
Y. Le Page¹, J. M. C. Pereira¹, R. Trigo², C. da Camara², D. Oom³, and B. Mota¹

¹Technical University of Lisbon, Instituto Superior de Agronomia, Department of Forestry, Tapada da Ajuda 1349-017 Lisboa, Portugal
²Lisbon University, Geophysical Center, Department of Physics, Campo Grande, Ed C8, Piso 6, 1749-016 Lisboa, Portugal
³Tropical Research Institute, Remote Sensing Centre, Tv. Conde da Ribeira 9, 1300-142 Lisboa, Portugal

Received: 12 October 2007 – Accepted: 16 November 2007 – Published: 28 November 2007
Correspondence to: Y. Le Page (lepagey@isa.utl.pt)
Abstract

Vegetation fires have been acknowledged as an environmental process of global scale, which affects the chemical composition of the troposphere, and has profound ecological and climatic impacts. However, considerable uncertainty remains, especially concerning intra and inter-annual variability of fire incidence. The main goals of our global-scale study were to characterise spatial-temporal patterns of fire activity, to identify broad geographical areas with similar vegetation fire dynamics, and to analyse the relationship between fire activity and the El Niño-Southern Oscillation. This study relies on 10 years (mid 1996–mid 2006) of screened European Space Agency World Fire Atlas (WFA) data, obtained from Along Track Scanning Radiometer (ATSR) and Advanced ATSR (AATSR) imagery. Empirical Orthogonal Function analysis was used to reduce the dimensionality of the dataset. Regions of homogeneous fire dynamics were identified with cluster analysis, and interpreted based on their eco-climatic characteristics. The impact of 1997–1998 El Niño is clearly dominant over the study period, causing increased fire activity in a variety of regions and ecosystems, with variable timing. Overall, this study provides the first global decadal assessment of spatio-temporal fire variability and confirms the usefulness of the screened WFA for global fire ecoclimatology research.

1 Introduction

Wildfire is an ecological process strongly responsive to climatic drivers, which has substantial impacts on biogeochemical cycles, at scales ranging from local to global. Tansey et al. (2004a, b) mapped 3.5 million km2 of fire affected vegetation in the year 2000. Based on these values Ito and Penner (2004) estimated that 2.6 PgDM/yr of biomass had burned, and 1.23 PgC were emitted. These probably are low values, since La Niña conditions prevailed during the year 2000. Van der Werf et al. (2006) estimated mean annual emissions of 2.5 PgC over the period 1997–2004. They showed that
the atmospheric CO$_2$ growth rate is strongly dependent on forest biomass burning anomalies, induced by severe El Niño/La Niña conditions. Pyrogenic aerosols also affect the Earth’s planetary albedo and radiative budget (Govaerts et al., 2002; Schafer et al., 2002), both through aerosol absorption of radiation and impact on cloud physics (Kaufman and Koren, 2006).

Fires are, however, a vital terrestrial ecosystem process, playing a crucial role in ecosystems regeneration and maintenance of their biodiversity and viability. Using a dynamic global vegetation model, Bond et al. (2005) simulated a world without fires, obtaining a virtual land cover where closed forests had doubled their area relatively to actual contemporary extent. Impacts of vegetation fires on terrestrial and marine biodiversity also include extensive damage to endangered species such as the Amur Tiger habitat in East Siberia, in 1998 (Loboda, 2004), and increased coral reef death by asphyxiation, due to massive phytoplankton blooming induced by iron fertilisation from aerosols emitted by major fire outbreaks in Indonesia (Abram et al., 2003).

During the last decade, increased availability of time series of satellite data has contributed to improve our understanding of fire as a global environmental process. Dwyer et al. (2000a, b), used one year of the Advanced Very High Resolution Radiometer (AVHRR) fire data to characterise global patterns of fire seasonality and their relationships with climate. More recently, a new generation of satellites sensors brought further advances through enhanced fire monitoring capabilities, resulting in the production of various burned area and fire hotspots datasets at regional or global scales (Arino et al., 2005; Giglio et al., 2003; Giglio et al., 2006; Carmona-Moreno et al., 2005; Riaño et al., 2007).

In spite of these studies, considerable uncertainties remain, especially regarding the spatial and temporal variability of global vegetation burning and its relationship with climate dynamics. The Global Climate Observing System (GCOS, 2006) considered fire disturbance an “Essential Climate Variable” and highlighted the need for long data time series to quantify the links between climate and fire. The European Space Agency (ESA) is regularly updating an active fire product, the World Fire Atlas (WFA), now
spanning continuously from 1996 to present (Arino et al., 2005). This study relies on a thoroughly screened version of the WFA (Mota et al., 2006), to address the issue of global fire variability and its climatic control, with an emphasis on the role of the El Niño-Southern Oscillation (ENSO). This specific climate mode was chosen because of its global scale climatic impacts, known relevance for fire activity, as described in the next section, and relatively high frequency, including the occurrence of one strong and two weaker El Niño phases during the study period.

