor for the nucleating species and that in the presence of NO and/or NO₂ new particle formation is inhibited, experiments were carried out, with NOₓ (NO+NO₂) being present in the carrier gas. In this context it should be noted that generally NO and NO₂ can undergo reactions with O₃, OH radicals, HO₂ and other RO₂ radicals influencing the OH radical level significantly. Therefore, to determine the in-situ produced “H₂SO₄” concentration, OH radical titration with furan was applied during this set of experiments. Figure 5, as an example, shows the results of measurements performed for different initial NO concentrations. In the course of the overall reaction, NO was significantly converted to NO₂, e.g., for the lowest initial NO concentration, 32% of NO reacted to NO₂. It is clearly seen that with increasing amounts of NOₓ being present in the reaction gas, new particle formation is inhibited. Similar observations were made for relative humidities in the range 10–60 % or using NO₂ instead of NO. As a net inhibition of new particle formation is observed, the products from the NOₓ reactions, if important at all, have to be less effective particle precursors than the products from the reaction with HO₂ and/or other peroxy radicals or with SO₂ via pathways (8), (9) or (10), respectively. NOₓ cannot effect H₂SO₄ formation as described by pathways (5)–(7) because the HOSO₂ life-time regarding the O₂ reaction, pathway (6), as well as the SO₃ life-time regarding hydrolysis, pathway (7), are much shorter than those resulting from the corresponding NOₓ reactions (A more detailed explanation is given in Appendix A).

New particle formation in the presence of NO/NO₂ using H₂SO₄ from the liquid reservoir
Furthermore, the influence of NO$_x$ (NO+NO$_2$) for the process of new particle formation was studied using H$_2$SO$_4$ from the liquid reservoir. Figure 6 shows the temporal behaviour of O$_3$ concentration and the particle number for an experiment using an initial H$_2$SO$_4$ concentration (from the liquid reservoir) of $\sim 5 \times 10^9$ molecule cm$^{-3}$. After turning on the flow through the H$_2$SO$_4$-saturator a slightly increasing particle number was observed for the whole time on stream. At 55 min NO with a concentration of 4.1×10^{12} molecule cm$^{-3}$ was added and after turning on the external O$_3$ generation (O$_3$: 1.5×10^{11} molecule cm$^{-3}$) NO was partly converted to NO$_2$ with an end concentration of $\sim 1.1 \times 10^{11}$ molecule cm$^{-3}$, O$_3$+NO\rightarrowNO$_2$+O$_2$. Switching on UV lamps at 175 min OH radical formation started and beside OH radicals, HO$_2$ and H$_2$O$_2$ also HONO and HNO$_3$ were produced. After turning off the NO flow (time: 205 min) only the O$_3$ photolysis products (OH radicals, HO$_2$ and H$_2$O$_2$) remained. Under all conditions investigated, especially for NO$_x$ addition, no impact of added trace gases on the number of newly formed particles was visible. The absence of a NO$_x$ dependence on the number of new particles is a clear disagreement regarding the findings using in-situ produced “H$_2$SO$_4$”. Consequently, these results represent a further indication that reaction products of SO$_2$ oxidation other than H$_2$SO$_4$ (most likely products of sulphur-containing peroxy-type radicals like HOSO$_2$O$_2$) represent possible particle precursors.

4 Summary and conclusions

It was pointed out that, under lower tropospheric conditions, H$_2$SO$_4$ evaporated from a liquid reservoir did not significantly participate in the formation and growth of particles formed from the gas phase reaction of OH radicals with SO$_2$. Furthermore, it was shown that for NO$_x$ concentrations $> 5 \times 10^{11}$ molecule cm$^{-3}$ the formation of new particles from the reaction of OH radicals with SO$_2$ is inhibited. This behaviour is not in line with the currently accepted reaction mechanism describing an equal-molar formation of H$_2$SO$_4$ from SO$_2$. It is therefore suggested that in the course of SO$_2$ con-
version, sulphur-containing peroxy radicals like HOSO$_2$O$_2$ can be formed in substantial fractions leading to products being different from H$_2$SO$_4$. It might be speculated, that under lower tropospheric conditions, HOSO$_2$O$_2$ could react with HO$_2$ and other peroxy radicals (including the self-reaction). These reactions, being of the RO$_2$+RO$_2$ type, could result in low vapour pressure particle precursors. If, e.g., HOSO$_2$O$_2$ reacts with HO$_2$ (the most abundant RO$_2$ radical in atmosphere), peroxy sulphuric acid is formed. Peroxo sulphuric acid is a hydrophilic solid, which in the liquid phase (in water) is converted to sulphuric acid and H$_2$O$_2$ (Kolditz, 1983). Another idea for particle formation starting from HOSO$_2$O$_2$ is given by Wayne (1991) describing the reaction of hydrated HOSO$_2$O$_2$ (HOSO$_2$O$_2$(H$_2$O)$_n$) with SO$_2$ producing HOSO$_2$O(H$_2$O)$_n$SO$_3$. For large \(n \) these hydrated radicals are regarded as aerosol particles (or at least as precursors). These scenarios, however, are highly speculative at the moment.