2 ENSO-fire relationships

The El Niño-Southern Oscillation is a natural, coupled atmospheric-oceanic cycle in the tropical Pacific Ocean (Trenberth 1997, Diaz et al., 2001). Normal conditions are characterised by warm surface waters in the western Pacific, while cool water wells up in the eastern Pacific, a pattern that is sustained by westward winds. El Niño, the warm phase of ENSO, is set when the trade winds weaken or reverse, due to changes in air pressure gradient over east and west Pacific. Warm waters and the convection zone they induce are, therefore, driven eastward. El Niño episodes, which occur every 3 to 7 years and last from 12 to 18 months, are characterized by an increase in ocean surface temperature of about 3 to 6°C, ranging from the coastal zone of Peru and Ecuador to the centre of the equatorial Pacific Ocean. This warming causes long-term meteorological disturbances over the tropical land surface, including a reversal of normal rainfall patterns, and also has substantial impacts on extensive extra-tropical regions. The reverse situation, i.e. a greater sea surface temperature gradient, defines ENSO cold phase, or La Niña episodes, which often follow El Niño events (Diaz et al., 2001).

ENSO teleconnections, i.e. statistically significant links in atmospheric interactions between widely separated regions, appear to be stronger throughout the tropics and in parts of North America and Oceania (Glantz, 2001). They are also present, but weaker, in Europe and extra-tropical Asia. The direct effects of ENSO and its teleconnections
are reflected in precipitation and temperature anomalies (Allan et al., 1996) on a scale dependent basis, major peaks in the spatial extent of drought and excessively wet conditions being generally associated with extreme phases of ENSO (Lyon and Barnston, 2005).

The sequence of events that may lead to changes in fire activity varies with the type of ecosystem considered. In most tropical regions, where net primary productivity is high, El Niño induces droughts, leading to vegetation dryness, tree mortality and fire outbreaks. In semi-arid and arid ecosystems, where precipitation is a limiting factor, increased rainfall under El Niño conditions first results in a pulse of productivity and fuel accumulation followed, when conditions are back to normal or under La Niña phase, by fuel drying and high flammability (Holmgren et al., 2006).

Fire – ENSO relations are particularly strong, as would be expected, in SE Asia, and numerous studies have addressed the large fires during the two strongest recent El Niño events, namely in 1982–1983 and in 1997–1998 (Siegert et al., 2001; Schimel and Baker, 2002; Doherty et al., 2006). Fuller and Murphy (2006) reported on a strong correlation between fires and ENSO indices, such as the Southern Oscillation Index (SOI) and the Niño 3.4 index, for forested areas located between the latitudes 5.5° S and 5.5° N.

Fire – ENSO teleconnections have been extensively addressed in North America. Simard et al. (1985) analyzed 53 years of USA fire statistics and found decreased fire activity during El Niño in the South. Swetnam and Betancourt (1990) used pyro-dendrochronology and fire statistics data from Arizona and New Mexico for the period 1700–1983. They concluded that small areas typically burn after wet spring seasons, associated with El Niño, while larger areas tend to burn after dry springs, associated with the La Niña phase of ENSO. Veblen et al. (2000) determined that years of extensive burning in Colorado had a tendency to occur during La Niña years, often preceded by two to four years of wetter than average Springs, generally related to El Niño phases, increasing fine fuel production. An alternation of wet and dry periods in two to five year cycles favours widespread fires and displays strong links with ENSO. El Niño
also tends to produce unusually warm and dry conditions in interior Alaska (Hess et al., 2001). During the years 1940 to 1998, 15 out of the 17 biggest fire years occurred under moderate to strong El Niño and were responsible for 63% of the area burned over the whole period. Other fire – ENSO teleconnections in the USA were also reported for the Rocky Mountains (Schoennagel et al., 2005) and Florida (Beckage et al., 2003).

In the Mexican state of Chiapas, Roman-Cuesta et al. (2003) found a clear influence of El Niño on the types of ecosystems affected by fire. In non-El Niño years, burning primarily affects very flammable pine-oak vegetation, while in El Niño years, normally less flammable rainforests burn extensively, due to anomalous drought conditions.

Kitzberger et al. (2001) detected inter-hemispheric synchrony between fire seasons in the South West USA and northern Patagonia, Argentina. Major fire years typically occur after a switch from El Niño to La Niña conditions, due to the already mentioned pattern of enhanced fine fuel production during the ENSO warm phase, and prevailing dry conditions during the cold phase.

ENSO also influences Australian fire regimes. Verdon et al. (2004) analysed multi-decadal variability of fire weather conditions in eastern Australia. The proportion of days with forest fire danger index values of high or more severe increase markedly during El Niño periods. Similar conclusions were reported by Lindesay (2003).

Other regions are teleconnected to the ENSO phenomenon, and regional fire regimes are likely to be affected. For example, the East African climate is under the influence of the Indian Ocean Dipole, which is itself altered by ENSO (Black, 2005). In other cases, the exceptionally intense 1997–1998 El Niño episode is believed to be responsible for important fire events in regions previously not reported to be sensitive, such as Far East Siberia (National Climatic Data Center (NCDC, 1998 Annual Review, 1999).
3 Data and method

3.1 The world fire atlas

Several fire datasets have been developed in recent years, and each product is bound to present some advantages and limitations. They were evaluated for our specific purposes, especially taking into account the available time series and their consistency. The longest time series were produced using Pathfinder AVHRR Land (PAL) 8 km resolution data (Carmona-Moreno et al., 2005; Riaño et al., 2007) spanning 17–20 years, with monthly resolution. The accuracy of these burned area products is, however, limited by the radiometric and orbital inconsistencies in the original dataset in the first case, and by the global application of a burned area mapping supervised classifier trained exclusively with data from Africa, in both cases.

Justice et al. (2002) and Giglio et al. (2003) developed a multi-year daily active fire product from the Moderate Resolution Imaging Spectroradiometer (MODIS). This product has a good detection rate, due to its 4 daily overpasses, but is only available since November 2000.

The World Fire Atlas (WFA, Arino et al., 2005) is a global active fire product, developed with data acquired by the Along-Track Scanning Radiometer (ATSR-2) and the Advanced Along-Track Scanning Radiometer (AATSR), on-board the second European Remote Sensing Satellite (ERS-2) and the Environment Satellite (ENVISAT), respectively. The full dataset covers the period from November 1995 to the present, with a gap between January and June 1996. The spatial resolution of ATSR-2 and AATSR is 1km at nadir and the 512 km swath width allows for an equatorial revisiting period of 3 days. Data for the WFA are acquired at night (around 10:00 p.m. local time).

We selected the WFA for its consistency, and the period of data available, which includes 2 minor El Niño events, and the large El Niño event of 1997–1998 followed by an equally important La Niña episode. This product inherently screens out small, short duration fire events, mostly set for land use management. This was not considered very limiting since by considering anomalies, the main results from our study are unbound...
to the absolute fire activity. Larger fires are also more likely to be under strong climatic control.

Two fire databases are available within the WFA, based on two thresholdings of the 3.7 μm channel. Algorithm 1 relies on a 312 K threshold, while for algorithm 2 a 308 K threshold is used. Detection sensitivity ranges from a burning area of 10 m² at 600 K to 1 m² at 800 K. The final WFA product consists of the date, time, latitude and longitude of all pixels with temperature values exceeding the thresholds.

We chose algorithm 2 data, to reduce the overall underestimation of fire activity (Arino and Plummer, 2001), a known limitation of the WFA. The data were then thoroughly screened to remove observations not corresponding to vegetation fires (Mota et al., 2006). For the study period, about 29% of observations were thus screened out of the WFA.

3.2 WFA exploratory analysis

The spatial and monthly temporal fire variability contained in the WFA was analysed using a simple statistic representation. The screened WFA data were first aggregated by months, at a spatial resolution of 2.5° latitude by 2.5° longitude. As we are interested in anomalous fire events, the fire seasonal cycle was removed by subtracting the 10-year mean monthly values. Standardisation of each grid cell time series was considered necessary, so that fire-sensitive ecosystems, rarely affected by fires but with less ability to rebound compared to other fire-dependent ecosystems (The Nature Conservancy, 2006), are not ignored. The only weighting factor applied after standardisation is the percentage of continental surface of each grid-cell containing ocean or inland water bodies. Fire anomaly data were then aggregated by latitudinal bands in a time-latitudinal Hovmoller diagram (Fig. 1a). Figure 1b shows the WFA representation of the mean annual fire activity gradient by latitude. Total anomalies over the 10 years, i.e. the deseasonalised sum of raw data, is also shown (Fig. 1c).

The most striking feature in the Hovmoller graph is the highly positive anomaly spanning from mid-1997 to the beginning of 1999 and extending along time to almost the
whole range of latitudinal bands. It has been linked, at least for the majority of fire events, to the contemporaneous 1997–1998 El Niño through its impacts on regional temperature and precipitation (see Sect. 2). It reveals very clearly the global scope of this specific event, further pointed out by the total deseasonalised anomaly profile, with a broad peak of high positive values. The intense anomaly first appears around the equator, and then spreads gradually to the higher latitudes, reaching 60°N by mid-1998.

Other conspicuous fire events include early 2000 in the northern tropics, and a succession of anomalies in southern extra-tropical regions from mid-2000 to early 2003. The last one is contemporaneous with fires in northern mid-latitudes, which greatly increased fire activity on a global scale during the year 2002. 2004 is the less perturbed year in terms of spatial anomalies, but global fire counts where anomalously high in June, due to boreal fires. In 2005, the high northern latitudes and the southern tropics exhibited above normal fire activity.

Although biased by the detection rate variability of the sensor (Sect. 3.1), a broad depression in fire activity centred around 30°N is identified in Fig. 1c, corresponding to the global desert belt. There is another depression in the data over the equator, in spite of the strong 1997–1998 ENSO, because those fires are sporadic, only occurring under strong droughts, while at tropical latitudes, extensive savannah burning occurs regularly on an annual basis.

As pointed out in this section, complex patterns of occurrence of anomalous fire events are detected worldwide, revealing high rates of variability that appear to be driven by both global and regional processes. Time lags between ENSO and climatic anomalies at extra-tropical latitudes further complicate the extraction of clear and meaningful information from simple basic statistics, raising the need for more advanced analyses to unravel the temporal and spatial structuring of global fire activity for the 10-year long fire time series. In particular, the leading role of ENSO, clearly suggested here, is further explored.
3.3 Principal Component Analysis and clustering procedure

One of the classical techniques for extracting spatio-temporal information from a multivariate dataset is the so-called Principal Component Analyses (PCA). This technique has appropriate features justifying its use in our specific context, especially its ability to identify and separate the main large-scale patterns, compressing the spatial interdependent information. Although the separation procedure is purely statistical, the patterns obtained are often physically meaningful, and if so, may lead in our case to a better characterisation and understanding of global fire activity variability. Additional information on PCA can be found in various books of reference (Wilks, 2005; von Storch and Zwiers, 2002).