In conclusion, this study shows, that it is not necessarily sulphuric acid triggering atmospheric new particle formation and growth and that other compounds (like peroxy sulphuric acid or HOSO$_2$O(H$_2$O)$_n$SO$_3$ radicals) formed during the gas phase reaction of OH radicals with SO$_2$ may play an important role.

In a second part a comparison of ambient and laboratory measurements are given and the atmospheric implications are discussed (Laaksonen et al., 2008).

Appendix A

Atmospheric life-times of HOSO$_2$ and SO$_3$

Assuming a concentration of 10^{12} molecule cm$^{-3}$ for NO and NO$_2$ each, a HOSO$_2$ life-time regarding NO reaction of >2 s (Martin et al., 1986) and regarding NO$_2$ reaction of >10 milliseconds (assuming an upper limit for the rate coefficient of 10^{-10} cm3 molecule$^{-1}$ s$^{-1}$) follows. A comparison with the life-time regarding the overall O$_2$ reaction via pathway (6) of ~0.5 microseconds (Gleason et al., 1987) shows clearly that NO and NO$_2$ cannot influence the conversion of HOSO$_2$ via pathways (6) and (6a).
Assuming for the reaction of SO$_3$ with NO and NO$_2$ the rate coefficient measured for the NO$_2$ reaction (Penzhorn and Canosa, 1983), the SO$_3$ life-times regarding the NO and NO$_2$ reaction are in the order of 80 days. That means that also the hydrolysis of SO$_3$ via pathway (7) (with a life-time of ∼20 microseconds assuming a H$_2$O concentration of 3×1017 molecule cm$^{-3}$; Jayne et al., 1997) cannot be affected by NO and NO$_2$. Consequently, NO and NO$_2$ for the concentrations considered here, cannot affect H$_2$SO$_4$ formation via pathways (5)–(7).

Acknowledgements. We thank E. Brüggemann and A. Thomas for SO$_4^{2-}$ measurements, K. Pielok, T. Conrath and H. Macholeth for technical assistance.

References

Hanson, D. R. and Eisele, F.: Diffusion of H$_2$SO$_4$ in humidified nitrogen: Hydrated H$_2$SO$_4$, J.

aerosols formed in the α-pinene/O$_3$ reaction: Implications for new particle formation pro-

Howard, C.: Communication at the 17th Symposium on Free Radicals, Granby, 1985; see ref. (11) in: Discharge flow measurements of the rate constants for the reactions
OH+SO$_2$+He and HOSO$_2$+O$_2$ in relation with the atmospheric oxidation of SO$_2$, edited by:

Molina, M. J.: Pressure and temperature dependence of the gas-phase reaction of SO$_3$ with
H$_2$O and the heterogeneous reaction of SO$_3$ with H$_2$O/H$_2$SO$_4$ surfaces, J. Phys. Chem. 101,
10 000–10 011, 1997.

Kulmala, M., Laaksonen, A., and Pirjola, L.: Parameterization for sulphuric acid/water nucle-

Kulmala, M., Pirjola, L., and Makela, J. M.: Stable sulphate cluster as a source of new atmo-

Laaksonen, A., Kumala, M., Berndt, T., et al.: SO$_2$ oxidation products other than H$_2$SO$_4$ as a
trigger of new particle formation. Part 2: Comparison of ambient and laboratory measure-
ments, and atmospheric implications, Atmos. Chem. Phys. Discuss., 8, 9673–9695, 2008,
http://www.atmos-chem-phys-discuss.net/8/9673/2008/.