In order to reduce the matrix dimensionality without loosing too much temporal resolution, the data were seasonally aggregated (DJF-MAM-JJA-SON) prior to applying the same pre-processing as described in the previous section (deseasonalisation and standardisation by periods of 3 months). Given the use of a latitude-longitude grid, and since each grid cell is considered individually (no latitudinal aggregation), the adopted weighting scheme here accounts for their continental fraction as before, and for their latitudinal size dependence. The final data matrix contains 2200 pixels (spatial dimension) and covers 40 consecutive seasons (temporal dimension), from June–August 1996 to March–May 2006.

This pre-processing implies that the set of spatial loadings (Empirical Orthogonal Functions, EOFs) and their corresponding temporal scores (Principal Components, PCs) are derived from a temporal correlation matrix between the set of cells. EOFs and PCs respectively represent the new axes of the sample space and the projection of the sample onto those axes. There is no single criterion to specify the number of EOFs that ought to be retained in any given situation (Wilks, 2005). It is a common procedure to retain all variables until the total explained variance reaches a certain threshold, typically of the order of 80% or 90%. In the present study, the aim of PCA is to extract the most outstanding events, not to maximise the variance retained by
the selected EOFs. Consequently retaining all EOFs until the cumulative explained variance reaches a certain threshold was not appropriate. We applied a simple approach based on the Log-Eigenvalue (LEV) Diagram (Craddock and Flood, 1969). The concept behind LEV is that the more dominant events represent a large proportion of variability, while more common, less dominant ones explain an exponentially decreasing proportion of variance, represented as a near straight line towards the tail of the diagram.

To further highlight the main modes of variability and depict their spatial organization, a cluster analysis was performed with the retained EOFs as input, using a clustering method based on the Euclidian distance and Ward’s linkage, a hierarchical minimum variance procedure (Ward, 1963; Milligan, 1980). Our discussion of spatial and temporal patterns of global fire activity, and their relationship to climate and land cover, is structured around these clusters.

3.4 The Multivariate ENSO index and its climatic context

Several ENSO indices have been proposed, built with different meteorological variables and defined over various regions. Hanley et al. (2003) published an evaluation of those indices and assessed their sensitivity to El Niño/La Niña events. We used the Multivariate ENSO Index (MEI), which is calculated as the first unrotated principal component of six observed variables over the tropical Pacific Ocean: sea level pressure, zonal and meridional components of surface wind, sea surface temperature, surface air temperature and total cloudiness fraction of the sky. MEI is expressed by means of standardized departures from zero and is positive (negative) under El Niño (La Niña) conditions. The observed maximum for the strongest recent El Niño events is in the 3.0 range. Most events fall between 1 and 2. MEI correlates well with the Southern Oscillation Index (SOI) and with ENSO indices based on sea surface temperature.

Hanley et al. (2003) concluded that the MEI is very sensitive to ENSO and identifies events not detected by other indices. However, they considered it robust, and suitable for global studies, while other indices may be more appropriate for regional-
scale research. Time series of MEI are available from 1948 to present, from the National Oceanic and Atmospheric Administration (NOAA: http://www.cdc.noaa.gov/people/klaus.wolter/MEI/).

Figure 2 illustrates the recent evolution of the MEI index for the 1996–2006 period and the El Niño (La Niña) events as identified by the NOAA. It shows that one very strong and two mild El Niño, and one strong La Niña events were observed during the considered 10-year period. In 1997-98, the strongest El Niño on record triggered widespread climate perturbations, especially an extended drought in south-east Asia and South America. This was followed by a cold phase from late 1998 through 2000, which is associated with the opposite influence in south-east Asia. In 2002–2003 and 2004–2005, warm phases, albeit weaker, also affected large scale atmospheric circulation.

4 Results

4.1 Deseasonalised EOF fire count analysis

Visual analysis of the LEV diagram obtained from the EOF outputs (Fig. 3) led to the decision of keeping the first nine EOFs, representing 40% of the total variance. The relatively low value of retained variance indicates that the dimensionality of space-time patterns of global fire anomalies is intrinsically high. The complexity of those patterns is enhanced by our use of 3-monthly data, allowing a high temporal resolution of the observed patterns that would not be observed with annual anomalies. Standardisation also contributes to low values of explained variance, since it tends to give equal importance to all grid cells. However, as mentioned before this choice is justified so that fire sensitive ecosystems are not ignored. Performing the analysis with non-standardised data would result in focusing almost exclusively in regions of very high fire incidence (e.g. tropical savannas and woodlands, primarily those located in Africa), which was considered undesirable. Figure 4 illustrates the PCs time series of the nine compo-
ponents retained, and Fig. 5 displays the spatial patterns extracted associated to EOF-1 and EOF-2.

EOF-1 accounts for 6.6% of the total variance. High positive loadings are concentrated in equatorial Asia and northern South Brazil. The main events identified coincide with El Niño periods (1997–1998 and, to a much lesser extent, 2002–2003 and 2004–2005). The 1997–1998 event is remarkable for its length (one year) and the magnitude of the anomaly.

EOF-2 accounts for 5.3% of the total variance. Coherent spatial patterns, with positive loadings are most evident in central East-Africa, Eastern Siberia, Eastern Brazil, Central America and Central/Western Canada. Those regions also experienced extensive burning in 1998, but the ENSO-related fire activity occurred later than in regions highlighted in EOF-1. This is likely due to the ENSO propagation process and the timing of the fire season, and will be discussed later.

4.2 Cluster analysis

Clustering of areas with similar spatio-temporal fire behaviour over the events identified by the nine EOFs was accomplished using hierarchical clustering. Various techniques are available for determining the number of clusters (Wilks, 2005), however the linkage distance dendrogram greatly limits the uncertainty to either 8 or 9 clusters (Fig. 6). After visual inspection of the two possibilities, the 8 cluster map was retained, providing clearer and interpretable results. Their centroid absolute coordinates on each of the 9 EOF dimensions is given in Fig. 7, suggesting that each cluster is defined by no more than 1 to 4 EOFs. Cluster 8 has very low coordinate values on all dimensions, meaning it does not represent significant spatio-temporal events. Figure 8 shows the resulting clusters map, while Fig. 9 illustrates the corresponding fire variability patterns depicted, and the average fire seasonal cycle. Time series of precipitation data anomalies from the CMAP Precipitation data, provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, (http://www.cdc.noaa.gov/) are also shown for each cluster, to illustrate the role of precipitation as a fire determinant.
Using the 1 km landcover product from University of Maryland (available online at http://glcf.UMIACS.umd.edu/data/), a quantitative assessment of fire-affected ecosystems is given for each year (Table 1), and each cluster (Table 1 Fig. 10) to assess the variability in affected ecosystems. We followed the method used by Tansey et al. (2004a, b) with the GBA2000 dataset, i.e. landcovers are aggregated into 4 broad vegetation types (Needleleaved and Mixed forests, N&MF; Broadleaved forests, BF; Woodlands and Shrublands, W&S; Grasslands and Croplands, G&C). The quantitative comparison to GBA2000 (Table 1) confirms previous findings that the detection rate of the ATSR sensor varies with landcover. Consequently, fire count distribution by landcover must be considered relatively (between clusters or through time) and not as an absolute quantification.

5 Discussion

5.1 WFA screened data detection characteristics

Results from an analysis based on active fires are expected to differ from those based on burned area, since the correlation between these two types of fire signal has been reported to be relatively weak for some regions or ecosystems (Kasischke et al., 2003; Arino and Plummer, 2001). The relatively low temporal resolution of the WFA (3–4 days) and the night-time overpass (10:00 p.m.) lead to underdetection of small duration, low intensity fires. As a consequence, forest fires represent a higher proportion of our data than in GBA2000 (~17% vs ~3% in 2000). Comparison with MODIS active fires (Justice et al., 2002) and derived burned area data (Giglio et al., 2006) also shows underestimation of fire activity in agricultural areas and, more generally, in Africa (unpublished results), where a large number of fires only burn at daytime. This means that our dataset does not take into account an unknown proportion of small fire events, thus focusing, as mentioned before, on the larger, longer lasting events, which are more likely to show a strong relationship with climate pattern. It should be stressed
that these large wildfire events can be also considered to represent the most important fires in terms of biomass burnt and atmospheric emissions. We strongly believe that our results, especially their temporal dynamic, are little affected by this bias since we worked with anomaly data. Finally, findings from Kasischke et al. (2003) suggest that remotely sensed fire data have variable inter-annual detection rates. Especially, high fire years exhibit increased fire intensity and decreased cloud cover, enhancing the detection rate. This may magnify the scale of positive anomalies identified in our study.

5.2 Global variability patterns over 1996-2006

The main space-time patterns of fire activity observed during the study period were classified into 8 clusters, illustrated in Fig. 8 and Fig. 9.

Cluster 1 is mainly driven by EOF1 (Fig. 7). It has the earliest and longest response to El Niño, and includes areas located in south-east Asia, South America and central Asia. The temporal pattern illustrates the large fire episode spanning June–August 1997 to December–February 1998, which responded to a severe precipitation deficit. In Indonesia and Papua/New Guinea, monsoon rains were very low due to El Niño, and the ensuing drought led to widespread burning. The evergreen rainforest and peatlands were hugely affected by those fires (Page et al., 2002; Siegert and Hoffmann, 2000). Murdiyarso and Adiningsih (2006) estimated the area affected at about 116 000 km2, resulting in the release of 1.45 GtC, equivalent to half the annual atmospheric CO2 growth rate.

In South America, cluster 1 includes large parts of the Amazon forest (in the Brazilian states of Amazonas, Roraima and Pará, northern Brazil), as well as in Paraguay, north-east Argentina and southern Colombia. The Amazon basin experienced one of the most severe droughts on record, leading to both tree mortality and intense burning (Williamson et al., 2000; Cochrane et al., 1999). In Roraima, which burned intensively in early 1998, the affected area represented an estimated 7% of the original forest ecosystem and more than doubled its previously deforested area (Barbosa et al., 2003).
In Kazakhstan, 1997 was a very dry year, and large fires affected timber plantations (Arkhipov et al., 2000). However, these have not been connected to El Niño and may result from other factors at the regional scale.

The precipitation profile clearly illustrates the dramatic deficit experienced by those regions, which rapidly led to fire outbreaks. This suggests the exceptional nature of fires in tropical ecosystems, which do not have a regular fire activity, but become highly flammable during occasional severe moisture deficits. This is particularly true in disturbed ecosystems, either subject to selective logging or peatland drainage. Although those regions were generally not much affected by fires over the rest of the period, this cluster has the highest fire density, and almost 50% of the fire activity is detected in tropical forests, further indicating the scale of the 1997–1998 El Niño episode (Table 2 and Fig. 10). Interestingly, although the 1997–1998 event clearly leads the cluster, a slight increase is observed in 2002–2003, corresponding to a weaker El Niño phase, mainly affecting insular south-east Asia.