Lee, S. H., Reeves, J. M., Wilson, J. C., Hunton, D. E., Viggiano, A. A., Miller, T. M., Ballenthin,
J. O., and Lait, L. R.: Particle formation by ion nucleation in the upper troposphere and lower

Lovejoy, E. R., Hanson, D. R., and Huey, L. G.: Kinetics and products of the gas-phase reaction

Lovejoy, E. R., Curtius, J., and Froyd, K. D.: Atmospheric ion-induced nucleation of sulphuric

Fig. 1. Temporal behaviour of SO$_2$ concentration and particle number for an experiment with “H$_2$SO$_4$” formation from the reaction of OH radicals with SO$_2$ using CO for OH radical titration, r.h. = 22%, gas flow: 3.33 sl min$^{-1}$. Initial concentrations were (unit: molecule cm$^{-3}$); O$_3$: 3.8\times1011; CO: 5.3\times1013. SO$_2$ concentration in the absence of OH radicals (UV off): (6.78\pm0.24)\times1010 molecule cm$^{-3}$ (full line) and in the presence of OH radicals (UV on): (6.63\pm0.24)\times1010 molecule cm$^{-3}$ (dashed line) results in a SO$_2$ consumption of 1.5\times109 molecule cm$^{-3}$ (uncertainty by a factor of \sim2.3).
Fig. 2. Temporal behaviour of O₃ and SO₂ concentration and particle number for an experiment using H₂SO₄ from the liquid reservoir as well as in-situ formation of “H₂SO₄” (SO₂ products) with CO for OH radical titration, r.h. = 22%, gas flow: 10 sl min⁻¹, bulk residence time (middle and end section): 126 sec. Initial concentrations were (unit: molecule cm⁻³); H₂SO₄ (saturator): (1–2) × 10⁹; O₃: 1.6 × 10¹¹; CO: 1.0 × 10¹⁴; SO₂: 3.5 × 10¹¹.
Fig. 3. Measured size distributions in the range $d=2–4$ nm from the experiment depicted in Fig. 2. The distribution with H$_2$SO$_4$ from the saturator was recorded between 275 and 325 min and that without H$_2$SO$_4$ from the saturator between 410 and 460 min, cf. Fig. 2. After a 3 day flushing of the flow tube with pure air the distribution with black symbols in absence of H$_2$SO$_4$ from the saturator was measured.
Fig. 4. CFD-Modelling: Calculated concentration profiles of H$_2$SO$_4$ from the liquid reservoir and from in situ produced “H$_2$SO$_4$” via the reaction of OH radicals with SO$_2$, r.h.=22%, gas flow: 10 sl min$^{-1}$. Initial concentrations in the case of in situ “H$_2$SO$_4$” formation were (unit: molecule cm$^{-3}$); O$_3$: 1.6×1011; CO: 1.0×1014; SO$_2$: 3.5×1011.
Fig. 5. Experimentally observed particle number as a function of in-situ produced “H$_2$SO$_4$” (SO$_2$ products) concentration for different NO additions in the carrier gas using furan for OH radical titration, OH radical formation via O$_3$ photolysis, r.h.=22%, gas flow: 30 sl min$^{-1}$, bulk residence time (middle and end section): 42 s. Initial concentrations were (unit: molecule cm$^{-3}$); O$_3$: (1.5–1.6)×1011; furan: 6.2×1011; furan conversion: 2.1–5.3%; SO$_2$: (1.2–16)×1011.

particle number / cm$^{-3}$

\[\text{NO / molecule cm}^{-3} \]

- X w/o NO
- 4.7·1011
- 9.4·1011
- 1.4·1012
- 1.9·1012
- 3.1·1012

\[["H$_2$SO$_4"] / \text{molecule cm}^{-3} \]

\[10^0 \text{ -- } 10^{10} \text{ -- } 10^{20} \text{ -- } 10^{30} \text{ -- } 10^{40} \]

\[10^7 \text{ -- } 10^{8} \text{ -- } 10^{9} \]
Fig. 6. Temporal behaviour of O_3 concentration and the particle number for an experiment using H_2SO_4 from the liquid reservoir, r.h. = 22%, gas flow: 30 sl min$^{-1}$, bulk residence time (middle and end section): 42 s. Initial concentrations were (unit: molecule cm$^{-3}$); H_2SO_4 (saturator): $\sim 5 \times 10^9$; O_3: 1.5×10^{11}; CO: 1.0×10^{14}; NO: 4.1×10^{12}.