Cluster 2 is driven by EOF1, 2 and 4 (Fig. 7). It is mostly representative of subtropical regions affected by El Niño in 1998, including south-east Asia, southern Africa and Central America. The corresponding enhanced fire activity peaks in March-April 1998, i.e. close but clearly afterwards the peak depicted by cluster 1 (Fig. 9). Dry conditions in Central America were provoked by a sub-tropical high pressure area settling over the region in the spring season, due to late El Niño impact (NCDC, 1998 Annual Review, 1999). Agricultural fires that got out of control were responsible for large areas of destroyed tropical forests. In tropical Mexico alone, Cairns et al. (1999) estimated a total of 4820 km² affected area, while only 2230 km² had been burned in the previous 17 years of satellite data availability, and the region has been reported to be sensitive to ENSO (Román-Cuesta et al., 2003).

In south western Africa, the anomaly was actually due to an early start of the fire season, although fire activity appears not to have been exceptionally high.

South-east Asia, Thailand, Cambodia, Vietnam, Malaysia and the Philippines were highly affected by ENSO-induced dry conditions. In Thailand, extensive crown fires in
pine forest and ground fires in peat-swamp forests contributed to a total burned area of more than 10 000 km2, largely above the annual average (Akaakara, 2002). The landcover profile is diversified, but shows a significant percentage of affected tropical forests. The average fire season for this cluster is bimodal, with one peak occurring in the first half of the year in south-east Asia and Mexico, and the other later in the year, in southern Africa. Overall, cluster 2 has a low fire density (1.1), which is not surprising since wildfires are very sporadic throughout most of its component regions, perhaps with the exception of Thailand.

Regions in northern China and Canada are also included. They represent the start of two other important fire events connected to El Niño, which further spread during the following months, as identified in cluster 3.

Cluster 3 is mostly driven by EOF2 and EOF5 (Fig. 7). It groups regions in the Siberian Far East, central/western Canada, eastern Brazil and eastern Africa, all having their fire season cycle in phase, i.e. with maxima occurring at approximately the same time of the year. It is characterised by enhanced fire activity in June–August and September–November of 1998, mainly originating from a delayed impact of El Niño. The Siberian Far East was hit by a severe drought for several months, after a high pressure centre persisted from May to September (NCDC, 1998 Annual Review, 1999), leaving the region without adequate rainfall. 72 000 km2 of forests were affected, with roughly 10 000 km2 correspond to high intensity crown fire burns (Shvidenko, 2001). Over North America, very warm temperatures were observed, and fires burned 47 000 km2 (Johnston, 1999). These episodes, although mostly concentrated in the regions highlighted in this cluster, affected the whole boreal ecosystem (forest, steppe and peatland). The total burned area has been estimated at 179 000 km2 (Kasischke and Bruhwiler, 2002).

In eastern Brazil, mature El Niño climatic conditions are partially to blame for enhanced fire activity in Mato Grosso and southern Pará (Alencar et al., 2006). Fires were originally set by farmers and loggers for clearing land, and easily spread through the very dry vegetation.
Finally, the eastern Africa component of cluster 3 is located in Kenya and Tanzania, which were first affected by above average rainfall in 1997, resulting in accumulation of biomass (Anyamba et al., 2001). The reversed situation in 1998, with moderate to strong drought (Kijazi and Reason, 2005), facilitated the outbreak of large fire events.

Clusters 1 to 3 are all related to the El Niño event, illustrating its global scope. They are individualised by the different timing of the fire outbreak, which results from a complex interlocking of several factors. First is the propagation of the ENSO induced changes in precipitation, starting in early-1997, mid-1997 and early-1998 respectively (Fig. 9). This time sequence is due to the latitudinal or longitudinal distance to the original ENSO location, involving complex atmospheric circulation patterns. In the case of the eastern Africa regions, affected by fires in mid-1998, the teleconnection may have involved a coupling of ENSO with the Indian Ocean Dipole (Black, 2005). Second, the vegetation state and moisture level at the onset of a drought period is a determinant factor of the delay before fire-prone conditions are actually achieved. Generally, fires are mainly observed during the normal climatologic fire season, but in the case of strong and prolonged droughts, fires may occur at unusual time of the year (south-east Africa in cluster 2), and in hardly ever affected ecosystems (tropical forests).

Cluster 4, driven by EOFs 2, 3, 5 and 6 (Fig. 7), is dominated by a strip covering central Asia, south Australia and western Argentina (Fig. 8). The temporal pattern shows a clear spike in fire activity in the second half of 2002. During this episode, Russia was hit by a widespread heat wave, unprecedented in the previous 30 years (NCDC 2002 Annual Review, 2003), which favoured the occurrence of late season major fire outbreaks, affecting an estimated 120 000 km² (Giglio et al., 2006). In Australia, Victoria and the Capital Territory experienced intense fire activity, during one of the driest years on record (NCDC 2002 Annual Review, 2003).

Cluster 5 has unique patterns. Although driven by several EOFs (Fig. 7), it is almost exclusively located in sub-Saharan northern hemisphere Africa. Woodlands and shrublands strongly dominate its affected landcover profile, and it is the only cluster with a fire season peak during the boreal winter. The main positive anomaly indicates
Enhanced biomass burning in early 2000. This was probably favoured by the positive rainfall anomaly during the previous year, as suggested by the precipitation profile. Enhanced fire activity was reported in Africa at this time, particularly in Ethiopia, where large fires led to a multi-national fire fighting campaign through February to the outcome of heavy rainfall in late March (Goldammer and Habte, 2000). This episode was unusual, since mostly forest was burned, in a cluster where woodlands, shrublands and agricultural fires are highly predominant. The fire-density is estimated at 1.6, but this is very likely to an underestimation (see Sect. 5.1).

Cluster 6 involves diverse, globally scattered regions, including northern Australia, south-east Asia and the United States (Fig. 8). The time series associated indicates a broad positive anomaly spreading from 1999 to 2001. In the US, 2000 was the second worst fire year since 1960, with more than 30 000 km2 burned (Wildland Fire Statistics, 2007). Central Australia was affected by large bushfires, and the state of Queensland was hit by one of its worst fire seasons in memory (Bureau of Meteorology, Annual Report 2001–2002, 2002). The large standard deviation indicates that the timing of the patterns is variable from one region to another.

Cluster 7 is characterised by a sharp event in the 2005 boreal summer, featured by EOFs 6, 7 and 8 (Fig. 7), affecting Alaska, Peru and the western Brazilian Amazon, mainly (Fig. 8). In Alaska, around 45 000 km2, mostly boreal forest, burned, severely affecting an ecosystem recovering from the previous fire season, which had been the worst of the last 50 years. The 2004 fires do not appear in our analysis since they were not contemporaneous with other regional fire events and thus did not represent sufficient global variability to be retained.

South America was hit by a severe drought, especially along the Brazilian/Peru border region, where it was the most severe of the previous 60 years. Fires especially affected the eastern Brazilian states of Acre and Rondonia (Aragão et al., 2007), which are both included in this cluster.

Cluster 8 includes mainly boreal regions, and, as suggested by the centroid coordinates, does not highlight any significant event. It includes scattered regions, and has
the lowest fire density of all clusters. The main driver of the cluster distribution is, by construction, the variability that was represented by the set of nine selected EOFs. But most of the clusters also exhibit a strong coherence in terms of fire seasonality, suggesting that in most parts of the world the parameters driving fire season have a sufficient strength to contain fires within a certain annual extent. The only exception concerns regions where the usual climatic drivers normally show little intra-annual variability, namely equatorial regions.

6 Conclusions

Analysis of major space-time patterns of global fire incidence over an entire decade using a screened version of the WFA, reveals important spatial and temporal structuring and a clear major role played by ENSO. The ten years of fire data can be arranged into a small number of clusters, which are interpretable in both ecological and climatic terms, and correspond to regional anomalies described in the literature. The results are valuable to identify the regions mostly affected by each event, and to support ecological studies and atmospheric impact assessments.

The outstanding El Niño event of 1997–1998, controlling the three leading EOFs, is shown to have had global and long term footprints on fire activity, in critical regions, especially tropical forests. This high sensitivity of global fire activity to a global climate phenomenon suggests its mechanisms and implication have to be better understood for both near-future and climate change forecast purposes. Tropical forests have a fundamental role, in many ways. They host the highest biodiversity in the world, and current deforestation rates and enhanced fire activity are exposing those ecosystems to further and more rapid degradation by positive feedbacks mechanisms, as described by Nepstad et al. (1999), Laurance et al. (2001) and Cochrane and Schulze (1999). Forecasts of 21st century tropical timber trade stress the urgency of addressing this issue (Soares-Filho et al., 2006).

Boreal regions have also experienced very destructive fires over the study period,
both in Eurasia and North America, some under El Niño conditions (Cluster 3), and others during regional precipitation and temperature anomalies (Clusters 4 and 7). Evidence of an ENSO influence, and of the impact of extreme conditions potentially due to climate change on fire incidence in the Siberian Far East is particularly worrying. This region, which contains important biodiversity resources, is under serious threat (Mollicone et al., 2006), since the capacity for fire fighting and for preventing illegal logging have declined in recent years.

Increasing availability of data is enabling a better understanding of biomass burning, especially through improved satellite sensors and their availability over longer periods. In this perspective, expectations from the MODIS burned area product are high. The AVHRR data, although its resolution and consistency over the whole period are not ideal, should also prove very useful for atmospheric emissions and vegetation disturbance studies. Fire driver investigations, which until now mainly relies on ground studies, could greatly benefit from the availability of such longer data time series. With the support of climatic, vegetation and human dataset and climate models, this would open the possibility of assessing climate change impacts on fire activity.

Acknowledgements. This study is funded by the Marie Curie Research Training Network GREENCYCLES, contract number MRTN-CT-2004-512464 (http://www.greencycles.org).

References

Fire activity variability over the last decade
Y. Le Page et al.

15

Kijazi, A. L. and Reason, C. J. C.: Relationships between intraseasonal rainfall variability of
Milligan, G. W.: An examination of the effect of six types of error perturbation on fifteen clustering algorithms, Psychometrika, 1980.
ACPD
7, 17299–17338, 2007

Fire activity variability over the last decade
Y. Le Page et al.

Tansey, K., Gregoire, J. M., Stroppiana, D., Sousa, A., Silva, J., Pereira, J. M. C.,
Boschetti, L., Maggi, M., Brivio, P. A., Fraser, R., Flasse, S., Ershov, D., Binaghi, E.,
Graetz, D., and Peduzzi, P.: Vegetation burning in the year 2000: Global burned area
estimates from SPOT VEGETATION data, J. Geophys. Res-Atmos., 109(22), D14S03,
The Nature Conservancy, Living with Fire – Sustaining Ecosystems & Livelihoods Through
Trenberth, K. E.: Short-term climate variations: Recent accomplishments and issues for future
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano,
Chem. Phys., 6, 3423–3441, 2006,
http://www.atmos-chem-phys.net/6/3423/2006/.
Veblen, T. T., Kitzberger, T., and Donnegan, J.: Climatic and human influences on fire regimes
Verdon, D. C., Kiem, A. S., and Franks, S. W.: Multi-decadal variability of forest fire risk - eastern
236–244, 1963.
Wildland Fire Statistics: http://www.nifc.gov/fire_info/fires_acres.htm, access: 14 September
2007.
Maryland, USA, 2005.
Williamson, G. B., Laurance, W. F., Oliveira, A. A., Delamonica, P., Gascon, C., Lovejoy, T. E.,
Table 1. Fire counts proportion (%) by year. GBA2000 indicates proportion of burned areas derived from this product (Tansey et al., 2004a, b).

<table>
<thead>
<tr>
<th>Year</th>
<th>NL&M Forest</th>
<th>BL Forest</th>
<th>Woodlands & Shrublands</th>
<th>Grasslands & Croplands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>2.5</td>
<td>26.4</td>
<td>56.8</td>
<td>12.7</td>
</tr>
<tr>
<td>1998</td>
<td>9.7</td>
<td>19.6</td>
<td>57.3</td>
<td>11.7</td>
</tr>
<tr>
<td>1999</td>
<td>4.6</td>
<td>17.0</td>
<td>65.2</td>
<td>11.6</td>
</tr>
<tr>
<td>2000</td>
<td>5.6</td>
<td>11.2</td>
<td>68.9</td>
<td>13.1</td>
</tr>
<tr>
<td>(GBA2000)</td>
<td>(1.5)</td>
<td>(1.2)</td>
<td>(80.7)</td>
<td>(16.6)</td>
</tr>
<tr>
<td>2001</td>
<td>3.1</td>
<td>1.2</td>
<td>67.0</td>
<td>16.0</td>
</tr>
<tr>
<td>2002</td>
<td>7.8</td>
<td>17.2</td>
<td>60.7</td>
<td>13.3</td>
</tr>
<tr>
<td>2003</td>
<td>14.7</td>
<td>16.0</td>
<td>55.3</td>
<td>12.4</td>
</tr>
<tr>
<td>2004</td>
<td>4.5</td>
<td>21.5</td>
<td>62.4</td>
<td>10.6</td>
</tr>
<tr>
<td>2005</td>
<td>3.6</td>
<td>20.9</td>
<td>60.3</td>
<td>13.5</td>
</tr>
<tr>
<td>Total</td>
<td>6.6</td>
<td>17.5</td>
<td>61.5</td>
<td>12.9</td>
</tr>
</tbody>
</table>
Table 2. Clusters global characteristics. Rectified surface is the proportion of total grid cells surface (rectified with latitude) with active fires in the cluster. Fire density is the ratio between the cluster percentage of total active fires and the corresponding rectified surface.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Rectified Surface (%)</th>
<th>Fire Proportion (%)</th>
<th>Fire Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.9</td>
<td>8.1</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>8.3</td>
<td>9.3</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>8.4</td>
<td>11.2</td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>10.1</td>
<td>10.3</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>6.4</td>
<td>10.3</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>7.9</td>
<td>9.0</td>
<td>1.1</td>
</tr>
<tr>
<td>7</td>
<td>6.3</td>
<td>6.9</td>
<td>1.1</td>
</tr>
<tr>
<td>8</td>
<td>12.2</td>
<td>9.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>64.5</td>
<td>73.6</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. (a) Time-latitude Hovmoller diagram of monthly deseasonalised fire anomalies (scale indicated by the colorbar). (b) Fire counts by latitude (detection/year/km2), corrected by continental surface for each latitudinal band. (c) Monthly anomalies of the total deseasonalised fire counts over the 10 years.
Fig. 2. MEI index time series. Darkgray/lightgray patches represent El Niño/La Niña as identified by the NOAA.
Fig. 3. LEV diagram, based on a log-representation. The threshold is defined as the elbow point of the line (set to 9, for 40% of explained variance).
Fig. 4. Top nine PCs time series. Dark/Clear patches represent El Niño/La Niña phases.
Fig. 5. EOF-1 and EOF-2 and corresponding PCs. Colorbar scale is relative.
Fig. 6. Linkage distance tree. Retained clusters are indicated as CL#.
Fig. 7. Centroids coordinates of the 8 clusters along the 9 retained EOFs, in absolute value. Star diagram axis length equals 0.04 EOF units.
Fig. 8. Spatial clusters of fire counts variability from 07/1996 to 06/2006. Isolated pixels were removed for clarity.
Fig. 9. (left) temporal profiles of fires (colored) and precipitation anomalies (CMAP data) and (right) averaged fire season.
Fig. 9. Continued.
Fig. 10. Active fires incidence by landcover (UMD Landcover), for each cluster. N&MF: Needle-leaved and Mixed Forests; BF: Broadleaved Forests; W&S: Woodlands and Shrublands; G&C: Grasslands and Croplands.